Advertisement

Current Clinical Microbiology Reports

, Volume 5, Issue 2, pp 126–134 | Cite as

Survival of Campylobacter in the Food Chain and the Environment

  • Greta Gölz
  • Sophie Kittler
  • Mindaugas Malakauskas
  • Thomas Alter
Foodborne Pathogens (S Johler, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Foodborne Pathogens

Abstract

Purpose of Review

Campylobacter species belong to the most important foodborne bacteria causing gastroenteritis in humans. In this review, we focus on current findings on the presence and survival of Campylobacter in the food chain and the environment.

Recent Findings

Compared to other foodborne pathogenic agents, thermophilic Campylobacter are very susceptible to environmental and technological stressors. However, different mechanisms enable their survival in the environment and the food chain.

Summary

Further research is needed to improve our understanding of the survival mechanisms of Campylobacter in the environment and the food chain. Based on that, mitigation and intervention strategies can be optimized to subsequently reduce Campylobacter infections in humans.

Keywords

Campylobacter Food chain Mitigation strategies Survival mechanisms 

Notes

Funding Information

This study received financial support from German Federal Ministry for Education and Research (PAC-Campy, Grant reference 01Kl1725A/C).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article contains no studies with human or animal subjects performed by the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    WHO. Campylobacter, Fact sheet N°255. 2011. http://www.who.int/mediacentre/factsheets/fs255/en/.
  2. 2.
    Batz M, Hoffmann S, Morris JG. Disease-outcome trees, EQ-5D scores, and estimated annual losses of quality-adjusted life years (QALYs) for 14 foodborne pathogens in the United States. Foodborne Pathog Dis. 2014;11(5):395–402.CrossRefPubMedGoogle Scholar
  3. 3.
    EFSA. Topics on Food-borne zoonotic diseases Campylobacter. 2014.Google Scholar
  4. 4.
    Man SM. The clinical importance of emerging Campylobacter species. Nat Rev Gastroenterol Hepatol. 2011;8(12):669–85.CrossRefPubMedGoogle Scholar
  5. 5.
    Bronowski C, James CE, Winstanley C. Role of environmental survival in transmission of Campylobacter jejuni. FEMS Microbiol Lett. 2014;356(1):8–19.CrossRefPubMedGoogle Scholar
  6. 6.
    Moore JE, Corcoran D, Dooley JS, Fanning S, Lucey B, Matsuda M, et al. Campylobacter. Vet Res. 2005;36(3):351–82.CrossRefPubMedGoogle Scholar
  7. 7.
    Schielke A, Rosner BM, Stark K. Epidemiology of campylobacteriosis in Germany—insights from 10 years of surveillance. BMC Infect Dis. 2014;14:30.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Nichols GL. Fly transmission of Campylobacter. Emerg Infect Dis. 2005;11(3):361–4.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Yun J, Greiner M, Holler C, Messelhausser U, Rampp A, Klein G. Association between the ambient temperature and the occurrence of human Salmonella and Campylobacter infections. Sci Rep. 2016;6Google Scholar
  10. 10.
    Health Protection Agency. Health effects of climate changes in the United Kingdom 2008.Google Scholar
  11. 11.
    Wagenaar JA, French NP, Havelaar AH. Preventing Campylobacter at the source: why is it so difficult? Clin Infect Dis. 2013;57(11):1600–6.CrossRefPubMedGoogle Scholar
  12. 12.
    Nauta M, Hill A, Rosenquist H, Brynestad S, Fetsch A, van der Logt P, et al. A comparison of risk assessments on Campylobacter in broiler meat. Int J Food Microbiol. 2009;129(2):107–23.CrossRefPubMedGoogle Scholar
  13. 13.
