Skip to main content

Advertisement

Log in

Staphylococcus aureus as a Foodborne Pathogen

  • Foodborne Pathogens (S Johler, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We present recent insights on S. aureus as a foodborne pathogen, thus providing readers with an update of current findings impacting prevention and control measures.

Recent Findings

Advances in disease burden assessment show the burden of S. aureus foodborne disease around the globe. In recent years, recent research has provided valuable new data improving the understanding of the pathobiology of S. aureus foodborne disease as well as proteomics and genomics of this foodborne pathogen. In particular, recent findings shed new light on the role of newly described enterotoxins and methicillin-resistant S. aureus. These new findings guide the way towards improved prevention and control strategies.

Summary

S. aureus is the leading cause of foodborne intoxications worldwide. Control strategies are focused on hygiene measures to avoid food contamination and limit S. aureus growth. Outbreak investigations remain challenging and would strongly benefit from additional data on enterotoxin formation under stress conditions and novel tools allowing for detection of newly described enterotoxins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as:• Of importance •• Of major importance

  1. Robinson TP, Bu DP, Carrique-Mas J, Fevre EM, Gilbert M, Grace D, et al. Antibiotic resistance is the quintessential one health issue. Trans R Soc Trop Med Hyg. 2016;110:377–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Grace D, McDermott J. Livestock epidemics and disasters. In: Wisner B, Gaillard JC, Kelman I, editors. Routledge Handb. Hazards Disaster Risk Reduct. Oxford: Taylor & Francis; 2012. p. 876.

    Google Scholar 

  3. Shepheard MA, Fleming VM, Connor TR, Corander J, Feil EJ, Fraser C, et al. Historical zoonoses and other changes in host tropism of Staphylococcus aureus, identified by phylogenetic analysis of a population dataset. PLoS One. 2013;8:e62369.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Brown AF, Leech JM, Rogers TR, McLoughlin RM. Staphylococcus aureus colonization: modulation of host immune response and impact on human vaccine design. Front Immunol. 2014;4:507.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kadariya J, Smith TC, Thapaliya D. Staphylococcus aureus and staphylococcal food-borne disease: an ongoing challenge in public health. Biomed Res Int. 2014;827965

  6. Scallan E, Hoekstra RM, Angulo FJ, Tauxe RV, Widdowson M-A, Roy SL, et al. Foodborne illness acquired in the United States—major pathogens. Emerg Infect Dis. 2011;17:7–15.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Anonymous. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J. 2016;2015:4329. https://doi.org/10.2903/jefsa.

    Google Scholar 

  8. Wattinger L, Stephan R, Layer F, Johler S. Comparison of Staphylococcus aureus isolates associated with food intoxication with isolates from human nasal carriers and human infections. Eur J Clin Microbiol Infect Dis. 2012;31:455–64.

    Article  CAS  PubMed  Google Scholar 

  9. Johler S, Layer F, Stephan R. Comparison of virulence and antibiotic resistance genes of food poisoning outbreak isolates of Staphylococcus aureus with isolates obtained from bovine mastitis milk and pig carcasses. J Food Prot. 2011;74:1852–9.

    Article  CAS  PubMed  Google Scholar 

  10. Johler S, Weder D, Bridy C, Huguenin M-C, Robert L, Hummerjohann J, et al. Outbreak of staphylococcal food poisoning among children and staff at a Swiss boarding school due to soft cheese made from raw milk. J Dairy Sci. 2015;98:1–5.

    Article  Google Scholar 

  11. Hennekinne J-A, Ostyn A, Guillier F, Herbin S, Prufer A-L, Dragacci S. How should staphylococcal food poisoning outbreaks be characterized? Toxins. 2010;2:2106–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. •• Hu D-L, Nakane A. Mechanisms of staphylococcal enterotoxin-induced emesis. Eur J Pharmacol. 2014;722:95–107. Review of the current body of knowledge on the mechanisms behind the emetic activity of S. aureus

    Article  CAS  PubMed  Google Scholar 

  13. Benkerroum N. Staphylococcal enterotoxins and enterotoxin-like toxins with special reference to dairy products: an overview. Crit Rev Food Sci Nutr. 2017:1–28.

