Skip to main content

The Interplay Between Neutral and Adaptive Processes Shapes Genetic Variation During Candida Species Evolution

Abstract

Purpose of Review

Candida species are an important cause of both superficial and life-threatening systemic fungal infections. Historically, their study has been centered around their ability to cause human disease. However, this narrow lens limits our understanding of the overall factors that shape their evolution.

Recent Findings

We argue that from the perspective of evolutionary dynamics, pathogenic traits of Candida species contribute to only one aspect of selection, and their roles as commensal members of the healthy human mycobiome or in the environment may play a larger role in adaptation. We stress that our understanding of these species is lacking due to a limited geographical sampling and minimal study of commensal fungal populations.

Summary

By looking outside of the box of medical mycology, we can identify what we do and do not know about the factors that shape the genetic and phenotypic diversity of Candida spp. within the variety of environments they inhabit.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Pfaller MA, Diekema DJ. Epidemiology of invasive mycoses in North America. Crit Rev Microbiol. 2010;36:1–53.

    PubMed  Article  Google Scholar 

  2. Barns SM, Lane DJ, Sogin ML, Bibeau C, Weisburg WG. Evolutionary relationships among pathogenic Candida species and relatives. J Bacteriol. 1991;173:2250–5.

  3. Borman AMJEM. Candida, Cryptococcus, and other yeasts of medical importance. In: Carroll KCPMA, editor. Manual of clinical microbiology. 12th ed. Washington, DC: ASM Press; 2019.

  4. Borman AM, Johnson EM. Name changes for fungi of medical importance, 2018 to 2019. J Clin Microbiol [Internet]. 2021;59. Available from:. https://doi.org/10.1128/JCM.01811-20.

  5. Muñoz JF, Gade L, Chow NA, Loparev VN, Juieng P, Berkow EL, et al. Genomic insights into multidrug-resistance, mating and virulence in Candida auris and related emerging species. Nat Commun. 2018;9:5346.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. Miceli MH, Díaz JA, Lee SA. Emerging opportunistic yeast infections. Lancet Infect Dis. 2011;11:142–51.

    PubMed  Article  Google Scholar 

  7. Medina N, Soto-Debrán JC, Seidel D, Akyar I, Badali H, Barac A, et al. MixInYeast: a multicenter study on mixed yeast infections. J Fungi (Basel) [Internet]. 2020;7:13. Available from:. https://doi.org/10.3390/jof7010013.

    CAS  Article  Google Scholar 

  8. Morio F. Dear medical mycologists, it is time to look outside the box. FEMS Yeast Res. 2020;20:foz080. Available from:. https://doi.org/10.1093/femsyr/foz080.

    CAS  Article  PubMed  Google Scholar 

  9. •• Demers EG, Biermann AR, Masonjones S, Crocker AW, Ashare A, Stajich JE, et al (2018) Evolution of drug resistance in an antifungal-naive chronic Candida lusitaniae infection. Proc Natl Acad Sci U S A. National Academy of Sciences, 201807698. This study reports the existence of drug-resistant subpopulations of Candida lusitaniae during human infection.

  10. Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA, et al. The evolution of drug resistance in clinical isolates of Candida albicans. eLife. 2015;4:e00662. Available from:. https://doi.org/10.7554/elife.00662.

    Article  PubMed  PubMed Central  Google Scholar 

  11. •• Todd RT, Selmecki A (2020) Expandable and reversible copy number amplification drives rapid adaptation to antifungal drugs. eLife 9:e58349. Available from: 10.7554/eLife.58349. This study establishes rapid acquisition of copy number variants during azole exposure of C. albicans.

  12. Hirakawa MP, Chyou DE, Huang D, Slan AR, Bennett RJ. Parasex generates phenotypic diversity de novo and impacts drug resistance and virulence in Candida albicans. Genetics. 2017;207:1195–211.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  13. Kämmer P, McNamara S, Wolf T, Conrad T, Allert S, Gerwien F, et al. Survival strategies of pathogenic Candida species in human blood show independent and specific adaptations. MBio. 2020;11:e02435–20. Available from:. https://doi.org/10.1128/mBio.02435-20.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Stokes C, Moran GP, Spiering MJ, Cole GT, Coleman DC, Sullivan DJ. Lower filamentation rates of Candida dubliniensis contribute to its lower virulence in comparison with Candida albicans. Fungal Genet Biol. 2007;44:920–31.