    Swart AN, Mangen MJ, Havelaar AH. Microbiological criteria as a decision tool for controlling Campylobacter in the broiler meat chain. RIVM Letter Report. 2013;330331008/2013.Google Scholar
  14. 14.
    • Dearlove BL, Cody AJ, Pascoe B, Meric G, Wilson DJ, Sheppard SK. Rapid host switching in generalist Campylobacter strains erodes the signal for tracing human infections. ISME J. 2016;10(3):721–9. Highlights the generalist lifestyle (no host association) of tested STs. CrossRefPubMedGoogle Scholar
  15. 15.
    Khan IU, Gannon V, Jokinen CC, Kent R, Koning W, Lapen DR, et al. A national investigation of the prevalence and diversity of thermophilic Campylobacter species in agricultural watersheds in Canada. Water Res. 2014;61:243–52.CrossRefPubMedGoogle Scholar
  16. 16.
    Kemp R, Leatherbarrow AJ, Williams NJ, Hart CA, Clough HE, Turner J, et al. Prevalence and genetic diversity of Campylobacter spp. in environmental water samples from a 100-square-kilometer predominantly dairy farming area. Appl Environ Microbiol. 2005;71(4):1876–82.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Sawabe T, Suda W, Ohshima K, Hattori M, Sawabe T. First microbiota assessments of children’s paddling pool waters evaluated using 16S rRNA gene-based metagenome analysis. J Infect Public Health. 2016;9(3):362–5.CrossRefPubMedGoogle Scholar
  18. 18.
    Yamahara KM, Sassoubre LM, Goodwin KD, Boehm AB. Occurrence and persistence of bacterial pathogens and indicator organisms in beach sand along the California coast. Appl Environ Microbiol. 2012;78(6):1733–45.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    French NP, Midwinter A, Holland B, Collins-Emerson J, Pattison R, Colles F, et al. Molecular epidemiology of Campylobacter jejuni isolates from wild-bird fecal material in children’s playgrounds. Appl Environ Microbiol. 2009;75(3):779–83.CrossRefPubMedGoogle Scholar
  20. 20.
    Mullner P, Spencer SE, Wilson DJ, Jones G, Noble AD, Midwinter AC, et al. Assigning the source of human campylobacteriosis in New Zealand: a comparative genetic and epidemiological approach. Infect Genet Evol. 2009;9(6):1311–9.CrossRefPubMedGoogle Scholar
  21. 21.
    Bartholomew N, Brunton C, Mitchell P, Williamson J, Gilpin B. A waterborne outbreak of campylobacteriosis in the South Island of New Zealand due to a failure to implement a multi-barrier approach. J Water Health. 2014;12(3):555–63.CrossRefPubMedGoogle Scholar
  22. 22.
    Schonberg-Norio D, Takkinen J, Hanninen ML, Katila ML, Kaukoranta SS, Mattila L, et al. Swimming and Campylobacter infections. Emerg Infect Dis. 2004;10(8):1474–7.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    • Rosner BM, Schielke A, Didelot X, Kops F, Breidenbach J, Willrich N, et al. A combined case-control and molecular source attribution study of human Campylobacter infections in Germany, 2011–2014. Sci Rep. 2017;7(1):5139. Recent source attribution model. CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Sterk A, Schijven J, de Nijs T, de Roda Husman AM. Direct and indirect effects of climate change on the risk of infection by water-transmitted pathogens. Environ Sci Technol. 2013;47(22):12648–60.CrossRefPubMedGoogle Scholar
  25. 25.
    Ellis-Iversen J, Ridley A, Morris V, Sowa A, Harris J, Atterbury R, et al. Persistent environmental reservoirs on farms as risk factors for Campylobacter in commercial poultry. Epidemiol Infect. 2012;140(5):916–24.CrossRefPubMedGoogle Scholar
  26. 26.
    Whiley H, van den Akker B, Giglio S, Bentham R. The role of environmental reservoirs in human campylobacteriosis. Int J Environ Res Public Health. 2013;10(11):5886–907.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    • Vieira A, Seddon AM, Karlyshev AV. Campylobacter-Acanthamoeba interactions. Microbiology. 2015;161(Pt 5):933–47. Summary of current information of Campylobacter- amoebae interaction. CrossRefPubMedGoogle Scholar