  14. Doyle MP, Beuchat LR. Food microbiology: fundamentals and frontiers. 3rd ed. Washington, DC: ASM Press; 2007.

    Google Scholar 

  15. Spaulding AR, Salgado-Pabón W, Kohler PL, Horswill AR, Leung DYM, Schlievert PM. Staphylococcal and streptococcal superantigen exotoxins. Clin Microbiol Rev. 2013;26:422–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Le Loir Y, Baron F, Gautier M. Staphylococcus aureus and food poisoning. Genet Mol Res. 2003;2:63–76.

    PubMed  Google Scholar 

  17. Lina G, Bohach GA, Nair SP, Hiramatsu K, Jouvin-Marche E, Mariuzza R. Standard nomenclature for the superantigens expressed by Staphylococcus. J Infect Dis. 2004;189:2334–6.

    Article  PubMed  Google Scholar 

  18. Larkin EA, Carman RJ, Krakauer T, Stiles BG. Staphylococcus aureus: the toxic presence of a pathogen extraordinaire. Curr Med Chem. 2009;16:4003–19.

    Article  CAS  PubMed  Google Scholar 

  19. Betley MJ, Schlievert PM, Bergdoll MS, Bohach GA, Iandolo JJ, Khan SA, et al. Staphylococcal gene nomenclature. Am Soc Microbiol News. 1990;56:182.

    Google Scholar 

  20. Betley MJ, Mekalanos JJ. Staphylococcal enterotoxin A is encoded by phage. Science. 1985;229:185–7.

    Article  CAS  PubMed  Google Scholar 

  21. Betley MJ, Mekalanos JJ. Nucleotide sequence of the type A staphylococcal enterotoxin gene. J Bacteriol. 1988;170:34–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Casman EP. Further serological studies of staphylococcal enterotoxin. J Bacteriol. 1960;79:849.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Kuroda M, Ohta T, Uchiyama I, Baba T, Yuzawa H, Kobayashi I, et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet. 2001;357:1225–40.

    Article  CAS  PubMed  Google Scholar 

  24. Shafer WM, Iandolo JJ. Chromosomal locus for staphylococcal enterotoxin B. Infect Immun. 1978;20:273–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Sato’o Y, Omoe K, Ono HK, Nakane A, Hu D-L. A novel comprehensive analysis method for Staphylococcus aureus pathogenicity islands. Microbiol Immunol. 2013;57:91–9.

    Article  PubMed  Google Scholar 

  26. Stevens MJA, Stephan R, Johler S. Complete and assembled genome sequence of Staphylococcus aureus RKI4, a food-poisoning strain exhibiting a novel S. aureus pathogenicity island carrying seb. Genome Announc. 2015;3:2015.

    Article  Google Scholar 

  27. Betley MJ, Bergdoll MS. Staphylococcal enterotoxin type C genes not associated with extrachromosomal DNA. Abstr Ann Meet Am Soc Microbiol 1981; D-38: 49.

  28. Novick RP, Christie GE, Penades JR. The phage-related chromosomal islands of gram-positive bacteria. Nat Rev Microbiol. 2010;8:541–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Casman EP, Bennett RW, Dorsey AE, Issa JA. Identification of a fourth staphylococcal enterotoxin, enterotoxin D. J Bacteriol. 1967;94:1875–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bayles KW, Iandolo JJ. Genetic and molecular analyses of the gene encoding staphylococcal enterotoxin D. J Bacteriol. 1989;171:4799–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bergdoll MS, Borja CR, Robbins RN, Weiss KF. Identification of enterotoxin E. Infect Immun. 1971;4:593–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Couch JL, Soltis MT, Betley MJ. Cloning and nucleotide sequence of the type E staphylococcal enterotoxin gene. J Bacteriol. 1988;170:2954–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, et al. egc, a highly prevalent operon of enterotoxin gene, forms a putative nursery of superantigens in Staphylococcus aureus. J Immunol. 2001;166:669–77.

