Skip to main content
Log in

Detection and attribution of climate change through econometric methods

  • Original Article
  • Published:
Boletín de la Sociedad Matemática Mexicana Aims and scope Submit manuscript

Abstract

An ever-growing body of evidence regarding observed changes in the climate system has been gathered over the last three decades, and large modeling efforts have been carried to explore how climate may evolve during the present century. The impacts from both observed weather and climate endured during the twentieth century and the magnitude of the potential future impacts of climate change have made this phenomenon of high interest for the policy-makers and the society at large. Two fundamental questions arise for understanding the nature of this problem and the appropriate strategies to address it: Is there a long-term warming signal in the observed climate, or is it the product of natural variability alone? If so, how much of this warming signal can be attributed to anthropogenic activities? As discussed in this review, these questions are intrinsically related to the study of the time-series properties of climate and radiative forcing variables and of the existence of common features such as secular co-movements. This paper presents a brief summary of how detection and attribution studies have evolved in the climate change literature and an overview of the time-series and econometric methods that have been applied for these purposes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Multicointegration extends the cointegration methodology to integrated variables of higher order than one and to variables integrated of different order.

References

  1. Andrews, D.W.K.: Heteroskedaticity and autocorrelation consistent covariance matrix estimation. Econometrica 59, 817–858 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  2. Andrews, D.W.K., Ploberger, W.: Optimal tests when a nuisance parameter is present only under the alternative. Econometrica 62, 1383–1414 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baillie, R.T.: Long memory processes and fractional integration in econometrics. J. Econ. 73, 5–59 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Banerjee, A., Dolado, J.J., Galbraith, J.W., Hendry, D.H.: Co-Integration, Error Correction, and the Econometric Analysis of Non-Stationary Data. Oxford University Press, Oxford (1993)

    Book  MATH  Google Scholar 

  5. Banerjee, A., Dolado, J.J., Hendry, D.F., Smith, G.W.: Exploring equilibrium relationships in econometrics through static models: some monte carlo evidence. OBES 48, 253–277 (1986)

    Article  Google Scholar 

  6. Banerjee, A., Dolado, J.J., Mestre, R.: Error-correction mechanism tests for cointegration in a single-equation framework. J. Time. Ser. Anal. 19, 267–283 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  7. Becker, R., Enders, W., Lee, J.: A stationarity test in the presence of an unknown number of smooth breaks. J. Time. Ser. Anal. 27, 381–409 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  8. Beenstock, M., Reingewertz, Y., Paldor, N.: Polynomial cointegration tests of anthropogenic impact on global warming. Earth Syst Dynam Discuss 3, 561–596 (2012)

    Article  Google Scholar 

  9. Bierens, H.J.: Nonparametric nonlinear cotrending analysis, with an application to interest and inflation in the united states. JBES 18, 323–337 (2000)

    MathSciNet  Google Scholar 

  10. Bloomfield, P.: Trend in global temperature. Clim. Change 21, 1–16 (1992)

    Article  Google Scholar 

  11. Boswijk, H.P.: Testing for an unstable root in conditional and structural error correction models. J. Econ. 63, 37–60 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Box, G.E.P., Tiao, G.C.: Intervention analysis with applications to economic and environmental problems. J. Am. Stat. Assoc. 70, 70–79 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  13. Campbell, J., Perron, P.: Pitfalls and opportunities: what macroeconomists should know about unit roots. In: Blanchard, O., Fischer, S. (eds.) NBER Macroecon. Annu. MIT Press, Cambridge (1991)

    Google Scholar 

  14. Carrion-i-Silvestre, J.L., Kim, D., Perron, P.: Gls-based unit root tests with multiple structural breaks both under the null and the alternative hypotheses. Econ. Theory 25, 1754–1792 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chang, Y., Park, J.Y.: On the asymptotics of adf tests for unit roots. Econ. Rev. 21, 431–447 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dickey, D.A., Fuller, W.A.: Distribution of the estimators for autoregressive time series with a unit root. J. Am. Stat. Assoc. 74, 427–431 (1979)

    MATH  MathSciNet  Google Scholar 

  17. Elliott, G.: On the robustness of cointegration methods when regressors almost have unit roots. Econometrica 66, 149–158 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Elliott, G., Rothenberg, T.J., Stock, J.H.: Efficient tests for an autoregressive unit root. Econometrica 64, 813–836 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  19. Engle, R.F., Granger, C.W.J.: Co-integration and error correction: representation, estimation and testing. Econometrica 55, 251–276 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  20. Engle, R.F., Kozicki, S.: Testing for common features. JBES 11, 369–395 (1993)

    Google Scholar 

  21. Ericsson, N.R., MacKinnon, J.G.: Distribution of error correction tests for cointegration. Econ. J. 5, 285–318 (2002)

