Skip to main content
Log in

Arthropod Infection Models for Francisella tularensis

  • Bacteriology (N Borel, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Little is known about the interactions between Francisella tularensis and arthropods. The advent of next-generation sequencing led to a better knowledge of the genetic diversity of F. tularensis, which is associated with macrogeographical areas. These findings, coupled with precise methods to follow bacteria within arthropods, brought a renewed interest in this field. The scope of this review is to present the most recent literature describing experimental infections of arthropod vectors with F. tularensis.

Recent Findings

The latest data show the importance to test relevant lineages of F. tularensis and also emphasize the importance to improve arthropod infection models.

Summary

Many gaps still need to be filled to better understand the role of arthropods in the transmission and maintenance of F. tularensis. However, significant advancements were made in the last years. Future research will likely contribute to unravel the interconnections between F. tularensis, host, vector, and the environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Keim P, Johansson A, Wagner DM. Molecular epidemiology, evolution, and ecology of Francisella. Ann N Y Acad Sci. 2007;1105(1):30–66. https://doi.org/10.1196/annals.1409.011.

    Article  CAS  PubMed  Google Scholar 

  2. Petersen JM, Molins CR. Subpopulations of Francisella tularensis ssp. tularensis and holarctica: identification and associated epidemiology. Future Microbiol. 2010;5(4):649–61. https://doi.org/10.2217/fmb.10.17.

    Article  PubMed  Google Scholar 

  3. Johansson A, Petersen JM. Genotyping of Francisella tularensis, the causative agent of tularemia. J AOAC Int. 2010;93(6):1930–43.

    CAS  PubMed  Google Scholar 

  4. Farlow J, Wagner DM, Dukerich M, Stanley M, Chu M, Kubota K, et al. Francisella tularensis in the United States. Emerg Infect Dis. 2005;11(12):1835–41. https://doi.org/10.3201/eid1112.050728.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Staples JE, Kubota KA, Chalcraft LG, Mead PS, Petersen JM. Epidemiologic and molecular analysis of human tularemia, United States, 1964-2004. Emerg Infect Dis. 2006;12(7):1113–8. https://doi.org/10.3201/eid1207.051504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kugeler KJ, Mead PS, Janusz AM, Staples JE, Kubota KA, Chalcraft LG, et al. Molecular epidemiology of Francisella tularensis in the United States. Clin Infect Dis. 2009;48(7):863–70. https://doi.org/10.1086/597261.

    Article  CAS  PubMed  Google Scholar 

  7. Vogler AJ, Birdsell D, Price LB, Bowers JR, Beckstrom-Sternberg SM, Auerbach RK, et al. Phylogeography of Francisella tularensis: global expansion of a highly fit clone. J Bacteriol. 2009;191(8):2474–84. https://doi.org/10.1128/JB.01786-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Karlsson E, Svensson K, Lindgren P, Byström M, Sjodin A, Forsman M, et al. The phylogeographic pattern of Francisella tularensis in Sweden indicates a Scandinavian origin of Eurosiberian tularaemia. Environ Microbiol. 2013;15(2):634–45. https://doi.org/10.1111/1462-2920.12052.

    Article  PubMed  Google Scholar 

  9. Svensson K, Granberg M, Karlsson L, Neubauerova V, Forsman M, Johansson AA. Real-time PCR array for hierarchical identification of Francisella isolates. PLoS One. 2009;4(12):e8360. https://doi.org/10.1371/journal.pone.0008360.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Eden JS, Rose K, Ng J, Shi M, Wang Q, Sintchenko V, et al. Francisella tularensis ssp. holarctica in ringtail possums, Australia. Emerg Infect Dis. 2017;23(7):1198–201. https://doi.org/10.3201/eid2307.161863.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Molins CR, Delorey MJ, Yockey BM, Young JW, Sheldon SW, Reese SM, et al. Virulence differences among Francisella tularensis subsp. tularensis clades in mice. PLoS One. 2010;5(4):e10205. https://doi.org/10.1371/journal.pone.0010205.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hopla CE. The ecology of tularemia. Adv Vet Sci Comp Med. 1974;18(0):25–53.