    Article  CAS  PubMed  Google Scholar 

  34. Jarraud S, Peyrat MA, Lim A, Tristan A, Bes M, Mougel C, et al. Correction. J Immunol. 2001;166:4260.

    Article  Google Scholar 

  35. Baba T, Takeuchi F, Kuroda M, Yuzawa K, Aoki K, Oguchi A, et al. Genome and virulence determinants of high virulence community-acquired MRSA. Lancet. 2002;359:1819–27.

    Article  CAS  PubMed  Google Scholar 

  36. Noto MJ, Archer GL. A subset of Staphylococcus aureus strains harboring staphylococcal cassette chromosome mec (SCCmec) type IV is deficient in CcrAB-mediated SCCmec excision. Antimicrob Agents Chemother. 2006;50:2782–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Su YC, Wong AC. Identification and purification of a new staphylococcal enterotoxin, H. Appl Environ Microbiol. 1995;61:1438–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Ren K, Bannan JD, Pancholi V, Cheung AL, Robbins JC, Fischetti VA, et al. Characterization and biological properties of a new staphylococcal exotoxin. J Exp Med. 1994;180:1675–83.

    Article  CAS  PubMed  Google Scholar 

  39. Munson SH, Tremaine MT, Betley MJ, Welch RA. Identification and characterization of staphylococcal enterotoxin types G and I from Staphylococcus aureus. Infect Immun. 1998;66:3337–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hu D, Omoe K, Shimoda Y, Nakane A, Shinagawa K. Induction of emetic response to staphylococcal enterotoxins in the house musk shrew (Suncus murinus). Infect Immun. 2003;71:567–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang S, Iandolo JJ, Stewart GC. The enterotoxin D plasmid of Staphylococcus aureus encodes a second enterotoxin determinant (sej). FEMS Microbiol Lett. 1998;168:227–33.

    Article  CAS  PubMed  Google Scholar 

  42. Omoe K, Hu D-L, Ono HK, Shimizu S, Takahashi-Omoe H, Nakane A, et al. Emetic potentials of newly identified staphylococcal enterotoxin-like toxins. Infect Immun. 2013;81:3627–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Orwin PM, Leung DY, Donahue HL, Novick RP, Schlievert PM. Biochemical and biological properties of staphylococcal enterotoxin K. Infect Immun. 2001;69:360–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. •• Ono HK, Hirose S, Naito I, Sato’o Y, Asano K, Hu D-L, et al. The emetic activity of staphylococcal enterotoxins, SEK, SEL, SEM, SEN and SEO in a small emetic animal model, the house musk shrew. Microbiol Immunol. 2017;61:12–6. This paper provides comprehensive data on the emetic activity of various newly described SEs in an animal model.

    Article  CAS  PubMed  Google Scholar 

  45. Orwin PM, Fitzgerald JR, Leung DY, Gutierrez JA, Bohach GA, Schlievert PM. Characterization of Staphylococcus aureus enterotoxin L. Infect Immun. 2003;71:2916–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Fitzgerald JR, Monday SR, Foster TJ, Bohach GA, Hartigan PJ, Meaney WJ, et al. Characterization of a putative pathogenicity island from bovine Staphylococcus aureus encoding multiple superantigens. J Bacteriol. 2001;183:63–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Omoe K, Imanishi K, Hu DL, Kato H, Fugane Y, Abe Y, et al. Characterization of novel staphylococcal enterotoxin-like toxin type P. Infect Immun. 2005;73:5540–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu D-L, Ono HK, Isayama S, Okada R, Okamura M, Lei LC, et al. Biological characteristics of staphylococcal enterotoxin Q and its potential risk for food poisoning. J Appl Microbiol. 2017;122:1672–9.

    Article  CAS  PubMed  Google Scholar 

  49. Orwin PM, Leung DY, Tripp TJ, Bohach GA, Earhart CA, Ohlendorf DH, et al. Characterization of a novel staphylococcal enterotoxin-like superantigen, a member of the group V subfamily of pyrogenic toxins. Biochemistry. 2002;41:14033–40.

