Skip to main content

Advertisement

Log in

Herpesvirus DNA Polymerase Mutants—How Important Is Faithful Genome Replication?

  • Virology (A Nicola, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

A Correction to this article was published on 27 January 2020

This article has been updated

Abstract

Purpose of Review

This report broaches the topic of altered fidelity of DNA replication in herpesvirus mutants described over the past decades. Reduced genome replication fidelity of herpesvirus exonuclease mutants allows studying of virus population dynamics in the absence of exonucleolytic proofreading and can inform us on virus evolution in the face of error-prone genome replication.

Recent Findings

We recently found that mutations previously described to be lethal for herpes simplex type 1 (HSV-1) caused error-prone genome replication in Marek’s disease virus. This has allowed us to study the influence of augmented genetic diversity on viral population dynamics, replicative fitness, and virulence.

Summary

We conclude that the use of herpesvirus fidelity mutants allows unprecedented insights into virus evolution driven by low-fidelity replication. More than that, their use allows us to observe accelerated evolution, potentially enabling time-saving screens for the rise of drug- or vaccine-resistant mutants. In addition, we can infer that lethal or suicidal phenotypes observed in low-fidelity herpesvirus mutants are likely a consequence of error-prone genome replication, ultimately leading to lethal mutagenesis of small and isolated virus populations in cell culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

  • 27 January 2020

    During the production process, the documents provided by the authors were inaccurately merged. As a result all 15 references provided in the tables of the paper are wrong.

  • 27 January 2020

    During the production process, the documents provided by the authors were inaccurately merged. As a result all 15 references provided in the tables of the paper are wrong.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Sanjuan R, Nebot MR, Chirico N, Mansky LM, Belshaw R. Viral mutation rates. J Virol. 2010;84(19):9733–48. https://doi.org/10.1128/jvi.00694-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Kunkel TA. DNA replication fidelity. J Biol Chem. 2004;279(17):16895–8.

    Article  CAS  Google Scholar 

  3. Loeb LA, Kunkel TA. Fidelity of DNA synthesis. Annu Rev Biochem. 1982;51(1):429–57.

    Article  CAS  Google Scholar 

  4. Petruska J, Goodman MF. Enthalpy-entropy compensation in DNA melting thermodynamics. J Biol Chem. 1995;270(2):746–50.

    Article  CAS  Google Scholar 

  5. Kunkel TA, editor. Evolving views of DNA replication (in) fidelity. Cold Spring Harbor symposia on quantitative biology; 2009: Cold Spring Harbor Laboratory Press.

  6. • Bebenek A, Ziuzia-Graczyk I. Fidelity of DNA replication-a matter of proofreading. Curr Genet. 64(2018, 5):985–96. https://doi.org/10.1007/s00294-018-0820-1Very informative review on DNA replication fidelity with special emphasis on exonucleolytic proofreading.

    Article  Google Scholar 

  7. McCulloch SD, Kunkel TA. The fidelity of DNA synthesis by eukaryotic replicative and translesion synthesis polymerases. Cell Res. 2008;18(1):148–61.

    Article  CAS  Google Scholar 

  8. Bebenek K, Joyce C, Fitzgerald MP, Kunkel T. The fidelity of DNA synthesis catalyzed by derivatives of Escherichia coli DNA polymerase I. J Biol Chem. 1990;265(23):13878–87.

    CAS  PubMed  Google Scholar 

  9. Knopf CW. Evolution of viral DNA-dependent DNA polymerases. Virus Genes. 1998;16(1):47–58.

    Article  CAS  Google Scholar 

  10. Drake JW, Hwang CB. On the mutation rate of herpes simplex virus type 1. Genetics. 2005;170(2):969–70.

    Article  CAS  Google Scholar 

  11. Jaramillo N, Domingo E, Muñoz-Egea MC, Tabarés E, Gadea I. Evidence of Muller’s ratchet in herpes simplex virus type 1. J Gen Virol. 2013;94(2):366–75. https://doi.org/10.1099/vir.0.044685-0.