    CAS  PubMed  Article  Google Scholar 

  15. Flanagan PR, Fletcher J, Boyle H, Sulea R, Moran GP, Sullivan DJ. Expansion of the TLO gene family enhances the virulence of Candida species. PLoS One. 2018;13:e0200852.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. Jackson AP, Gamble JA, Yeomans T, Moran GP, Saunders D, Harris D, et al. Comparative genomics of the fungal pathogens Candida dubliniensis and Candida albicans. Genome Res. 2009;19:2231–44.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  17. Kadosh D, Mundodi V. A Re-evaluation of the relationship between morphology and pathogenicity in Candida species. J Fungi (Basel). 2020;6:13. Available from:. https://doi.org/10.3390/jof6010013.

    CAS  Article  Google Scholar 

  18. O’Connor L, Caplice N, Coleman DC, Sullivan DJ, Moran GP. Differential filamentation of Candida albicans and Candida dubliniensis is governed by nutrient regulation of UME6 expression. Eukaryot Cell. 2010;9:1383–97.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  19. Banerjee M, Lazzell AL, Romo JA, Lopez-Ribot JL, Kadosh D. Filamentation is associated with reduced pathogenicity of multiple non-albicans Candida species. mSphere. 2019;4:e00656–19. Available from:. https://doi.org/10.1128/mSphere.00656-19.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. Witchley JN, Penumetcha P, Abon NV, Woolford CA, Mitchell AP, Noble SM. Candida albicans morphogenesis programs control the balance between gut commensalism and invasive infection. Cell Host Microbe. 2019;25:432–43.e6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  21. •• Forche A, Solis NV, Swidergall M, Thomas R, Guyer A, Beach A, et al. Selection of Candida albicans trisomy during oropharyngeal infection results in a commensal-like phenotype. PLoS Genet. 2019;15:e1008137 This study links specific changes in chromosomal copy numbers to increased pathogen fitness during oropharyngeal candidiasis.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. Liang S-H, Anderson MZ, Hirakawa MP, Wang JM, Frazer C, Alaalm LM, et al. Hemizygosity enables a mutational transition governing fungal virulence and commensalism. Cell Host Microbe. 2019;25:418–31.e6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. Tso GHW, Reales-Calderon JA, Tan ASM, Sem X, Le GTT, Tan TG, et al. Experimental evolution of a fungal pathogen into a gut symbiont. Science. 2018;362:589–95.

    CAS  PubMed  Article  Google Scholar 

  24. Nucci M, Anaissie E. Revisiting the source of candidemia: skin or gut? Clin Infect Dis. 2001;33:1959–67.

    CAS  PubMed  Article  Google Scholar 

  25. Sam QH, Chang MW, Chai LYA. The fungal mycobiome and its interaction with gut bacteria in the host. Int J Mol Sci [Internet]. 2017;18:230. Available from:. https://doi.org/10.3390/ijms18020330.

    CAS  Article  Google Scholar 

  26. d’Enfert C, Kaune A-K, Alaban L-R, Chakraborty S, Cole N, Delavy M, et al. The impact of the fungus-host-microbiota interplay upon Candida albicans infections: current knowledge and new perspectives. FEMS Microbiol Rev. 2020;45:e00656–19. Available from:. https://doi.org/10.1093/femsre/fuaa060.

    Article  Google Scholar 

  27. Marples MJ. Some observations on the ecology of Candida albicans, a potential mammalian pathogen. Proc New Zealand Ecological Society. 1966:29–34.

  28. Barnett JA. A history of research on yeasts 12: medical yeasts part 1, Candida albicans. Yeast. 2008;25:385–417. Available from:. https://doi.org/10.1002/yea.1595.