    Article  CAS  PubMed  Google Scholar 

  50. Ono HK, Omoe K, Imanishi K, Iwakabe Y, Hu DL, Kato H, et al. Identification and characterization of two novel staphylococcal enterotoxins, types S and T. Infect Immun. 2008;76:4999–5005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Omoe K, Hu DL, Takahashi-Omoe H, Nakane A, Shinagawa K. Identification and characterization of a new staphylococcal enterotoxin-related putative toxin encoded by two kinds of plasmids. Infect Immun. 2003;71:6088–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Letertre C, Perelle S, Dilasser F, Fach P. Identification of a new putative enterotoxin SEU encoded by the egc cluster of Staphylococcus aureus. J Appl Microbiol. 2003;95:38–43.

    Article  CAS  PubMed  Google Scholar 

  53. Thomas DY, Jarraud S, Lemercier B, Cozon G, Echasserieau K, Etienne J, et al. Staphylococcal enterotoxin-like toxins U2 and V, two new staphylococcal superantigens arising from recombination within the enterotoxin gene cluster. Infect Immun. 2006;74:4724–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wilson GJ, Seo KS, Cartwright RA, Connelley T, Chuang-Smith ON, Merriman JA, et al. A novel core genome-encoded superantigen contributes to lethality of community-associated MRSA necrotizing pneumonia. PLoS Pathog. 2011;7:e1002271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ono HK, Sato’o Y, Narita K, Naito I, Hirose S, Hisatsune J, et al. Identification and characterization of a novel staphylococcal emetic toxin. Appl Environ Microbiol. 2015;81:7034–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ikeda T, Tamate N, Yamaguchi K, Makino S. Mass outbreak of food poisoning disease caused by small amounts of staphylococcal enterotoxins A and H. Appl Environ Microbiol. 2005;71:2793–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Jørgensen HJ, Mathisen T, Lovseth A, Omoe K, Qvale KS, Loncarevic S. An outbreak of staphylococcal food poisoning caused by enterotoxin H in mashed potato made with raw milk. FEMS Microbiol Lett. 2005;252:267–72.

    Article  PubMed  Google Scholar 

  58. Pereira ML, DoCarmo LS, dosSantos EJ, Pereira JL, Bergdoll MS. Enterotoxin H in staphylococcal food poisoning. J Food Prot. 1996;59:559–61.

    Article  Google Scholar 

  59. • Johler S, Giannini P, Jermini M, Hummerjohann J, Baumgartner A, Stephan R. Further evidence for staphylococcal food poisoning outbreaks caused by egc-encoded enterotoxins. Toxins. 2015;7:997–1004. Article providing epidemiological data supporting the relevance of newly-described enterotoxins in SFP outbreaks.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tang J, Tang C, Chen J, Du Y, Yang X, Wang C, et al. Phenotypic characterization and prevalence of enterotoxin genes in Staphylococcus aureus isolates from outbreaks of illness in Chengdu City. Foodborne Pathog Dis. 2011;8:1317–20.

    Article  CAS  PubMed  Google Scholar 

  61. Yan X, Wang B, Tao X, Hu Q, Cui Z, Zhang J, et al. Characterization of Staphylococcus aureus strains associated with food poisoning in Shenzhen, China. Appl Environ Microbiol. 2012;78:6637–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kérouanton A, Hennekinne JA, Letertre C, Petit L, Chesneau O, Brisabois A, et al. Characterization of Staphylococcus aureus strains associated with food poisoning outbreaks in France. Int J Food Microbiol. 2007;115:369–75.

    Article  PubMed  Google Scholar 

  63. Johler S, Sihto H-M, Macori G, Stephan R. Sequence variability in staphylococcal enterotoxin genes seb, sec, and sed. Toxins. 2016;8:169.

    Article  PubMed Central  Google Scholar 

  64. Borst DW, Betley MJ. Phage-associated differences in staphylococcal enterotoxin a gene (sea) expression correlate with sea allele class. Infect Immun. 1994;62:113–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Novick RP. Mobile genetic elements and bacterial toxinoses: the superantigen-encoding pathogenicity islands of Staphylococcus aureus. Plasmid. 2003;49:93–105.