    Article  CAS  PubMed  Google Scholar 

  12. Sarisky RT, Nguyen TT, Duffy KE, Wittrock RJ, Leary JJ. Difference in incidence of spontaneous mutations between herpes simplex virus types 1 and 2. Antimicrob Agents Chemother. 2000;44(6):1524–9. https://doi.org/10.1128/aac.44.6.1524-1529.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Renzette N, Bhattacharjee B, Jensen JD, Gibson L, Kowalik TF. Extensive genome-wide variability of human cytomegalovirus in congenitally infected infants. PLoS Pathog. 2011;7(5):e1001344. https://doi.org/10.1371/journal.ppat.1001344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Szpara ML, Gatherer D, Ochoa A, Greenbaum B, Dolan A, Bowden RJ, et al. Evolution and diversity in human herpes simplex virus genomes. J Virol. 2014;88(2):1209–27. https://doi.org/10.1128/JVI.01987-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Akhtar LN, Bowen CD, Renner DW, Pandey U, Della Fera AN, Kimberlin DW et al. Genotypic and phenotypic diversity of herpes simplex virus 2 within the infected neonatal population. mSphere. 2019;4(1). doi:https://doi.org/10.1128/mSphere.00590-18.

  16. Shipley MM, Renner DW, Ott M, Bloom DC, Koelle DM, Johnston C, et al. Genome-wide surveillance of genital herpes simplex virus type 1 from multiple anatomic sites over time. J Infect Dis. 2018;218(4):595–605. https://doi.org/10.1093/infdis/jiy216.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. • Renner DW, Szpara ML. Impacts of genome-wide analyses on our understanding of human herpesvirus diversity and evolution. J Virol. 2017;92(1):e00908–17. https://doi.org/10.1128/JVI.00908-17This review article provides an up-to-date discussion on whole genome sequencing, bioinformatic analysis, and genome diversity in human herpesviruses.

  18. Renzette N, Pokalyuk C, Gibson L, Bhattacharjee B, Schleiss MR, Hamprecht K, et al. Limits and patterns of cytomegalovirus genomic diversity in humans. Proc Natl Acad Sci U S A. 2015;112(30):E4120–8. https://doi.org/10.1073/pnas.1501880112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sijmons S, Thys K, Mbong Ngwese M, Van Damme E, Dvorak J, Van Loock M, et al. High-throughput analysis of human cytomegalovirus genome diversity highlights the widespread occurrence of gene-disrupting mutations and pervasive recombination. J Virol. 2015;89(15):7673–95. https://doi.org/10.1128/JVI.00578-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hwang CB-C. DNA Replication Fidelity of Herpes Simplex Virus. In: Kusic-Tisma J, editor. DNA Replication and Related Cellular Processes. IntechOpen; 2011. https://doi.org/10.5772/23548. Available from: https://www.intechopen.com/books/dna-replication-and-relatedcellular-processes/dna-replication-fidelity-of-herpes-simplex-virus.

    Google Scholar 

  21. Ollis DL, Brick P, Hamlin R, Xuong NG, Steitz TA. Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP. Nature. 1985;313(6005):762–6.

    Article  CAS  Google Scholar 

  22. Steitz TA. DNA polymerases: structural diversity and common mechanisms. J Biol Chem. 1999;274(25):17395–8. https://doi.org/10.1074/jbc.274.25.17395.

    Article  CAS  PubMed  Google Scholar 

  23. Steitz TA. A mechanism for all polymerases. Nature. 1998;391(6664):231–2. https://doi.org/10.1038/34542.

    Article  CAS  PubMed  Google Scholar 

  24. Hall JD, Furman PA, St Clair MH, Knopf CW. Reduced in vivo mutagenesis by mutant herpes simplex DNA polymerase involves improved nucleotide selection. Proc Natl Acad Sci U S A. 1985;82(11):3889–93.

    Article  CAS  Google Scholar 

  25. Foury F, Szczepanowska K. Antimutator alleles of yeast DNA polymerase gamma modulate the balance between DNA synthesis and excision. PLoS One. 2011;6(11):e27847-e. https://doi.org/10.1371/journal.pone.0027847.

    Article  CAS  Google Scholar 

  26. Jacewicz A, Makiela K, Kierzek A, Drake JW, Bebenek A. The roles of Tyr391 and Tyr619 in RB69 DNA polymerase replication fidelity. J Mol Biol. 2007;368(1):18–29. https://doi.org/10.1016/j.jmb.2007.01.067.

    Article  CAS  PubMed  Google Scholar 

  27. Wu P, Nossal N, Benkovic SJ. Kinetic characterization of a bacteriophage T4 antimutator DNA polymerase. Biochemistry. 1998;37(42):14748–55.

    Article  CAS  Google Scholar 

  28. Johansson E, Dixon N. Replicative DNA polymerases. Cold Spring Harb Perspect Biol. 2013;5(6):a012799. https://doi.org/10.1101/cshperspect.a012799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Luczkowiak J, Álvarez M, Sebastián-Martín A, Menéndez-Arias L. Chapter 4 - DNA-dependent DNA polymerases as drug targets in herpesviruses and poxviruses. In: Gupta SP, editor. Viral Polymerases. Academic Press; 2019. p. 95–134. ISBN 9780128154229, https://doi.org/10.1016/B978-0-12-815422-9.00004-8.