    CAS  Article  PubMed  Google Scholar 

  29. Di Menna ME. A search for pathogenic species of yeasts in New Zealand soils. J Gen Microbiol. 1955;12:54–62.

    Article  Google Scholar 

  30. Menna MEDI, Di Menna ME. Candida albicans from grass leaves. Nature. 1958;181:1287–8. Available from. https://doi.org/10.1038/1811287b0.

  31. •• Bensasson D, Dicks J, Ludwig JM, Bond CJ, Elliston A, Roberts IN, et al. Diverse lineages of Candida albicans live on old Oaks. Genetics. 2019;211:277–88 This study is the first to perform an in-depth genomic analysis of environmental C. albicans isolates and to compare these to clinical isolates.

    CAS  PubMed  Article  Google Scholar 

  32. •• Opulente DA, Langdon QK, Buh KV, Haase MAB, Sylvester K, Moriarty RV, et al. Pathogenic budding yeasts isolated outside of clinical settings. FEMS Yeast Res 2019;19:foz032. Available from: https://doi.org/10.1093/femsyr/foz032. This study provides an analysis of pathogenic yeast species using non-clinical isolates and raises the possibility that particular environments could represent a point of contact for human infections.

  33. Arora P, Singh P, Wang Y, Yadav A, Pawar K, Singh A, et al. Environmental isolation of Candida auris from the coastal wetlands of Andaman Islands, India. MBio. 2021;12:e03181–20. Available from:. https://doi.org/10.1128/mBio.03181-20.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Taylor JW, Hann-Soden C, Branco S, Sylvain I, Ellison CE. Clonal reproduction in fungi. Proc Natl Acad Sci U S A. 2015;112:8901–8.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. Ene IV, Bennett RJ. The cryptic sexual strategies of human fungal pathogens. Nat Rev Microbiol. 2014;12:239–51.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  36. •• Ropars J, Maufrais C, Diogo D, Marcet-Houben M, Perin A, Sertour N, et al. Gene flow contributes to diversification of the major fungal pathogen Candida albicans. Nat Commun. 2018;9:2253 This study is the first to perform a comparative genomic analysis on a large number of Candida albicans isolates.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  37. Wang JM, Bennett RJ, Anderson MZ. The genome of the human pathogen Candida albicans is shaped by mutation and cryptic sexual recombination. MBio. 2018;9:e01205–18.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Usher J. The mechanisms of mating in pathogenic fungi—a plastic trait. Genes. 2019;10:831.

    CAS  PubMed Central  Article  Google Scholar 

  39. Hirakawa MP, Martinez DA, Sakthikumar S, Anderson MZ, Berlin A, Gujja S, et al. Genetic and phenotypic intra-species variation in Candida albicans. Genome Res. 2015;25:413–25.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  40. •• Carreté L, Ksiezopolska E, Gómez-Molero E, Angoulvant A, Bader O, Fairhead C, et al. Genome comparisons of Candida glabrata serial clinical isolates reveal patterns of genetic variation in infecting clonal populations. Front Microbiol. 2019;10:112 This study uses whole-genome sequencing of Candida glabarata to catalogue genetic diversity within closely related isolates from the same patient.

    PubMed  PubMed Central  Article  Google Scholar 

  41. Bennett RJ, Forche A, Berman J. Rapid mechanisms for generating genome diversity: whole ploidy shifts, aneuploidy, and loss of heterozygosity. Cold Spring Harb Perspect Med, Available from. 2014;4. https://doi.org/10.1101/cshperspect.a019604.

  42. Gerstein AC, Sharp NP. The population genetics of ploidy change in unicellular fungi. FEMS Microbiol Rev. 2021; https://doi.org/10.1093/femsre/fuab006.