    Article  CAS  PubMed  Google Scholar 

  66. Balaban N, Rasooly A. Staphylococcal enterotoxins. Int J Food Microbiol. 2000;61:1–10.

    Article  CAS  PubMed  Google Scholar 

  67. Letertre C, Perelle S, Dilasser F, Fach P. A strategy based on 5′ nuclease multiplex PCR to detect enterotoxin genes sea to sej of Staphylococcus aureus. Mol Cell Probes. 2003;17:227–35.

    Article  CAS  PubMed  Google Scholar 

  68. Lotter LP, Genigeorgis CA. Deoxyribonucleic acid base composition and biochemical properties of certain coagulase-negative enterotoxigenic cocci. Appl Microbiol. 1975;29:152–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Podkowik M, Park JY, Seo KS, Bystrón J, Bania J. Enterotoxigenic potential of coagulase-negative staphylococci. Int J Food Microbiol. 2013;163:34–40.

    Article  CAS  PubMed  Google Scholar 

  70. Hennekinne J-A, De Buyser M-L, Dragacci S. Staphylococcus aureus and its food poisoning toxins: characterization and outbreak investigation. FEMS Microbiol Rev. 2012;36:815–36.

    Article  CAS  PubMed  Google Scholar 

  71. Khambaty FM, Bennett RW, Shah DB. Application of pulsed-field gel electrophoresis to the epidemiological characterization of Staphylococcus intermedius implicated in a food-related outbreak. Epidemiol Infect. 1994;113:75–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Becker H, Bürk C, Märtlbauer E. Staphylokokken-Enterotoxine: Bildung, Eigenschaften und Nachweis. J Verbr Lebensm. 2007;2:171–89.

    Article  Google Scholar 

  73. •• Anonymous. ISO 19020: Microbiology of the food chain—horizontal method for the immunoenzymatic detection of enterotoxins in foodstuffs. 2017. https://www.iso.org/standard/63747.html. First ISO standard for the detection of staphylococcal enterotoxins in foodstuffs.

  74. Anonymous. Toolkit for investigation and response to food and waterborne disease outbreaks with a European dimension. European Centre for Disease Prevention and Control. 2017. https://ecdc.europa.eu/en/publications-data/toolkit-investigation-and-response-food-and-waterborne-disease-outbreaks-eu. Accessed 23 Aug 2017.

  75. Mossong J, DeCruyenaere F, Moris G, Ragimbeau C, Olinger C, Johler S, et al. Whole genome sequencing as investigative tool in a staphylococcal food poisoning outbreak in Luxembourg, June 2014. Euro Surveill. 2015;20

  76. Johler S, Tichaczek-Dischinger PS, Rau J, Sihto H-M, Lehner A, Adam M, et al. Outbreak of staphylococcal food poisoning due to SEA-producing Staphylococcus aureus. Foodborne Pathog Dis. 2013;10:777–81.

    Article  CAS  PubMed  Google Scholar 

  77. Johler S, Stephan R, Althaus D, Ehling-Schulz M, Grunert T. High-resolution subtyping of Staphylococcus aureus strains by means of Fourier-transform infrared spectroscopy. Syst Appl Microbiol. 2016;39:189–94.

    Article  CAS  PubMed  Google Scholar 

  78. Asao T, Kumeda Y, Kawai T, Shibata T, Oda H, Haruki K, et al. An extensive outbreak of staphylococcal food poisoning due to low-fat milk in Japan: estimation of enterotoxin A in the incriminated milk and powdered skim milk. Epidemiol Infect. 2003;130:33–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ostyn A, De Buyser ML, Guillier F, Groult J, Felix B, Salah S, et al. First evidence of a food poisoning outbreak due to staphylococcal enterotoxin type E, France, 2009. Euro Surveill. 2010;15:19528.