    Chapter  Google Scholar 

  30. Hwang C, Ruffner KL, Coen DM. A point mutation within a distinct conserved region of the herpes simplex virus DNA polymerase gene confers drug resistance. J Virol. 1992;66(3):1774–6.

    Article  CAS  Google Scholar 

  31. Hwang YT, Liu BY, Hong CY, Shillitoe EJ, Hwang CB. Effects of exonuclease activity and nucleotide selectivity of the herpes simplex virus DNA polymerase on the fidelity of DNA replication in vivo. J Virol. 1999;73(7):5326–32.

    Article  CAS  Google Scholar 

  32. Hwang YT, Zuccola HJ, Lu Q, Hwang CB. A point mutation within conserved region VI of herpes simplex virus type 1 DNA polymerase confers altered drug sensitivity and enhances replication fidelity. J Virol. 2004;78(2):650–7.

    Article  CAS  Google Scholar 

  33. Larder BA, Kemp SD, Darby G. Related functional domains in virus DNA polymerases. EMBO J. 1987;6(1):169–75.

    Article  CAS  Google Scholar 

  34. Wong SW, Wahl AF, Yuan PM, Arai N, Pearson BE, Arai K, et al. Human DNA polymerase alpha gene expression is cell proliferation dependent and its primary structure is similar to both prokaryotic and eukaryotic replicative DNA polymerases. EMBO J. 1988;7(1):37–47.

    Article  CAS  Google Scholar 

  35. Song L, Chaudhuri M, Knopf CW, Parris DS. Contribution of the 3'- to 5'-exonuclease activity of herpes simplex virus type 1 DNA polymerase to the fidelity of DNA synthesis. J Biol Chem. 2004;279(18):18535–43. https://doi.org/10.1074/jbc.M309848200.

    Article  CAS  PubMed  Google Scholar 

  36. Chaudhuri M, Song L, Parris DS. The herpes simplex virus type 1 DNA polymerase processivity factor increases fidelity without altering pre-steady-state rate constants for polymerization or excision. J Biol Chem. 2003;278(11):8996–9004. https://doi.org/10.1074/jbc.M210023200.

    Article  CAS  PubMed  Google Scholar 

  37. Jiang C, Hwang YT, Randell JC, Coen DM, Hwang CB. Mutations that decrease DNA binding of the processivity factor of the herpes simplex virus DNA polymerase reduce viral yield, alter the kinetics of viral DNA replication, and decrease the fidelity of DNA replication. J Virol. 2007;81(7):3495–502. https://doi.org/10.1128/jvi.02359-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Jiang C, Komazin-Meredith G, Tian W, Coen DM, Hwang CBC. Mutations that increase DNA binding by the processivity factor of herpes simplex virus affect virus production and DNA replication fidelity. J Virol. 2009;83(15):7573–80. https://doi.org/10.1128/JVI.00193-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kühn FJ, Knopf CW. Herpes simplex virus type 1 DNA polymerase. Mutational analysis of the 3'-5'-exonuclease domain. J Biol Chem. 1996;271(46):29245–54.

    Article  Google Scholar 

  40. Baker RO, Hall JD. Impaired mismatch extension by a herpes simplex DNA polymerase mutant with an editing nuclease defect. J Biol Chem. 1998;273(37):24075–82.

    Article  CAS  Google Scholar 

  41. Gibbs JS, Weisshart K, Digard P, Knipe D, Coen D. Polymerization activity of an alpha-like DNA polymerase requires a conserved 3'-5'exonuclease active site. Mol Cell Biol. 1991;11(9):4786–95.

    Article  CAS  Google Scholar 

  42. Hwang YT, Hwang CB. Exonuclease-deficient polymerase mutant of herpes simplex virus type 1 induces altered spectra of mutations. J Virol. 2003;77(5):2946–55.

    Article  CAS  Google Scholar 

  43. Hwang YT, Liu B-Y, Coen DM, Hwang C. Effects of mutations in the Exo III motif of the herpes simplex virus DNA polymerase gene on enzyme activities, viral replication, and replication fidelity. J Virol. 1997;71(10):7791–8.

    Article  CAS  Google Scholar 

  44. Tian W, Hwang YT, Lu Q, Hwang CB. Finger domain mutation affects enzyme activity, DNA replication efficiency, and fidelity of an exonuclease-deficient DNA polymerase of herpes simplex virus type 1. J Virol. 2009;83(14):7194–201.