  28. 28.
    Sopwith W, Birtles A, Matthews M, Fox A, Gee S, Painter M, et al. Identification of potential environmentally adapted Campylobacter jejuni strain, United Kingdom. Emerg Infect Dis. 2008;14(11):1769–73.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Sahin O, Fitzgerald C, Stroika S, Zhao S, Sippy RJ, Kwan P, et al. Molecular evidence for zoonotic transmission of an emergent, highly pathogenic Campylobacter jejuni clone in the United States. J Clin Microbiol. 2012;50(3):680–7.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Tang Y, Meinersmann RJ, Sahin O, Wu Z, Dai L, Carlson J, et al. Wide but variable distribution of a hypervirulent Campylobacter jejuni clone in beef and dairy cattle in the United States. Appl Environ Microbiol. 2017;83:e01425–17.  https://doi.org/10.1128/AEM.01425-17.CrossRefPubMedCentralGoogle Scholar
  31. 31.
    The European Union Summary Report on Trends and Sources of Zoonoses, Zoonotic agents and food-borne outbreaks in 2010. EFSA J 2012;10(3):2597.Google Scholar
  32. 32.
    Jorgensen F, Ellis-Iversen J, Rushton S, Bull SA, Harris SA, Bryan SJ, et al. Influence of season and geography on Campylobacter jejuni and C. coli subtypes in housed broiler flocks reared in Great Britain. Appl Environ Microbiol. 2011;77(11):3741–8.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Weber R, Auerbach M, Jung A, Glunder G. Campylobacter infections in four poultry species in respect of frequency, onset of infection and seasonality. Berl Munch Tierarztl Wochenschr. 2014;127(7–8):257–66.PubMedGoogle Scholar
  34. 34.
    Bej AK, Dicesare JL, Haff L, Atlas RM. Detection of Escherichia coli and Shigella spp. in water by using the polymerase chain-reaction and gene probes for uid. Appl Environ Microbiol. 1991;57(4):1013–7.PubMedPubMedCentralGoogle Scholar
  35. 35.
    Agunos A, Waddell L, Leger D, Taboada E. A systematic review characterizing on-farm sources of Campylobacter spp. for broiler chickens. PLoS One. 2014;9(8):e104905.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Royden A, Wedley A, Merga JY, Rushton S, Hald B, Humphrey T, et al. A role for flies (Diptera) in the transmission of Campylobacter to broilers? Epidemiol Infect. 2016;144(15):3326–34.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Meunier M, Guyard-Nicodeme M, Dory D, Chemaly M. Control strategies against Campylobacter at the poultry production level: biosecurity measures, feed additives and vaccination. J Appl Microbiol. 2016;120(5):1139–73.CrossRefPubMedGoogle Scholar
  38. 38.
    Klein G, Jansen W, Kittler S, Reich F. Mitigation strategies for Campylobacter spp. in broiler at pre-harvest and harvest level. Berl Munch Tierarztl. 2015;128(3–4):132–40.Google Scholar
  39. 39.
    Gölz G, Rosner B, Hofreuter D, Josenhans C, Kreienbrock L, Lowenstein A, et al. Relevance of Campylobacter to public health—the need for a One Health approach. Int J Med Microbiol. 2014;304(7):817–23.  https://doi.org/10.1016/j.ijmm.2014.08.015.CrossRefPubMedGoogle Scholar
  40. 40.
    Kempf I, Kerouanton A, Bougeard S, Nagard B, Rose V, Mourand G, et al. Campylobacter coli in organic and conventional pig production in France and Sweden: prevalence and antimicrobial resistance. Front Microbiol. 2017;8:955.  https://doi.org/10.3389/fmicb.2017.00955.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Purnell G, Mattick K, Humphrey T. The use of ‘hot wash’ treatments to reduce the number of pathogenic and spoilage bacteria on raw retail poultry. J Food Eng. 2004;62(1):29–36.  https://doi.org/10.1016/S0260-8774(03)00168-7.CrossRefGoogle Scholar
