Boletín de la Sociedad Matemática Mexicana

, Volume 23, Issue 1, pp 153–161 | Cite as

Homotopy decomposition of a suspended real toric space

  • Suyoung Choi
  • Shizuo Kaji
  • Stephen Theriault
Original Article


We give p-local homotopy decompositions of the suspensions of real toric spaces for odd primes p. Our decomposition is compatible with the one given by Bahri, Bendersky, Cohen, and Gitler for the suspension of the corresponding real moment-angle complex, or more generally, the polyhedral product. As an application, we obtain a stable rigidity property for real toric spaces.


Homotopy decomposition Real toric manifold Real toric spaces 

Mathematics Subject Classification

Primary 55P15 Secondary 57S17 



The authors would like to thank Daisuke Kishimoto for pointing out an error in an earlier version of the paper.


  1. 1.
    Bahri, A., Bendersky, M., Cohen, F.R., Gitler, S.: The polyhedral product functor: a method of decomposition for moment-angle complexes, arrangements and related spaces. Adv. Math. 225(3), 1634–1668 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buchstaber, V.M., Panov, T.E.: Torus Actions and Their Applications in Topology and Combinatorics, University Lecture Series, vol. 24. American Mathematical Society, Providence (2002)zbMATHGoogle Scholar
  3. 3.
    Björner, A., Wachs, M., Welker, V.: On sequentially Cohen–Macaulay complexes and posets. Israel J. Math. 169, 295–316 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cai, L.: On products in a real moment-angle manifold. J. Math. Soc. Japan. arXiv:1301.1518 (to appear)
  5. 5.
    Carr, M., Devadoss, S.: Coxeter complexes and graph-associahedra. Topol. Appl. 153, 2155–2168 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Choi, S., Park, H.: A new graph invariant arises in toric topology. J. Math. Soc. Japan 67(2), 699–720 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Choi, S., Park, H.: On the Cohomology and Their Torsion of Real Toric Objects. arXiv:1311.7056
  8. 8.
    Davis, M.W., Januszkiewicz, T.: Convex polytopes, coxeter orbifolds and torus actions. Duke Math. J. 62(2), 417–451 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Denham, G., Suciu, A.: Moment-angle complexes, monomial ideals and Massey products. Pure Appl. Math. Q. 3, 25–60 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Ishida, H., Fukukawa, Y., Masuda, M.: Topological toric manifolds. Moscow Math. J. 13(1), 57–98 (2013)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Iriye, K., Kishimoto, D.: The Fat Wedge Filtration and a Homotopy Decomposition of a Polyhedral Product. arXiv:1412.4866
  12. 12.
    Yu, L.: On a Class of Quotient Spaces of Moment-Angle Complexes. arXiv:1406.7392

Copyright information

© Sociedad Matemática Mexicana 2016

Authors and Affiliations

  1. 1.Department of MathematicsAjou UniversityYeongtongguKorea
  2. 2.Department of Mathematical Sciences, Faculty of ScienceYamaguchi UniversityYamaguchiJapan
  3. 3.School of MathematicsUniversity of SouthamptonSouthamptonUK

Personalised recommendations