    Article  MATH  Google Scholar 

  22. Estrada, F., Gay, C., Sánchez A.: Reply to ‘Does temperature contain a stochastic trend? Evaluating conflicting results by Kaufmann, et al. Clim. Change 101, 407–414 (2010)

    Google Scholar 

  23. Estrada, F., Perron, P., Gay-Garcia, C., Martinez-Lopez, B.: A time-series analysis of the 20th century climate simulations produced for the ipccs fourth assessment report. PLoS ONE 8(3), e60017 (2013a)

    Article  Google Scholar 

  24. Estrada, F., Perron, P., Martinez-Lopez, B.: Statistically derived contributions of diverse human influences to twentieth-century temperature changes. Nat. Geosci. 6, 1050–1055 (2013b). doi:10.1038/ngeo1999

  25. Folland, C.K., et al.: Observed climate variability and change. In: Houghton, J.T., Callander, B.A., Varney, S.K. (eds.) Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  26. Galbraith, J., Green, C.: Inference about trends in global temperature data. Clim. Change 22, 209–221 (1992)

    Article  Google Scholar 

  27. Gay, C., Estrada, F., Conde, C.: Some implications of time series analysis for describing climatologic conditions and for forecasting. an illustrative case: veracruz, mexico. Atmosfera 20(2), 147–170 (2007)

    Google Scholar 

  28. Gay, C., Estrada, F., Sanchez, A.: Global and hemispheric temperature revisited. Clim. Change 94, 333–349 (2009)

    Article  Google Scholar 

  29. Gil-Alana, L.A.: Time trend estimation with breaks in temperature time series. Clim. Change 89, 325–337 (2008a)

    Article  Google Scholar 

  30. Gil-Alana, L.A.: Warming break trends and fractional integration in the northern, southern, and global temperature anomaly series. J. Atmos. Oceanic Technol. 25, 570–578 (2008b)

    Article  Google Scholar 

  31. González, A., Teräsvirta, T.: Modelling autoregressive processes with a shifting mean. SNDE 12(1), 1–25 (2008)

    Google Scholar 

  32. Gonzalo, J., Lee, T.H.: Pitfalls in testing for long run relationships. J. Econ. 86, 129–154 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  33. Granger, C.W.J., Joyeux, R.: An introduction to long-memory models and fractional differencing. J. Time Ser. Anal. 1, 15–29 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  34. Granger, C.W.J., Lee, T.H.: Multicointegration. In: Rhodes, G.F., Fomby, T.B. (eds.) Advances in Econometrics: Cointegration, Spurious Regressions and Unit Roots, pp. 17–84. JAI Press, New York (1990)

    Google Scholar 

  35. Hansen, B.E.: Efficient estimation and testing of cointegrating vectors in the presence of deterministic trends. J. Econ. 53, 87–121 (1992)

    Article  MATH  Google Scholar 

  36. Hansen J, Ruedy R, Sato M, Lo K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010)

  37. Harvey, D.I., Mills, T.C.: Modelling global temperature trends using cointegration and smooth transitions. SMIJ 1, 143–159 (2001)

    Google Scholar 

  38. Harvey, D.I., Mills, T.C.: Unit roots and double smooth transitions. J. Appl. Stat. 29, 675–683 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  39. Holt, M.T., Teräsvirta. T.: Global hemispheric temperature trends and co-shifting: a shifting mean vector autoregressive analysis. CREATES Research Paper 2012–54 (2012)

  40. IPCC: Climate change 2007: the physical science basis. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L. (eds.) Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge (2007a)

  41. IPCC: Climate change 2001: the scientific basis. In: Houghton, J.T., Ding, Y., Griggs, D.J., Noguer, M., van der Linden, P.J., Dai, X., Maskell, K., Johnson, C.A. (eds.) Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. University Press, Cambridge (2001)

  42. Johansen, S.: Statistical analysis of cointegration vectors. J. Econ. Dyn. Control 12, 231–254 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  43. Johansen, S., Juselius, K.: Maximum likelihood estimation and inference on cointegration with applications to the demand for money. OBES 52, 169–210 (1990)

    Article  Google Scholar 

  44. Kärner, O.: Global temperature deviations as a random walk. J. Clim. 9, 656–658 (1996)

    Article  Google Scholar 

  45. Kaufmann, R.K., Kauppi, H., Stock, J.H.: Emissions, concentrations, & temperature: a time series analysis. Clim. Change 101, 395–405 (2006a)

    Article  Google Scholar 

  46. Kaufmann, R.K., Kauppi, H., Stock, J.H.: The relationship between radiative forcing and temperature: what do statistical analyses of the instrumental temperature record measure? Clim. Change 77, 279–289 (2006b)