  43. Turner SA, Butler G. The Candida pathogenic species complex. Cold Spring Harb Perspect Med. 2014;4:a019778.

    PubMed  PubMed Central  Article  Google Scholar 

  44. Forche A, Abbey D, Pisithkul T, Weinzierl MA, Ringstrom T, Bruck D, et al. Stress alters rates and types of loss of heterozygosity in Candida albicans. MBio. 2011;2:e00129–11. Available from:. https://doi.org/10.1128/mBio.00129-11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. •• Ene IV, Farrer RA, Hirakawa MP, Agwamba K, Cuomo CA, Bennett RJ. Global analysis of mutations driving microevolution of a heterozygous diploid fungal pathogen. Proc Natl Acad Sci U S A. 2018;115:E8688–97 This study is the first to characterize the full spectrum of mutations that emerge during C. albicans microevolution and to measure mutation frequencies in this species.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  46. •• Avramovska O, Hickman MA. The magnitude of Candida albicans stress-induced genome instability results from an interaction between ploidy and antifungal drugs. G3. 2019;9:4019–27 This study shows the impact of organismal ploidy on mutagenesis during exposure to antifungal drugs.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  47. Mixão V, Saus E, Perez Hansen A, Lass-Florl C, Gabaldón T. Genome assemblies of two rare opportunistic yeast pathogens: Diutina rugosa (syn. Candida rugosa) and Trichomonascus ciferrii (syn. Candida ciferrii). G3. 2019;9:3921–7. Available from:. https://doi.org/10.1534/g3.119.400762.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Cuomo CA, Shea T, Yang B, Rao R, Forche A. Whole genome sequence of the heterozygous clinical isolate Candida krusei 81-B-5. G3. 2017;7:2883–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  49. Tsai H-J, Nelliat A. A double-edged sword: aneuploidy is a prevalent strategy in fungal adaptation. Genes. 2019;10:787. Available from:. https://doi.org/10.3390/genes10100787.

    CAS  Article  PubMed Central  Google Scholar 

  50. Tsai H-J, Nelliat AR, Choudhury MI, Kucharavy A, Bradford WD, Cook ME, et al. Hypo-osmotic-like stress underlies general cellular defects of aneuploidy. Nature. 2019;570:117–21.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  51. Gabaldón T. Hybridization and the origin of new yeast lineages. FEMS Yeast Res. 2020;20:foaa040. Available from:. https://doi.org/10.1093/femsyr/foaa040.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  52. •• Mixão V, Gabaldón T. Hybridization and emergence of virulence in opportunistic human yeast pathogens. Yeast. 2018;35:5–20 This study reviews the roles hybridization could play in the evolution and emergence of pathogenic yeast species.

    PubMed  Article  CAS  Google Scholar 

  53. Mixão V, Saus E, Boekhout T, Gabaldón T. Extreme diversification driven by parallel events of massive loss of heterozygosity in the hybrid lineage of Candida albicans. Genetics. 2020;217:iyaa004 Available from: https://academic.oup.com/genetics/article-abstract/217/2/iyaa004/5995314.

    PubMed Central  Article  Google Scholar 

  54. McManus BA, Coleman DC. Molecular epidemiology, phylogeny and evolution of Candida albicans. Infect Genet Evol. 2014;21:166–78.

    PubMed  Article  Google Scholar 

  55. Hou X, Xiao M, Chen SC-A, Kong F, Wang H, Chu Y-Z, et al. Molecular epidemiology and antifungal susceptibility of Candida glabrata in China (August 2009 to July 2014): a multi-center study. Front Microbiol. 2017;8:880.

    PubMed  PubMed Central  Article  Google Scholar 

  56. Abbes S, Sellami H, Sellami A, Hadrich I, Amouri I, Mahfoudh N, et al. Candida glabrata strain relatedness by new microsatellite markers. Eur J Clin Microbiol Infect Dis. 2012;31:83–91.

    CAS  PubMed  Article  Google Scholar 

  57. Tavanti A, Davidson AD, Gow NAR, Maiden MCJ, Odds FC. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol. 2005;43:284–92.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  58. Wu Y, Zhou H-J, Che J, Li W-G, Bian F-N, Yu S-B, et al. Multilocus microsatellite markers for molecular typing of Candida tropicalis isolates. BMC Microbiol. 2014;14:245.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. Muñoz M, Wintaco LM, Muñoz SA, Ramírez JD. Dissecting the heterogeneous population genetic structure of Candida albicans: limitations and constraints of the multilocus sequence typing scheme. Front Microbiol. 2019;10:1052.