  42. 42.
    James C, James SJ, Hannay N, Purnell G, Barbedo-Pinto C, Yaman H, et al. Decontamination of poultry carcasses using steam or hot water in combination with rapid cooling, chilling or freezing of carcass surfaces. Int J Food Microbiol. 2007;114(2):195–203.  https://doi.org/10.1016/j.ijfoodmicro.2006.09.019.CrossRefPubMedGoogle Scholar
  43. 43.
    Musavian HS, Butt TM, Larsen AB, Krebs N. Combined steam-ultrasound treatment of 2 seconds achieves significant high aerobic count and Enterobacteriaceae reduction on naturally contaminated food boxes, crates, conveyor belts, and meat knives. J Food Prot. 2015;78(2):430–5.  https://doi.org/10.4315/0362-028X.JFP-14-155.CrossRefPubMedGoogle Scholar
  44. 44.
    Burfoot D, Hall J, Nicholson K, Holmes K, Hanson C, Handley S, et al. Effect of rapid surface cooling on Campylobacter numbers on poultry carcasses. Food Control. 2016;70:293–301.  https://doi.org/10.1016/j.foodcont.2016.05.041.CrossRefGoogle Scholar
  45. 45.
    Birk T, Ingmer H, Andersen MT, Jorgensen K, Brondsted L. Chicken juice, a food-based model system suitable to study survival of Campylobacter jejuni. Lett Appl Microbiol. 2004;38(1):66–71.  https://doi.org/10.1046/j.1472-765X.2003.01446.x.CrossRefPubMedGoogle Scholar
  46. 46.
    Murphy C, Carroll C, Jordan KN. Induction of an adaptive tolerance response in the foodborne pathogen, Campylobacter jejuni. FEMS Microbiol Lett. 2003;223(1):89–93.CrossRefPubMedGoogle Scholar
  47. 47.
    Chantarapanont W, Berrang M, Frank JF. Direct microscopic observation and viability determination of Campylobacter jejuni on chicken skin. J Food Prot. 2003;66(12):2222–30.CrossRefPubMedGoogle Scholar
  48. 48.
    EFSA. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2015. EFSA J 2016;14(12).  https://doi.org/10.2903/j.efsa.2016.4634.
  49. 49.
    Public Health England. A microbiological survey of Campylobacter contamination in fresh whole UK-produced chilled chickens at retail sale. FSA Project FS102121 year-2-report2017.Google Scholar
  50. 50.
    Christidis T, Pintar KD, Butler AJ, Nesbitt A, Thomas MK, Marshall B, et al. Campylobacter spp. prevalence and levels in raw milk: a systematic review and meta-analysis. J Food Prot. 2016;79(10):1775–83.  https://doi.org/10.4315/0362-028X.JFP-15-480.CrossRefPubMedGoogle Scholar
  51. 51.
    Costard S, Espejo L, Groenendaal H, Zagmutt FJ. Outbreak-related disease burden associated with consumption of unpasteurized cow’s milk and cheese, United States, 2009–2014. Emerg Infect Dis. 2017;23(6):957–64.  https://doi.org/10.3201/eid2306.151603. CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Messelhausser U, Tharigen D, Elmer-Englhard D, Bauer H, Schreiner H, Holler C. Occurrence of thermotolerant Campylobacter spp. on eggshells: a missing link for food-borne infections? Appl Environ Microbiol. 2011;77(11):3896–7.  https://doi.org/10.1128/Aem.00145-11.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Jones DR, Guard J, Gast RK, Buhr RJ, Fedorka-Cray PJ, Abdo Z, et al. Influence of commercial laying hen housing systems on the incidence and identification of Salmonella and Campylobacter. Poult Sci. 2016;95(5):1116–24.  https://doi.org/10.3382/ps/pew036.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Parisi MA, Northcutt JK, Smith DP, Steinberg EL, Dawson PL. Microbiological contamination of shell eggs produced in conventional and free-range housing systems. Food Control. 2015;47:161–5.  https://doi.org/10.1016/j.foodcont.2014.06.038.CrossRefGoogle Scholar
  55. 55.