    Article  Google Scholar 

  47. Kaufmann, R.K., Kauppi, H., Stock, J.H.: Does temperature contain a stochastic trend? evaluating conflicting statistical results. Clim. Change 101, 395–405 (2010)

    Article  Google Scholar 

  48. Kaufmann, R.K., Stern, D.I.: Evidence for human influence on climate from hemispheric temperature relations. Nature 388, 39–44 (1997)

    Article  Google Scholar 

  49. Kim, D., Perron, P.: Unit root tests allowing for a break in the trend function under both the null and the alternative hypotheses. J. Econ. 148, 1–13 (2009)

    Article  MathSciNet  Google Scholar 

  50. Kremers, J.J., Ericsson, N.R., Dolado, J.J.: The power of cointegration tests. OBES 54, 325–348 (1992)

    Article  Google Scholar 

  51. Kwiatkowski, D., Phillips, P.C.B., Schmidt, P., Shin, Y.: Testing the null hypothesis of stationarity against the alternative of a unit root. J. Econ. 54, 159–178 (1992)

    Article  MATH  Google Scholar 

  52. Leybourne, S.J., Newbold, P.: Spurious rejections by cointegration tests induced by structural breaks. Appl. Econ. 35, 1117–1121 (2003)

    Article  Google Scholar 

  53. Lui, H., Rodriguez, G.: Human activities and global warming: a cointegration analysis. Environ. Modell. Softw. 20, 761–773 (2005)

    Article  Google Scholar 

  54. Maddala, G.S., Kim, I.M.: Unit roots, cointegration and structural change. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  55. Mann, M.E.: On long range dependence in global surface temperature series. Clim. Change 107, 267–276 (2011)

    Article  Google Scholar 

  56. Mills, T.C.: ‘skinning a cat’: alternative models of representing temperature trends. an editorial comment. Clim. Change 101, 415–426 (2010a)

    Article  Google Scholar 

  57. Mills, T.C.: Is global warming real? analysis of structural time series models of global and hemispheric temperatures. J. Cosmol. 8, 1947–1954 (2010b)

    Google Scholar 

  58. Morice, C.P., Kennedy, J.J., Rayner, N.A., Jones, P.D.: Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: the hadcrut4 data set. J. Geophys. Res. 117, D08101 (2012)

    Google Scholar 

  59. Ng, S., Perron, P.: Unit root tests in arma models with data dependent methods for the selection of the truncation lag. JASA 90, 268–281 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  60. Ng, S., Perron, P.: Lag length selection and the construction of unit root tests with good size and power. Econometrica 69, 1519–1554 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  61. Perron, P.: Trends and random walks in macroeconomic time series: further evidence from a new approach. J. Econ. Dyn. Control. 12, 297–332 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  62. Perron, P.: The great crash, the oil price shock, and the unit root hypothesis. Econometrica 57, 1361–1401 (1989)

    Article  MATH  Google Scholar 

  63. Perron, P.: Testing for a unit root in a time series regression with a changing mean. JBES 8, 153–162 (1990)

    Google Scholar 

  64. Perron, P.: Further evidence on breaking trend functions in macroeconomic variables. J. Econ. 80, 355–385 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  65. Perron, P.: Dealing with structural breaks. In: Mills, T.C., Patterson, K. (eds.) Palgrave Handbook of Econometrics, vol. 1, pp. 278–352. Palgrave Macmillan, New York (2006)

    Google Scholar 

  66. Perron, P., Qu, Z.: A simple modification to improve the finite sample properties of ng and perron’s unit root tests. Econ. Lett. 94, 12–19 (2007)

    Article  MATH  Google Scholar 

  67. Perron, P., Vogelsang, T.J.: Erratum: the great crash, the oil price shock and the unit root hypothesis. Econometrica 61, 248–249 (1993)

    Article  Google Scholar 

  68. Perron, P., Wada, T.: Let’s take a break: trends and cycles in us real gdp. J. Monet. Econ. 56, 749–765 (2009)

    Article  Google Scholar 

  69. Perron, P., Yabu, T.: Testing for shifts in trend with an integrated or stationary noise component. JBES 27, 369–396 (2009a)

    MathSciNet  Google Scholar 

  70. Perron, P., Yabu, T.: Estimating deterministic trends with an integrated of stationary noise component. J. Econ. 151, 56–69 (2009b)

    Article  MathSciNet  Google Scholar 

  71. Perron, P., Zhu, X.: Structural breaks with deterministic and stochastic trends. J. Econ. 129, 65–119 (2005)

    Article  MathSciNet  Google Scholar 

  72. Phillips, P.C.B., Ouliaris, S.: Asymptotic properties of residual based tests for cointegration. Econometrica 58, 165–193 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  73. Phillips, P.C.B., Perron, P.: Testing for unit roots in time series regression. Biometrika 75, 335–346 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  74. Qu, Z.: A test against spurious long memory. JBES 29, 423–438 (2011)