    PubMed  PubMed Central  Article  Google Scholar 

  60. Wu J-Y, Zhou D-Y, Zhang Y, Mi F, Xu J. Analyses of the global multilocus genotypes of the human pathogenic yeast Candida tropicalis. Front Microbiol. 2019;10:900.

    PubMed  PubMed Central  Article  Google Scholar 

  61. Scordino F, Giuffrè L, Barberi G, Marino Merlo F, Orlando MG, Giosa D, et al. Multilocus sequence typing reveals a new cluster of closely related Candida tropicalis genotypes in Italian patients with neurological disorders. Front Microbiol. 2018;9:679.

    PubMed  PubMed Central  Article  Google Scholar 

  62. Al-Obaid K, Asadzadeh M, Ahmad S, Khan Z. Population structure and molecular genetic characterization of clinical Candida tropicalis isolates from a tertiary-care hospital in Kuwait reveal infections with unique strains. PLoS One. 2017;12:e0182292.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  63. Wu J-Y, Guo H, Wang H-M, Yi G-H, Zhou L-M, He X-W, et al. Multilocus sequence analyses reveal extensive diversity and multiple origins of fluconazole resistance in Candida tropicalis from tropical China. Sci Rep. 2017;7:42537.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  64. Wu Y, Zhou H, Wang J, Li L, Li W, Cui Z, et al. Analysis of the clonality of Candida tropicalis strains from a general hospital in Beijing using multilocus sequence typing. PLoS One. 2012;7:e47767.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  65. Magri MMC, Gomes-Gouvêa MS, de Freitas VLT, Motta AL, Moretti ML, Shikanai-Yasuda MA. Multilocus sequence typing of Candida tropicalis shows the presence of different clonal clusters and fluconazole susceptibility profiles in sequential isolates from candidemia patients in Sao Paulo, Brazil. J Clin Microbiol. 2013;51:268–77.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  66. Dodgson AR, Pujol C, Denning DW, Soll DR, Fox AJ. Multilocus sequence typing of Candida glabrata reveals geographically enriched clades. J Clin Microbiol. 2003;41:5709–17.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  67. Dodgson AR, Pujol C, Pfaller MA, Denning DW, Soll DR. Evidence for recombination in Candida glabrata. Fungal Genet Biol. 2005;42:233–43.

    CAS  PubMed  Article  Google Scholar 

  68. Amanloo S, Shams-Ghahfarokhi M, Ghahri M, Razzaghi-Abyaneh M. Genotyping of clinical isolates of Candida glabrata from Iran by multilocus sequence typing and determination of population structure and drug resistance profile. Med Mycol. 2018;56:207–15.

    CAS  PubMed  Article  Google Scholar 

  69. Klotz U, Schmidt D, Willinger B, Steinmann E, Buer J, Rath P-M, et al. Echinocandin resistance and population structure of invasive Candida glabrata isolates from two university hospitals in Germany and Austria. Mycoses. 2016;59:312–8.

    CAS  PubMed  Article  Google Scholar 

  70. Wu K, Luo T, Li L, Zhang Q, Zhu J, Gao Q, et al. Multilocus sequence typing of pathogenic Candida albicans isolates collected from a teaching hospital in Shanghai, China: a molecular epidemiology study. PLoS One. 2015;10:e0125245.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  71. Gong Y-B, Zheng J-L, Jin B, Zhuo D-X, Huang Z-Q, Qi H, et al. Particular Candida albicans strains in the digestive tract of dyspeptic patients, identified by multilocus sequence typing. PLoS One. 2012;7:e35311.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  72. Hu L, Du X, Li T, Song Y, Zai S, Hu X, et al. Genetic and phenotypic characterization of Candida albicans strains isolated from infectious disease patients in Shanghai. J Med Microbiol. 2015;64:74–83.