    Evans MR, Ribeiro CD, Salmon RL. Hazards of healthy living: bottled water and salad vegetables as risk factors for Campylobacter infection. Emerg Infect Dis. 2003;9(10):1219–25.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Ceuppens S, Johannessen GS, Allende A, Tondo EC, El-Tahan F, Sampers I, et al. Risk factors for Salmonella, shiga toxin-producing Escherichia coli and Campylobacter occurrence in primary production of leafy greens and strawberries. Int J Environ Res Public Health. 2015;12(8):9809–31.  https://doi.org/10.3390/ijerph120809809.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Chai LC, Ghazali FM, Bakar FA, Lee HY, Suhaimi LRA, Talib SA, et al. Occurrence of thermophilic Campylobacter spp. contamination on vegetable farms in Malaysia. J Microbiol Biotechnol. 2009;19(11):1415–20.  https://doi.org/10.4014/jmb.0901.0002. PubMedGoogle Scholar
  58. 58.
    Denis N, Zhang H, Leroux A, Trudel R, Bietlot H. Prevalence and trends of bacterial contamination in fresh fruits and vegetables sold at retail in Canada. Food Control. 2016;67:225–34.  https://doi.org/10.1016/j.foodcont.2016.02.047.CrossRefGoogle Scholar
  59. 59.
    Verhoeff-Bakkenes L, Jansen HA, van’t Veld PH, Beumer RR, Zwietering MH, van Leusden FM. Consumption of raw vegetables and fruits: a risk factor for Campylobacter infections. Int J Food Microbiol. 2011;144(3):406–12.  https://doi.org/10.1016/j.ijfoodmicro.2010.10.027. CrossRefPubMedGoogle Scholar
  60. 60.
    Buyukunal SK, Issa G, Akus F, Vural A. Microbiological quality of fresh vegetables and fruits collected from supermarkets in Istanbul, Turkey. J Food Nutri Sci. 2015;3(4):8.  https://doi.org/10.11648/j.jfns.20150304.13.Google Scholar
  61. 61.
    Alter T. Prevention and mitigation strategies for Campylobacter with focus on poultry production. In: Klein G, editor. Campylobacter—features, detection, and prevention of foodborne disease: Academic Press; 2016.Google Scholar
  62. 62.
    Al-Sakkaf A. Campylobacter heat resistance—past, current status and future prospect for New Zealand and beyond. World Poultry Sci J. 2015;71(1):111–24.  https://doi.org/10.1017/S0043933915000100.CrossRefGoogle Scholar
  63. 63.
    Bhaduri S, Cottrell B. Survival of cold-stressed Campylobacter jejuni on ground chicken and chicken skin during frozen storage. Appl Environ Microbiol. 2004;70(12):7103–9.  https://doi.org/10.1128/AEM.70.12.7103-7109.2004.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Stead D, Park SF. Roles of Fe superoxide dismutase and catalase in resistance of Campylobacter coli to freeze-thaw stress. Appl Environ Microbiol. 2000;66(7):3110–2.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Barba FJ, Koubaa M, do Prado-Silva L, Orlien V, Sant’Ana AD. Mild processing applied to the inactivation of the main foodborne bacterial pathogens: a review. Trends Food Sci Technol. 2017;66:20–35.  https://doi.org/10.1016/j.tifs.2017.05.011.CrossRefGoogle Scholar
  66. 66.
    Haughton PN, Grau EG, Lyng J, Cronin D, Fanning S, Whyte P. Susceptibility of Campylobacter to high intensity near ultraviolet/visible 395+/−5nm light and its effectiveness for the decontamination of raw chicken and contact surfaces. Int J Food Microbiol. 2012;159(3):267–73.  https://doi.org/10.1016/j.ijfoodmicro.2012.09.006.CrossRefPubMedGoogle Scholar
  67. 67.
    Haughton PN, Lyng JG, Morgan DJ, Cronin DA, Fanning S, Whyte P. Efficacy of high-intensity pulsed light for the microbiological decontamination of chicken, associated packaging, and contact surfaces. Foodborne Pathog Dis. 2011;8(1):109–17.  https://doi.org/10.1089/fpd.2010.0640.CrossRefPubMedGoogle Scholar
  68. 68.