    Article  Google Scholar 

  45. Trimpert J, Groenke N, Kunec D, Eschke K, McMahon DP, Osterrieder N. A proofreading-impaired herpesvirus generates populations with quasispecies-like structure. Nat Microbiol. 2019. https://doi.org/10.1038/s41564-019-0547-x.

    Article  Google Scholar 

  46. Chen H, Beardsley GP, Coen DM. Mechanism of ganciclovir-induced chain termination revealed by resistant viral polymerase mutants with reduced exonuclease activity. Proc Natl Acad Sci U S A. 2014;111(49):17462–7. https://doi.org/10.1073/pnas.1405981111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chou S, Marousek GI. Accelerated evolution of maribavir resistance in a cytomegalovirus exonuclease domain II mutant. J Virol. 2008;82(1):246–53. https://doi.org/10.1128/jvi.01787-07.

    Article  CAS  PubMed  Google Scholar 

  48. Kariya M, Mori S, Eizuru Y. Comparison of human cytomegalovirus DNA polymerase activity for ganciclovir-resistant and -sensitive clinical strains. Antivir Res. 2000;45(2):115–22.

    Article  CAS  Google Scholar 

  49. Cihlar T, Fuller MD, Mulato AS, Cherrington JM. A point mutation in the human cytomegalovirus DNA polymerase gene selected in vitro by cidofovir confers a slow replication phenotype in cell culture. Virology. 1998;248(2):382–93. https://doi.org/10.1006/viro.1998.9299.

    Article  CAS  PubMed  Google Scholar 

  50. Hall JD, Orth KL, Sander KL, Swihart BM, Senese RA. Mutations within conserved motifs in the 3'-5' exonuclease domain of herpes simplex virus DNA polymerase. J Gen Virol. 1995;76(Pt 12):2999–3008. https://doi.org/10.1099/0022-1317-76-12-2999.

    Article  CAS  PubMed  Google Scholar 

  51. • Lawler JL, Coen DM. HSV-1 DNA polymerase 3'-5' exonuclease-deficient mutant D368A exhibits severely reduced viral DNA synthesis and polymerase expression. J Gen Virol. 2018;99(10):1432–7. https://doi.org/10.1099/jgv.0.001138This work features interesting observations regarding the phenotype of exonuclease (ExoI) mutants in HSV-1 and includes an up-to-date discussion of the lethal phenotypes of exonuclease mutants.

    Article  CAS  Google Scholar 

  52. Zarrouk K, Piret J, Boivin G. Herpesvirus DNA polymerases: structures, functions and inhibitors. Virus Res. 2017. https://doi.org/10.1016/j.virusres.2017.01.019.

    Article  CAS  Google Scholar 

  53. Hall JD, Coen DM, Fisher BL, Weisslitz M, Randall S, Almy RE, et al. Generation of genetic diversity in herpes simplex virus: an antimutator phenotype maps to the DNA polymerase locus. Virology. 1984;132(1):26–37. https://doi.org/10.1016/0042-6822(84)90088-6.

    Article  CAS  PubMed  Google Scholar 

  54. Hwang YT, Liu BY, Hwang CB. Replication fidelity of the supF gene integrated in the thymidine kinase locus of herpes simplex virus type 1. J Virol. 2002;76(8):3605–14.

    Article  CAS  Google Scholar 

  55. Hwang CB, Chen HJ. An altered spectrum of herpes simplex virus mutations mediated by an antimutator DNA polymerase. Gene. 1995;152(2):191–3. https://doi.org/10.1016/0378-1119(94)00712-2.

    Article  CAS  PubMed  Google Scholar 

  56. Huang L, Ishii KK, Zuccola H, Gehring AM, Hwang CB, Hogle J, et al. The enzymological basis for resistance of herpesvirus DNA polymerase mutants to acyclovir: relationship to the structure of alpha-like DNA polymerases. Proc Natl Acad Sci U S A. 1999;96(2):447–52. https://doi.org/10.1073/pnas.96.2.447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Tian W, Hwang YT, Hwang CB. The enhanced DNA replication fidelity of a mutant herpes simplex virus type 1 DNA polymerase is mediated by an improved nucleotide selectivity and reduced mismatch extension ability. J Virol. 2008;82(17):8937–41. https://doi.org/10.1128/jvi.00911-08.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Abbotts J, Nishiyama Y, Yoshida S, Loeb LA. On the fidelity of DNA replication: herpes DNA polymerase and its associated exonuclease. Nucleic Acids Res. 1987;15(3):1185–98. https://doi.org/10.1093/nar/15.3.1185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Nishiyama Y, Suzuki S, Yamauchi M, Maeno K, Yoshida S. Characterization of an aphidicolin-resistant mutant of herpes simplex virus type 2 which induces an altered viral DNA polymerase. Virology. 1984;135(1):87–96. https://doi.org/10.1016/0042-6822(84)90119-3.