    CAS  PubMed  Article  Google Scholar 

  73. Afsarian SMH, Badali H, Shokohi T, Najafipour S. Molecular diversity of Candida albicans isolated from immunocompromised patients, based on MLST method. Iran J Public Health. 2015;44:1262–9.

    PubMed  PubMed Central  Google Scholar 

  74. Chen K-W, Chen Y-C, Lin Y-H, Chou H-H, Li S-Y. The molecular epidemiology of serial Candida tropicalis isolates from ICU patients as revealed by multilocus sequence typing and pulsed-field gel electrophoresis. Infect Genet Evol. 2009;9:912–20.

    CAS  PubMed  Article  Google Scholar 

  75. Shin JH, Bougnoux M-E, d’Enfert C, Kim SH, Moon C-J, Joo MY, et al. Genetic diversity among Korean Candida albicans bloodstream isolates: assessment by multilocus sequence typing and restriction endonuclease analysis of genomic DNA by use of BssHII. J Clin Microbiol. 2011;49:2572–7.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  76. Scordino F, Giuffrè L, Felice MR, Orlando MG, Medici MA, Marino Merlo F, et al. Genetic diversity of Candida albicans isolates recovered from hospital environments and patients with severe acquired brain injuries. Infect Genet Evol. 2019;76:104068.

    CAS  PubMed  Article  Google Scholar 

  77. Alastruey-Izquierdo A, Mandelblat M, Ben Ami R, Perlin DS, Segal E. Multilocus sequence typing of Candida albicans isolates from candidemia and superficial candidiasis in Israel. Med Mycol. 2013;51:755–8.

    PubMed  Article  Google Scholar 

  78. Mushi MF, Okamo B, Majinge DC, Gross U, Bader O, Mshana SE. Diversity of the diploid sequence type of Candida albicans clinical isolates from a tertiary-care hospital in Mwanza. Tanzania New Microbes New Infect. 2020;37:100731.

    CAS  PubMed  Article  Google Scholar 

  79. Huyke J, Martin R, Walther G, Weber M, Kaerger K, Bougnoux M-E, et al. Candida albicans bloodstream isolates in a German university hospital are genetically heterogenous and susceptible to commonly used antifungals. Int J Med Microbiol. 2015;305:742–7.

    CAS  PubMed  Article  Google Scholar 

  80. Biswas C, Marcelino VR, Van Hal S, Halliday C, Martinez E, Wang Q, et al. Whole genome sequencing of Australian Candida glabrata isolates reveals genetic diversity and novel sequence types. Front Microbiol. 2018;9:2946.

    PubMed  PubMed Central  Article  Google Scholar 

  81. O’Brien CE, Oliveira-Pacheco J, Cinnéide EÓ, Hasse MAB, Hittinger CT, Rogers TR, et al. Population genomics of the pathogenic yeast Candida tropicalis identifies hybrid isolates in environmental samples. PLoS Pathog. 17:e1009138.

  82. L’Ollivier C, Labruère C, Jebrane A, Bougnoux M-E, d’Enfert C, Bonnin A, et al. Using a multi-locus microsatellite typing method improved phylogenetic distribution of Candida albicans isolates but failed to demonstrate association of some genotype with the commensal or clinical origin of the isolates. Infect Genet Evol. 2012;12:1949–57.

    PubMed  Article  CAS  Google Scholar 

  83. MacCallum DM, Castillo L, Nather K, Munro CA, Brown AJP, Gow NAR, et al. Property differences among the four major Candida albicans strain clades. Eukaryot Cell. 2009;8:373–87.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  84. Bougnoux ME, Diogo D, François N, Sendid B, Veirmeire S, Colombel JF, et al. Multilocus sequence typing reveals intrafamilial transmission and microevolutions of Candida albicans isolates from the human digestive tract. J Clin Microbiol Am Soc Microbiol. 2006;44:1810–20.

    CAS  Article  Google Scholar 

  85. Byun SA, Won EJ, Kim M-N, Lee WG, Lee K, Lee HS, et al. Multilocus sequence typing (MLST) genotypes of Candida glabrata bloodstream isolates In Korea: Association with antifungal resistance, mutations in mismatch repair gene (Msh2), and clinical outcomes. Front Microbiol. 2018;9:1523.

