Skip to main content
Log in

Topological rigidity of higher graph manifolds

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

In this short note we prove the Borel conjecture for a family of aspherical manifolds that includes higher graph manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aravinda, C.S., Farrell, T.: Twisted doubles and nonpositive curvature. Bull. Lond. Math. Soc. 41, 1053–1059 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartels, A., Farrell, F.T., Lück, W.: The Farrell-Jones conjecture for cocompact lattices in virtually connected Lie groups. J AMS 27(2), 339–388 (2014)

  3. Bell, G., Dranishnikov, A.: Asymptotic dimension. Topol. Appl. 155(12), 1265–1296 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Capell, S.: Splitting theorems for manifolds. Invent. Math. 33(2), 69–170 (1976)

    Article  MathSciNet  Google Scholar 

  5. Carlsson, G., Goldfarb, B.: The integral Novikov Conjecture for groups with finite asymptotic dimension. Invent. Math. 157, 405–418 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Carlsson, G., Goldfarb, B.: On homological coherence of discrete groups. J. Algebra 276(2), 502–514 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carlsson, G., Goldfarb, B.: Algebraic K–Theory of Geometric Groups. arXiv:1305.3349

  8. Carlsson, G., Goldfarb, B.: Equivariant stable homotopy methods in the algebraic K-Theory of Infinite Groups (2014). arXiv:1412.3483

  9. Connell, C., Suárez-Serrato, P.: On higher graph manifolds. arXiv:1208.4876

  10. Dranishnikov, A., Zarichnyi, M.: Asymptotic dimension, decomposition complexity, and Haver’s property C. Topol. Appl. 169, 99–107 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Frigerio, R., Lafont, J.F., Sisto, A.: Rigidity of high dimensional graph manifolds, Astérisque, (2016) (to appear)

  12. Goldfarb, B.: Weak coherence and the K-Theory of groups with finite decomposition complexity. IMRN (2016) (to appear). arXiv:1307.5345

  13. Guentner, E., Tessera, R., Yu, G.: Discrete groups with finite decomposition complexity. Groups Geom. Dyn. 7(2), 377–402 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Phan, T.T.N.: Smooth (non)rigidity of cusp-decomposable manifolds. Comment. Math. Helv. 87(4), 780–804 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Waldhausen, F.: Algebraic K-Theory of generalized free products I, II, III, IV. Ann. Math 108(2), 135–256 (1978)

  16. Whitehead, J.H.C.: On the asphericity of regions in a 3-sphere. Fund. Math. 32, 149–166 (1939)

    MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Boris Goldfarb and Jim Davis for conversations related to this paper. The first named author acknowledges the support of UNAM PAPIIT Grant ID100315. The second named author has support from UNAM-PAPIIT -IN105614 and CONACyT 151338 research Grants. The third named author thanks CONACyT Mexico and DGAPA-UNAM (IN 102716, PE 106915) for supporting various research initiatives.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Suárez-Serrato.

Additional information

Dedicated to the memory of Prof. Samuel Gitler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bárcenas, N., Juan-Pineda, D. & Suárez-Serrato, P. Topological rigidity of higher graph manifolds. Bol. Soc. Mat. Mex. 23, 119–127 (2017). https://doi.org/10.1007/s40590-016-0099-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-016-0099-5

Mathematics Subject Classification

Navigation