    Article  CAS  PubMed  Google Scholar 

  60. Nishiyama Y, Yoshida S, Tsurumi T, Yamamoto N, Maeno K. Drug-resistant mutants of herpes simplex virus type 2 with a mutator or antimutator phenotype. Microbiol Immunol. 1985;29(4):377–81. https://doi.org/10.1111/j.1348-0421.1985.tb00837.x.

    Article  CAS  PubMed  Google Scholar 

  61. Duffy KE, Quail MR, Nguyen TT, Wittrock RJ, Bartus JO, Halsey WM, et al. Assessing the contribution of the herpes simplex virus DNA polymerase to spontaneous mutations. BMC Infect Dis. 2002;2:7.

    Article  Google Scholar 

  62. Bohn K, Zell R, Schacke M, Wutzler P, Sauerbrei A. Gene polymorphism of thymidine kinase and DNA polymerase in clinical strains of herpes simplex virus. Antivir Ther. 2011;16(7):989–97. https://doi.org/10.3851/imp1852.

    Article  CAS  PubMed  Google Scholar 

  63. Sauerbrei A, Bohn-Wippert K, Kaspar M, Krumbholz A, Karrasch M, Zell R. Database on natural polymorphisms and resistance-related non-synonymous mutations in thymidine kinase and DNA polymerase genes of herpes simplex virus types 1 and 2. J Antimicrob Chemother. 2016;71(1):6–16. https://doi.org/10.1093/jac/dkv285.

    Article  CAS  PubMed  Google Scholar 

  64. Osterrieder N, Kamil JP, Schumacher D, Tischer BK, Trapp S. Marek’s disease virus: from miasma to model. Nat Rev Microbiol. 2006;4(4):283–94. https://doi.org/10.1038/nrmicro1382.

    Article  CAS  PubMed  Google Scholar 

  65. Komatsu TE, Pikis A, Naeger LK, Harrington PR. Resistance of human cytomegalovirus to ganciclovir/valganciclovir: a comprehensive review of putative resistance pathways. Antivir Res. 2014;101:12–25. https://doi.org/10.1016/j.antiviral.2013.10.011.

    Article  CAS  PubMed  Google Scholar 

  66. Topalis D, Gillemot S, Snoeck R, Andrei G. Distribution and effects of amino acid changes in drug-resistant alpha and beta herpesviruses DNA polymerase. Nucleic Acids Res. 2016;44(20):9530–54. https://doi.org/10.1093/nar/gkw875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chou S, Ercolani RJ, Lanier ER. Novel cytomegalovirus UL54 DNA polymerase gene mutations selected in vitro that confer brincidofovir resistance. Antimicrob Agents Chemother. 2016;60(6):3845–8. https://doi.org/10.1128/AAC.00214-16.

    Article  CAS  Google Scholar 

  68. Chou S, Lurain NS, Thompson KD, Miner RC, Drew WL. Viral DNA polymerase mutations associated with drug resistance in human cytomegalovirus. J Infect Dis. 2003;188(1):32–9. https://doi.org/10.1086/375743.

    Article  CAS  PubMed  Google Scholar 

  69. Lurain NS, Chou S. Antiviral drug resistance of human cytomegalovirus. Clin Microbiol Rev. 2010;23(4):689–712. https://doi.org/10.1128/cmr.00009-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Marfori JE, Exner MM, Marousek GI, Chou S, Drew WL. Development of new cytomegalovirus UL97 and DNA polymerase mutations conferring drug resistance after valganciclovir therapy in allogeneic stem cell recipients. J Clin Virol. 2007;38(2):120–5. https://doi.org/10.1016/j.jcv.2006.11.005.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Trimpert.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article was revised: During the production process, the documents provided by the authors were inaccurately merged. As a result all 15 references provided in the tables of the paper are wrong. The authors identified the error during the proof stage; however, the requested changes were not incorporated in the final published version. Likewise, some other corrections requested by the authors in the proof process remained unchanged in the published version of the manuscript. The publisher apologizes and takes full responsibility for the problems that result in the changes to this article.

This article is part of the Topical Collection on Virology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trimpert, J., Osterrieder, N. Herpesvirus DNA Polymerase Mutants—How Important Is Faithful Genome Replication?. Curr Clin Micro Rpt 6, 240–248 (2019). https://doi.org/10.1007/s40588-019-00135-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-019-00135-2

Keywords

Navigation