    PubMed  PubMed Central  Article  Google Scholar 

  86. Neji S, Hadrich I, Ilahi A, Trabelsi H, Chelly H, Mahfoudh N, et al. Molecular genotyping of Candida parapsilosis species complex. Mycopathologia. 2018;183:765–75.

    CAS  PubMed  Article  Google Scholar 

  87. Sabino R, Sampaio P, Rosado L, Videira Z, Grenouillet F, Pais C. Analysis of clinical and environmental Candida parapsilosis isolates by microsatellite genotyping—a tool for hospital infection surveillance. Clin Microbiol Infect. 2015;21:954.e1–8.

    CAS  Article  Google Scholar 

  88. Desnos-Ollivier M, Bórmida V, Poirier P, Nourrisson C, Pan D, Bretagne S, et al. Population structure of Candida parapsilosis: no genetic difference between French and Uruguayan isolates using microsatellite length polymorphism. Mycopathologia. 2018;183:381–90.

    PubMed  Article  Google Scholar 

  89. Yang Y-L, Lin C-C, Chang T-P, Lauderdale T-L, Chen H-T, Lee C-F, et al. Comparison of human and soil Candida tropicalis isolates with reduced susceptibility to fluconazole. PLoS One. 2012;7:e34609.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  90. Douglass AP, Offei B, Braun-Galleani S, Coughlan AY, Martos AAR, Ortiz-Merino RA, et al. Population genomics shows no distinction between pathogenic Candida krusei and environmental Pichia kudriavzevii: one species, four names. PLoS Pathog. 2018;14:e1007138.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  91. Chillemi V, Lo Passo C, van Diepeningen AD, Rharmitt S, Delfino D, Cascio A, et al. Multilocus microsatellite analysis of European and African Candida glabrata isolates. Eur J Clin Microbiol Infect Dis. 2016;35:885–92.

    CAS  PubMed  Article  Google Scholar 

  92. Jones T, Federspiel NA, Chibana H, Dungan J, Kalman S, Magee BB, et al. The diploid genome sequence of Candida albicans. Proc Natl Acad Sci U S A. 2004;101:7329–34.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  93. Butler G, Rasmussen MD, Lin MF, Santos MAS, Sakthikumar S, Munro CA, et al. Evolution of pathogenicity and sexual reproduction in eight Candida genomes. Nature. 2009;459:657–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  94. Coste A, Turner V, Ischer F, Morschhäuser J, Forche A, Selmecki A, et al. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics. 2006;172:2139–56.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  95. Galhardo RS, Hastings PJ, Rosenberg SM. Mutation as a stress response and the regulation of evolvability. Crit Rev Biochem Mol Biol Informa UK Ltd UK. 2007;42:399–435.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  96. •• Sitterlé E, Maufrais C, Sertour N, Palayret M, d’Enfert C, Bougnoux M-E. Within-host genomic diversity of Candida albicans in healthy carriers. Sci Rep. 2019;9:2563 This study uses MLST and whole-genome sequencing analyses to establish the existence of diverse C. albicans lineages in single individuals.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  97. Ciudad T, Hickman M, Bellido A, Berman J, Larriba G. Phenotypic consequences of a spontaneous loss of heterozygosity in a common laboratory strain of Candida albicans. Genetics. 2016;203:1161–76. Available from:. https://doi.org/10.1534/genetics.116.189274.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  98. Hickman MA, Zeng G, Forche A, Hirakawa MP, Abbey D, Harrison BD, et al. The “obligate diploid” Candida albicans forms mating-competent haploids. Nature. 2013;494:55–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  99. Feri A, Loll-Krippleber R, Commere P-H, Maufrais C, Sertour N, Schwartz K, et al. Analysis of repair mechanisms following an induced double-strand break uncovers recessive deleterious alleles in the Candida albicans diploid genome. MBio. 2016;7:ee01109–16. Available from:. https://doi.org/10.1128/mBio.01109-16.