    PubMed  Google Scholar 

  80. Aires-de-Sousa M, Boye K, de Lencastre H, Deplano A, Enright MC, Etienne J, et al. High interlaboratory reproducibility of DNA sequence-based typing of bacteria in a multicenter study. J Clin Microbiol. 2006;44:619–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Frenay HM, Bunschoten AE, Schouls LM, van Leeuwen WJ, Vandenbroucke-Grauls CM, Verhoef J, et al. Molecular typing of methicillin-resistant Staphylococcus aureus on the basis of protein A gene polymorphism. Eur J Clin Microbiol Infect Dis. 1996;15:60–4.

    Article  CAS  PubMed  Google Scholar 

  82. Todd ECD, Greig JD, Bartleson CA, Michaels BS. Outbreaks where food workers have been implicated in the spread of foodborne disease. Part 3. Factors contributing to outbreaks and description of outbreak categories. J Food Prot. 2007;70:2199–217.

    Article  PubMed  Google Scholar 

  83. Argudín MA, Mendoza MC, Gonzalez-Hevia MA, Bances M, Guerra B, Rodicio MR. Genotypes, exotoxin gene content, and antimicrobial resistance of Staphylococcus aureus strains recovered from foods and food handlers. Appl Environ Microbiol. 2012;78:2930–5.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Kusumaningrum HD, Riboldi G, Hazeleger WC, Beumer RR. Survival of foodborne pathogens on stainless steel surfaces and cross-contamination to foods. Int J Food Microbiol. 2003;85:227–36.

    Article  CAS  PubMed  Google Scholar 

  85. Toyofuku H. Harmonization of international risk assessment protocol. Mar Pollut Bull. 2006;53:579–90.

    Article  CAS  PubMed  Google Scholar 

  86. Schelin J, Wallin-Carlquist N, Cohn MT, Lindqvist R, Barker GC, Rådström P. The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment. Virulence. 2011;2:580–92.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Buchanan RL, Smith JL, Long W. Microbial risk assessment: dose-response relations and risk characterization. Int J Food Microbiol. 2000;58:159–72.

    Article  CAS  PubMed  Google Scholar 

  88. Lammerding AM, Paoli GM. Quantitative risk assessment: an emerging tool for emerging foodborne pathogens. Emerg Infect Dis. 1997;3:483–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Köck R, Ballhausen B, Bischoff M, Cuny C, Eckmanns T, Fetsch A, et al. The impact of zoonotic MRSA colonization and infection in Germany. Berl Munch Tierarztl Wochenschr. 2014;127:384–98.

    PubMed  Google Scholar 

  90. Price LB, Stegger M, Hasman H, Aziz M, Larsen J, Andersen S, et al. Adaptation and emergence of Staphylococcus aureus CC398: host adaptation and emergence of methicillin resistance in livestock. MBio. 2012;3:1–6.

    Article  Google Scholar 

  91. Fitzgerald JR. Livestock-associated Staphylococcus aureus: origin, evolution and public health threat. Trends Microbiol. 2012;20:192–8.

    Article  CAS  PubMed  Google Scholar 

  92. Köck R, Harlizius J, Bressan N, Laerberg R, Wieler LH, Witte W, et al. Prevalence and molecular characteristics of methicillin-resistant Staphylococcus aureus (MRSA) among pigs on German farms and import of livestock-related MRSA into hospitals. Eur J Clin Microbiol Infect Dis. 2009;28:1375–82.

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cuny C, Köck R, Witte W. Livestock associated MRSA (LA-MRSA) and its relevance for humans in Germany. Int J Med Microbiol. 2013;303:331–7.

    Article  PubMed  Google Scholar 

  94. Köck R, Schaumburg F, Mellmann A, Köksal M, Jurke A, Becker K. Livestock-associated methicillin-resistant Staphylococcus aureus (MRSA) as causes of human infection and colonization in Germany. PLoS One. 2013;8:e55040.

    Article  PubMed  PubMed Central  Google Scholar 

  95. EFSA. Technical specifications on the harmonised monitoring and reporting of antimicrobial resistance in methicillin-resistant Staphylococcus aureus in food-producing animals and food 1. 2012. https://doi.org/10.2903/j.efsa.2012.2897.

