Skip to main content
Log in

Global product structure for a space of special matrices

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

The importance of the Hurwitz–Metzler matrices and the Hurwitz symmetric matrices can be appreciated in different applications: communication networks, biology and economics are some of them. In this paper, we use an approach of differential topology for studying such matrices. Our results are as follows: the space of the \(n\times n\) Hurwitz symmetric matrices has a product manifold structure given by the space of the \((n-1)\times (n-1)\) Hurwitz symmetric matrices and the Euclidean space. Additionally we study the space of Hurwitz–Metzler matrices and these ideas let us do an analysis of robustness of Hurwitz–Metzler matrices. In particular, we study the insulin model as an application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aguirre-Hernández, B., Frías-Armenta, M.E., Verduzco, F.: Smooth trivial vector bundle structure of the space of Hurwitz polynomial. Automatica 45(12), 2864–2868 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aguirre-Hernández, B., Frías-Armenta, M.E., Verduzco, F.: On differential structures of polynomials spaces in control theory. J. Syst. Sci. Syst. Eng. 21(3), 372–382 (2012)

    Article  Google Scholar 

  3. Arcat, M., Sontag, E.: Diagonal stability of a class of cyclic systems and its connection with the secant criterion. Automatica 42(9), 1531–1537 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Berman, A., Neumann, M., Stern, R.J.: Nonnegative matrices in dynamic systems. Pure and Applied Mathematics, vol. 3. Wiley, New York (1989)

  5. Bhattacharyya, S.P., Chapellat, H., Keel, L.H.: Robust Control: The Parametric Approach. Prentice Hall, Upper Saddle River (1995)

    MATH  Google Scholar 

  6. Briat, C.: Sign properties of Metzler matrices with applications. Linear Algebra Appl 515, 53–86 (2017). (Supplement C)

  7. Gantmacher, F.R.: Matrix Theory, vol. II. AMS Chelsea, Providence (1987)

    Google Scholar 

  8. Golub, G., Van Loan, C.: Matrix Computations. John Hopkins University Press, Baltimore (1989)

    MATH  Google Scholar 

  9. Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  10. Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)

    Book  MATH  Google Scholar 

  11. Johnson, C.R.: Sufficient condition for D-stability. J. Econ. Theory 9, 53–62 (1974)

    Article  MathSciNet  Google Scholar 

  12. Meyn, S.: Control Techniques for Complex Networks. U.K. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

  13. Narendra, K.S., Shorten, R.: Hurwitz stability of Metzler matrices. IEEE Trans. Autom. Control 55(6), 1484–1487 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Quiroz, G., Femat, R.: On hyperglicemic glucose basal levels in Type 1 Diabetes Mellitus from dynamic analysis. Math. Biosci. 210, 554–575 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Redheffer, R.: Volterra multipliers I. SIAM J. Algebr. Discret. Methods 6(4), 592–611 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  16. Redheffer, R.: Volterra multipliers II. SIAM J. Algebr. Discret. Methods 6(4), 612–620 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  17. Shorten, R., Narendra, K.S.: On a theorem on diagonal stability by Redheffer. Linear Algebra Appl. 431(12), 2317–2329 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  18. Siljak, D.: Large Scale Dynamic Systems. North Holland, New York (1978)

    MATH  Google Scholar 

  19. Sorensen, J.T.: A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. JPhD thesis, MIT, USA (1985)

  20. Souza, M., Wirth, F.R., Shorten, R.N.: A note on recursive Schur complements, block Hurwitz stability of Metzler matrices, and related results. IEEE Trans. Autom. Control 62(8), 4167–4172 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stipanović, D., Šiljak, D.: Stability of polytopic systems via convex \(M\)-matrices and parameter-dependent Lyapunov functions. Nonlinear Anal. 40, 589–609 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Jesús F. Espinoza acknowledges the financial support of CONACyT and of the Universidad de Sonora.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesús F. Espinoza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguirre-Hernández, B., Carrillo, F.A., Espinoza, J.F. et al. Global product structure for a space of special matrices. Bol. Soc. Mat. Mex. 25, 77–85 (2019). https://doi.org/10.1007/s40590-017-0189-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-017-0189-z

Keywords

Mathematics Subject Classification

Navigation