    Article  Google Scholar 

  100. Hull CM, Raisner RM, Johnson AD. Evidence for mating of the “asexual” yeast Candida albicans in a mammalian host. Science. 2000;289:307–10.

    CAS  PubMed  Article  Google Scholar 

  101. Magee BB, Magee PT. Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains. Science. 2000;289:310–3.

    CAS  PubMed  Article  Google Scholar 

  102. Wu W, Lockhart SR, Pujol C, Srikantha T, Soll DR. Heterozygosity of genes on the sex chromosome regulates Candida albicans virulence. Mol Microbiol. 2007;64:1587–604.

    CAS  PubMed  Article  Google Scholar 

  103. Lockhart SR, Wu W, Radke JB, Zhao R, Soll DR. Increased virulence and competitive advantage of a/α over a/a or α/α offspring conserves the mating system of Candida albicans. Genetics. 2005;169:1883–90.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  104. Schröder MS, Martinez de San Vicente K, THR P, Hammel S, Higgins DG, Bagagli E, et al. Multiple origins of the pathogenic yeast Candida orthopsilosis by separate hybridizations between two parental species. PLoS Genet. 2016;12:e1006404.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  105. Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol. 2014;14:405–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  106. Soll DR, Galask R, Schmid J, Hanna C, Mac K, Morrow B. Genetic dissimilarity of commensal strains of Candida spp. carried in different anatomical locations of the same healthy women. J Clin Microbiol. 1991;29:1702–10.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. Xu J, Boyd CM, Livingston E, Meyer W, Madden JF, Mitchell TG. Species and genotypic diversities and similarities of pathogenic yeasts colonizing women. J Clin Microbiol. 1999;37:3835–43.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  108. Jacobsen MD, Duncan AD, Bain J, Johnson EM, Naglik JR, Shaw DJ, et al. Mixed Candida albicans strain populations in colonized and infected mucosal tissues. FEMS Yeast Res. 2008;8:1334–8.

    CAS  PubMed  Article  Google Scholar 

  109. Forche A, May G, Magee PT. Demonstration of loss of heterozygosity by single-nucleotide polymorphism microarray analysis and alterations in strain morphology in Candida albicans strains during infection. Eukaryot Cell. 2005:156–65. Available from:. https://doi.org/10.1128/ec.4.1.156-165.2005.

  110. Sampaio P, Gusmão L, Correia A, Alves C, Rodrigues AG, Pina-Vaz C, et al. New microsatellite multiplex PCR for Candida albicans strain typing reveals microevolutionary changes. J Clin Microbiol. 2005;43:3869–76.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  111. Diogo D, Bouchier C, d’Enfert C, Bougnoux M-E. Loss of heterozygosity in commensal isolates of the asexual diploid yeast Candida albicans. Fungal Genet Biol. 2009;46:159–68.

    PubMed  Article  Google Scholar 

  112. Forche A, Magee PT, Selmecki A, Berman J, May G. Evolution in Candida albicans populations during a single passage through a mouse host. Genetics. 2009;182:799–811.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Bennett, N. Sharp, and A-R Adamu Bukari for their thoughtful comments and suggestions.

Code Availability

Custom R code is available at https://github.com/acgerstein/candida-mlst/.

Funding

IVE is supported by the Pasteur Institute and NIH NIAID R21AI139592. MAH is supported by the National Science Foundation (DEB-1943415). ACG’s research program is supported by an NSERC Discovery Grant. ACG and IVE are also supported by the CIFAR Azrieli Global Scholars Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleeza C. Gerstein Ph.D..

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mycology

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ene, I.V., Hickman, M.A. & Gerstein, A.C. The Interplay Between Neutral and Adaptive Processes Shapes Genetic Variation During Candida Species Evolution. Curr Clin Micro Rpt 8, 129–138 (2021). https://doi.org/10.1007/s40588-021-00171-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-021-00171-x

Keywords

  • Selection
  • Population structure
  • MLST
  • Heterozygosity
  • Commensalism
  • Virulence