  96. European Parliament and Council. Directive 2003/99/EC of the European Parliament and of the Council of 17 November 2003 On the monitoring of zoonoses and zoonotic agents, amending council decision 90/424/EEC and repealing council directive 92/117/EEC. Off J Eur Union 2001:65–71.

  97. Buyukcangaz E, Velasco V, Sherwood JS, Stepan RM, Koslofsky RJ, Logue CM. Molecular typing of Staphylococcus aureus and methicillin-resistant S. aureus (MRSA) isolated from animals and retail meat in North Dakota, United States. Foodborne Pathog Dis. 2013;10:608–17.

    Article  CAS  PubMed  Google Scholar 

  98. de Boer E, Zwartkruis-Nahuis JTM, Wit B, Huijsdens XW, de Neeling AJ, Bosch T. Prevalence of methicillin-resistant Staphylococcus aureus in meat. Int J Food Microbiol. 2009;134:52–6.

    Article  PubMed  Google Scholar 

  99. Hanson BM, Dressler AE, Harper AL, Scheibel RP, Wardyn SE, Roberts LK. Prevalence of Staphylococcus aureus and methicillin-resistant Staphylococcus aureus (MRSA) on retail meat in Iowa. J Infect Public Health. 2011;4:169–74.

    Article  CAS  PubMed  Google Scholar 

  100. O’Brien AM, Hanson BM, Farina SA, Wu JY, Simmering JE, Wardyn SE. MRSA in conventional and alternative retail pork products. PLoS One. 2012;7:e30092.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Velasco V, Sherwood JS, Rojas-Garcia PP, Logue CM. Multiplex real-time PCR for detection of Staphylococcus aureus, mecA and Panton-valentine Leukocidin (PVL) genes from selective enrichments from animals and retail meat. PLoS One. 2014;9:e97617.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Wendlandt S, Schwarz S, Silley P. Methicillin-resistant Staphylococcus aureus: a food-borne pathogen? Annu Rev Food Sci Technol. 2013;4:117–39.

    Article  CAS  PubMed  Google Scholar 

  103. Kraushaar B, Ballhausen B, Leeser D, Tenhagen B-A, Käsbohrer A, Fetsch A. Antimicrobial resistances and virulence markers in methicillin-resistant Staphylococcus aureus from broiler and Turkey: a molecular view from farm to fork. Vet Microbiol. 2017;200:25–32.

    Article  CAS  PubMed  Google Scholar 

  104. Weese JS, Avery BP, Reid-Smith RJ. Detection and quantification of methicillin-resistant Staphylococcus aureus (MRSA) clones in retail meat products. Lett Appl Microbiol. 2010;51:338–42.

    Article  CAS  PubMed  Google Scholar 

  105. Deiters C, Günnewig V, Friedrich AW, Mellmann A, Köck R. Are cases of methicillin-resistant Staphylococcus aureus clonal complex (CC) 398 among humans still livestock-associated? Int J Med Microbiol. 2015;305:110–3.

    Article  PubMed  Google Scholar 

  106. • Larsen J, Stegger M, Andersen PS, Petersen A, Larsen AR, Westh H, et al. Evidence for human adaptation and foodborne transmission of livestock-associated methicillin-resistant Staphylococcus aureus. Clin Infect Dis. 2016;63:1349–52. Article making a crucial contribution towards understanding foodborne transmission of LA-MRSA.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Fetsch A, Kraushaar B, Käsbohrer A, Hammerl JA. Turkey meat as source of CC9/CC398 methicillin-resistant Staphylococcus aureus in humans? Clin Infect Dis. 2017;64:102–3.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sophia Johler.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Foodborne Pathogens

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fetsch, A., Johler, S. Staphylococcus aureus as a Foodborne Pathogen. Curr Clin Micro Rpt 5, 88–96 (2018). https://doi.org/10.1007/s40588-018-0094-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-018-0094-x

Keywords

Navigation