    MATH  Google Scholar 

  75. Rea, W., Reale, M., Brown, J.: Long memory in temperature reconstruction. Clim. Change 107, 247–265 (2011)

    Article  Google Scholar 

  76. Richards, G.R.: Change in global temperature: a statistical analysis. J. Clim. 6, 546–559 (1993)

    Article  Google Scholar 

  77. Roy, A., Fuller, W.A.: Estimation for autoregressive processes with a root near one. JBES 19, 482–493 (2001)

    MathSciNet  Google Scholar 

  78. Said, E., Dickey, D.A.: Testing for unit roots in autoregressive moving average models of unknown order. Biometrika 71, 599–607 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  79. Schmidth, T., Johansen, S., Thejll, P.: Statistical analysis of global surface temperature and sea level using cointegration methods. J. Clim. 25, 7822–7833 (2012)

    Article  Google Scholar 

  80. Seidel, D.J., Lanzante, J.R.: An assessment of three alternatives to linear trends for characterizing global atmospheric temperature changes. J. Geophys. Res-Atmos. 109, L02207 (2004)

    Article  Google Scholar 

  81. Skinner, L.: A long view on climate sensitivity. Science 337(6097), 917–919 (2012)

    Article  Google Scholar 

  82. Stern, D.I., Kaufmann, R.K.: Time series properties of global climate variables: Detection and attribution of climate change. In: Working Papers in Ecological Economics 9702, Centre for Resource and Environmental Studies, Australian National University, Canberra, ACT 0200, Australia (1997a) http://cres.anu.edu.au/anzsee/9702.html

  83. Stern, D.I., Kaufmann, R.K.: Is there a global warming signal in hemispheric temperature series? In: Working Papers in Ecological Economics, The Australian National University, Center for Resource and Environmental Studies Ecological Economics Programme (1997b). http://www.bu.edu/cees/research/workingp/pdfs/9903.pdf

  84. Stock, J.H.: A class of tests for integration and cointegration. In: Engle, R., White, H. (eds.) Cointegration, Causality and Forecasting: A Festschrift for Clive W.J. Granger. Oxford University Press, Oxford (1999)

  85. Stock, J.H., Watson, M.W.: Variable trends in economic time series. J. Econ. Perspect. 2(3), 147–174 (1988)

    Article  Google Scholar 

  86. Swanson, K.L., Sugihara, G., Tsonis, A.: Long-term natural variability and the 20th century climate change. Proc. Natl. Acad. Sci. 106, 16120–16123 (2009)

    Article  Google Scholar 

  87. Tol, R.S.J.: Greenhouse statistics—time series analysis: part ii. Theor. Appl. Climatol. 49, 91–102 (1994)

    Article  Google Scholar 

  88. Tol, R.S.J., de Vos, A.F.: Greenhouse statistics—time series analysis. Theor. Appl. Climatol. 48, 63–74 (1993)

    Article  Google Scholar 

  89. Vogelsang, T.J., Perron, P.: Additional tests for a unit root allowing the possibility of breaks in the trend function. Int. Econ. Rev. 39, 1073–1100 (1998)

    Article  Google Scholar 

  90. Woodward, W.A., Gray, H.L.: Global warming and the problem of testing for trend in time series data. J. Clim. 6, 953–962 (1993)

    Article  Google Scholar 

  91. Woodward, W.A., Gray, H.L.: Selecting a model for detecting the presence of a trend. J. Clim. 8, 1929–1937 (1995)

    Article  Google Scholar 

  92. Wu, Z., Huang, N.E., Wallace, J.M., Smoliak, B.V., Chen, X.: On the time varying trend in global-mean surface temperature. Clim. Dyn. 37, 759–773 (2011)

    Article  Google Scholar 

  93. Zheng, X., Basher, R.E.: Structural time series models and trend detection in global and regional temperature series. J. Clim. 12, 2347–2358 (1999)

    Article  Google Scholar 

  94. Zivot, E., Andrews, D.W.K.: Further evidence on the great crash, the oil price shock, and the unit root hypothesis. JBES 10, 251–270 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco Estrada.

Additional information

In celebration of “Mathematics of Planet Earth-2013”.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Estrada, F., Perron, P. Detection and attribution of climate change through econometric methods. Bol. Soc. Mat. Mex. 20, 107–136 (2014). https://doi.org/10.1007/s40590-014-0009-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40590-014-0009-7

Mathematics Subject Classification

Navigation