    Solomon EB, Hoover DG. Inactivation of Campylobacter jejuni by high hydrostatic pressure. Lett Appl Microbiol. 2004;38(6):505–9.  https://doi.org/10.1111/j.1472-765X.2004.01527.x.CrossRefPubMedGoogle Scholar
  69. 69.
    Martinez-Rodriguez A, Mackey BM. Factors affecting the pressure resistance of some Campylobacter species. Lett Appl Microbiol. 2005;41(4):321–6.  https://doi.org/10.1111/j.1472-765X.2005.01768.x.CrossRefPubMedGoogle Scholar
  70. 70.
    Martinez-Rodriguez A, Mackey BM. Physiological changes in Campylobacter jejuni on entry into stationary phase. Int J Food Microbiol. 2005;101(1):1–8.  https://doi.org/10.1016/j.ijfoodmicro.2004.10.037.CrossRefPubMedGoogle Scholar
  71. 71.
    Boysen L, Knochel S, Rosenquist H. Survival of Campylobacter jejuni in different gas mixtures. FEMS Microbiol Lett. 2007;266(2):152–7.  https://doi.org/10.1111/j.1574-6968.2006.00525.x.CrossRefPubMedGoogle Scholar
  72. 72.
    Rajkovic A, Tomic N, Smigic N, Uyttendaele M, Ragaert P, Devlieghere F. Survival of Campylobacter jejuni on raw chicken legs packed in high-oxygen or high-carbon dioxide atmosphere after the decontamination with lactic acid/sodium lactate buffer. Int J Food Microbiol. 2010;140(2–3):201–6.  https://doi.org/10.1016/j.ijfoodmicro.2010.03.034.CrossRefPubMedGoogle Scholar
  73. 73.
    Meredith H, Valdramidis V, Rotabakk BT, Sivertsvik M, McDowell D, Bolton DJ. Effect of different modified atmospheric packaging (MAP) gaseous combinations on Campylobacter and the shelf-life of chilled poultry fillets. Food Microbiol. 2014;44:196–203.  https://doi.org/10.1016/j.fm.2014.06.005.CrossRefPubMedGoogle Scholar
  74. 74.
    de Vries SP, Gupta S, Baig A, Wright E, Wedley A, Jensen AN, et al. Genome-wide fitness analyses of the foodborne pathogen Campylobacter jejuni in in vitro and in vivo models. Sci Rep. 2017;7(1):1251.  https://doi.org/10.1038/s41598-017-01133-4. CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    O’Kane PM, Connerton IF. Characterisation of aerotolerant forms of a robust chicken colonizing Campylobacter coli. Front Microbiol. 2017;8:513.  https://doi.org/10.3389/fmicb.2017.00513.PubMedPubMedCentralGoogle Scholar
  76. 76.
    Oh E, McMullen L, Jeon B. High prevalence of hyper-aerotolerant Campylobacter jejuni in retail poultry with potential implication in human infection. Front Microbiol. 2015;6:1263.  https://doi.org/10.3389/fmicb.2015.01263.PubMedPubMedCentralGoogle Scholar
  77. 77.
    • Oh E, McMullen LM, Chui L, Jeon B. Differential survival of hyper-aerotolerant Campylobacter jejuni under different gas conditions. Front Microbiol. 2017;8:954.  https://doi.org/10.3389/fmicb.2017.00954. Presence of virulence genes in hyper-aerotolerant C. jejuni strains and extended survival of these strains in poultry meat. CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Rodrigues RC, Haddad N, Chevret D, Cappelier JM, Tresse O. Comparison of proteomics profiles of Campylobacter jejuni strain Bf under microaerobic and aerobic conditions. Front Microbiol. 2016;7:1596.  https://doi.org/10.3389/fmicb.2016.01596.PubMedPubMedCentralGoogle Scholar
  79. 79.
    Teh AH, Lee SM, Dykes GA. Does Campylobacter jejuni form biofilms in food-related environments? Appl Environ Microbiol. 2014;80(17):5154–60.  https://doi.org/10.1128/AEM.01493-14.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Oh E, Kim JC, Jeon B. Stimulation of biofilm formation by oxidative stress in Campylobacter jejuni under aerobic conditions. Virulence. 2016;7(7):846–51.  https://doi.org/10.1080/21505594.2016.1197471.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Li J, Feng J, Ma L, de la Fuente Núñez C, Gölz G, Lu X. Effects of meat juice on biofilm formation of Campylobacter and Salmonella. Int J Food Microbiol. 2017;253:20–8.  https://doi.org/10.1016/j.ijfoodmicro.2017.04.013. CrossRefPubMedGoogle Scholar
