Global product structure for a space of special matrices

  • Baltazar Aguirre-Hernández
  • Francisco A. Carrillo
  • Jesús F. EspinozaEmail author
  • Horacio Leyva
Original Article


The importance of the Hurwitz–Metzler matrices and the Hurwitz symmetric matrices can be appreciated in different applications: communication networks, biology and economics are some of them. In this paper, we use an approach of differential topology for studying such matrices. Our results are as follows: the space of the \(n\times n\) Hurwitz symmetric matrices has a product manifold structure given by the space of the \((n-1)\times (n-1)\) Hurwitz symmetric matrices and the Euclidean space. Additionally we study the space of Hurwitz–Metzler matrices and these ideas let us do an analysis of robustness of Hurwitz–Metzler matrices. In particular, we study the insulin model as an application.


Hurwitz–Metzler matrices Hurwitz symmetric matrices Insulin model Product manifold 

Mathematics Subject Classification

15B99 93D09 (primary) 57R55 (secondary) 



Jesús F. Espinoza acknowledges the financial support of CONACyT and of the Universidad de Sonora.


  1. 1.
    Aguirre-Hernández, B., Frías-Armenta, M.E., Verduzco, F.: Smooth trivial vector bundle structure of the space of Hurwitz polynomial. Automatica 45(12), 2864–2868 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Aguirre-Hernández, B., Frías-Armenta, M.E., Verduzco, F.: On differential structures of polynomials spaces in control theory. J. Syst. Sci. Syst. Eng. 21(3), 372–382 (2012)CrossRefGoogle Scholar
  3. 3.
    Arcat, M., Sontag, E.: Diagonal stability of a class of cyclic systems and its connection with the secant criterion. Automatica 42(9), 1531–1537 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Berman, A., Neumann, M., Stern, R.J.: Nonnegative matrices in dynamic systems. Pure and Applied Mathematics, vol. 3. Wiley, New York (1989)Google Scholar
  5. 5.
    Bhattacharyya, S.P., Chapellat, H., Keel, L.H.: Robust Control: The Parametric Approach. Prentice Hall, Upper Saddle River (1995)zbMATHGoogle Scholar
  6. 6.
    Briat, C.: Sign properties of Metzler matrices with applications. Linear Algebra Appl 515, 53–86 (2017). (Supplement C)Google Scholar
  7. 7.
    Gantmacher, F.R.: Matrix Theory, vol. II. AMS Chelsea, Providence (1987)Google Scholar
  8. 8.
    Golub, G., Van Loan, C.: Matrix Computations. John Hopkins University Press, Baltimore (1989)zbMATHGoogle Scholar
  9. 9.
    Horn, R., Johnson, C.: Matrix Analysis. Cambridge University Press, Cambridge (1985)CrossRefzbMATHGoogle Scholar
  10. 10.
    Horn, R., Johnson, C.: Topics in Matrix Analysis. Cambridge University Press, Cambridge (1991)CrossRefzbMATHGoogle Scholar
  11. 11.
    Johnson, C.R.: Sufficient condition for D-stability. J. Econ. Theory 9, 53–62 (1974)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Meyn, S.: Control Techniques for Complex Networks. U.K. Cambridge University Press, Cambridge (2008)zbMATHGoogle Scholar
  13. 13.
    Narendra, K.S., Shorten, R.: Hurwitz stability of Metzler matrices. IEEE Trans. Autom. Control 55(6), 1484–1487 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Quiroz, G., Femat, R.: On hyperglicemic glucose basal levels in Type 1 Diabetes Mellitus from dynamic analysis. Math. Biosci. 210, 554–575 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Redheffer, R.: Volterra multipliers I. SIAM J. Algebr. Discret. Methods 6(4), 592–611 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Redheffer, R.: Volterra multipliers II. SIAM J. Algebr. Discret. Methods 6(4), 612–620 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Shorten, R., Narendra, K.S.: On a theorem on diagonal stability by Redheffer. Linear Algebra Appl. 431(12), 2317–2329 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Siljak, D.: Large Scale Dynamic Systems. North Holland, New York (1978)zbMATHGoogle Scholar
  19. 19.
    Sorensen, J.T.: A physiologic model of glucose metabolism in man and its use to design and assess improved insulin therapies for diabetes. JPhD thesis, MIT, USA (1985)Google Scholar
  20. 20.
    Souza, M., Wirth, F.R., Shorten, R.N.: A note on recursive Schur complements, block Hurwitz stability of Metzler matrices, and related results. IEEE Trans. Autom. Control 62(8), 4167–4172 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Stipanović, D., Šiljak, D.: Stability of polytopic systems via convex \(M\)-matrices and parameter-dependent Lyapunov functions. Nonlinear Anal. 40, 589–609 (2000)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Sociedad Matemática Mexicana 2017

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversidad de SonoraHermosilloMexico
  2. 2.Mathematics DepartmentUniversidad Autónoma Metropolitana-IztapalapaMexico CityMexico

Personalised recommendations