  82. 82.
    Hanning I, Jarquin R, Slavik M. Campylobacter jejuni as a secondary colonizer of poultry biofilms. J Appl Microbiol. 2008;105(4):1199–208.  https://doi.org/10.1111/j.1365-2672.2008.03853.x.CrossRefPubMedGoogle Scholar
  83. 83.
    Feng J, Lamour G, Xue R, Mirvakliki MN, Hatzikiriakos SG, Xu J, et al. Chemical, physical and morphological properties of bacterial biofilms affect survival of encased Campylobacter jejuni F38011 under aerobic stress. Int J Food Microbiol. 2016;238:172–82.  https://doi.org/10.1016/j.ijfoodmicro.2016.09.008.CrossRefPubMedGoogle Scholar
  84. 84.
    Sung K, Khan S. Biofilm development by Campylobacter jejuni. In: Pometto AL, Demirci A, editors. Biofilms in the food environment. Chichester: John Wiley & Sons; 2015.Google Scholar
  85. 85.
    Pascoe B, Meric G, Murray S, Yahara K, Mageiros L, Bowen R, et al. Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds in Campylobacter jejuni. Environ Microbiol. 2015;17(11):4779–89.  https://doi.org/10.1111/1462-2920.13051.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Coughlan LM, Cotter PD, Hill C, Alvarez-Ordonez A. New weapons to fight old enemies: novel strategies for the (bio)control of bacterial biofilms in the food industry. Front Microbiol. 2016;7:1641.  https://doi.org/10.3389/fmicb.2016.01641.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Magajna B, Schraft H. Evaluation of propidium monoazide and quantitative PCR to quantify viable Campylobacter jejuni biofilm and planktonic cells in log phase and in a viable but nonculturable state. J Food Prot. 2015;78(7):1303–11.  https://doi.org/10.4315/0362-028X.JFP-14-583.CrossRefPubMedGoogle Scholar
  88. 88.
    Magajna BA, Schraft H. Campylobacter jejuni biofilm cells become viable but non-culturable (VBNC) in low nutrient conditions at 4 degrees C more quickly than their planktonic counterparts. Food Control. 2015;50:45–50.  https://doi.org/10.1016/j.foodcont.2014.08.022. CrossRefGoogle Scholar
  89. 89.
    Gripp E, Hlahla D, Didelot X, Kops F, Maurischat S, Tedin K, et al. Closely related Campylobacter jejuni strains from different sources reveal a generalist rather than a specialist lifestyle. BMC Genomics. 2011;12:584.  https://doi.org/10.1186/1471-2164-12-584.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Sampers I, Habib I, De Zutter L, Dumoulin A, Uyttendaele M. Survival of Campylobacter spp. in poultry meat preparations subjected to freezing, refrigeration, minor salt concentration, and heat treatment. Int J Food Microbiol. 2010;137(2–3):147–53.  https://doi.org/10.1016/j.ijfoodmicro.2009.11.013.CrossRefPubMedGoogle Scholar
  91. 91.
    Jasson V, Uyttendaele M, Rajkovic A, Debevere J. Establishment of procedures provoking sub-lethal injury of Listeria monocytogenes, Campylobacter jejuni and Escherichia coli O157 to serve method performance testing. Int J Food Microbiol. 2007;118(3):241–9.  https://doi.org/10.1016/j.ijfoodmicro.2007.07.016.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Greta Gölz
    • 1
  • Sophie Kittler
    • 2
  • Mindaugas Malakauskas
    • 3
  • Thomas Alter
    • 1
  1. 1.Institute of Food Safety and Food HygieneFreie Universität BerlinBerlinGermany
  2. 2.Institute of Food Quality and Food SafetyUniversity of Veterinary Medicine HanoverHanoverGermany
  3. 3.Department of Food Safety and Quality, Faculty of Veterinary Medicine, Veterinary AcademyLithuanian University of Health SciencesKaunasLithuania

Personalised recommendations