    CAS  PubMed  Google Scholar 

  13. Mörner T. The ecology of tularaemia. Rev Sci Tech. 1992;11(4):1123–30. https://doi.org/10.20506/rst.11.4.657.

    Article  PubMed  Google Scholar 

  14. Foley JE, Nieto NC. Tularemia. Vet Microbiol. 2010;140(3–4):332–8. https://doi.org/10.1016/j.vetmic.2009.07.017.

    Article  PubMed  Google Scholar 

  15. WHO. WHO guidelines of tularemia. Geneva: World Health Organization WHO; 2007.

    Google Scholar 

  16. Ellis J, Oyston PC, Green M, Titball RW. Tularemia. Clin Microbiol Rev. 2002;15(4):631–46. https://doi.org/10.1128/CMR.15.4.631-646.2002.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Tarnvik A, Berglund L. Tularaemia. Eur Respir J. 2003;21(2):361–73. https://doi.org/10.1183/09031936.03.00088903.

    Article  CAS  PubMed  Google Scholar 

  18. McCoy GW. A plague-like disease of rodents. Public Health Bulletin, Washington. 1911;43:53–71.

    Google Scholar 

  19. McCoy GW, Chapin CW. Further observations on a plague-like disease of rodents with a preliminary note on the causative agent, Bacterium tularense. J Infect Dis. 1912;10(1):61–72. https://doi.org/10.1093/infdis/10.1.61.

    Article  Google Scholar 

  20. Petersen JM, Mead PS, Schriefer ME. Francisella tularensis: an arthropod-borne pathogen. Vet Res. 2009;40(2):7. https://doi.org/10.1051/vetres:2008045.

    Article  PubMed  Google Scholar 

  21. Minelli A, Boxshall G, Fusco G. An introduction to the biology and evolution of arthropods. In: Minelli A, Boxshall G, Fusco G, editors. Arthropod biology and evolution: molecules, development, morphology. Berlin: Springer Berlin Heidelberg; 2013. p. 1–15.

    Google Scholar 

  22. Verwoerd DW. Definition of a vector and a vector-borne disease. Rev Sci Tech. 2015;34(1):29–39. https://doi.org/10.20506/rst.34.1.2343.

    Article  CAS  PubMed  Google Scholar 

  23. Goddard J. Dynamics of arthropod-borne diseases. In: Goddard J, editor. Infectious diseases and arthropods. Totowa: Humana Press; 2008. p. 19–28. https://doi.org/10.1007/978-1-60327-400-5_2.

    Chapter  Google Scholar 

  24. Garrett-Jones C. Prognosis for interruption of malaria transmission through assessment of the mosquito’s vectorial capacity. Nature. 1964;204(4964):1173–5. https://doi.org/10.1038/2041173a0.

    Article  CAS  PubMed  Google Scholar 

  25. Ribeiro JMC, Valenzuela JG. CHAPTER 8—vector biology A2—Guerrant, Richard L. In: Walker DH, Weller PF, editors. Tropical infectious diseases: principles, pathogens and practice. 3rd ed. Edinburgh: W.B. Saunders; 2011. p. 45–51. https://doi.org/10.1016/B978-0-7020-3935-5.00008-2.

    Chapter  Google Scholar 

  26. Brady OJ, Godfray HC, Tatem AJ, Gething PW, Cohen JM, McKenzie FE, et al. Vectorial capacity and vector control: reconsidering sensitivity to parameters for malaria elimination. Trans R Soc Trop Med Hyg. 2016;110(2):107–17. https://doi.org/10.1093/trstmh/trv113.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Johnson KN. The impact of Wolbachia on virus infection in mosquitoes. Viruses. 2015;7(11):5705–17. https://doi.org/10.3390/v7112903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Harris AF, McKemey AR, Nimmo D, Curtis Z, Black I, Morgan SA, et al. Successful suppression of a field mosquito population by sustained release of engineered male mosquitoes. Nat Biotechnol. 2012;30(9):828–30. https://doi.org/10.1038/nbt.2350.

    Article  CAS  PubMed  Google Scholar 

  29. Winskill P, Harris AF, Morgan SA, Stevenson J, Raduan N, Alphey L, et al. Genetic control of Aedes aegypti: data-driven modelling to assess the effect of releasing different life stages and the potential for long-term suppression. Parasit Vectors. 2014;7(1):68. https://doi.org/10.1186/1756-3305-7-68.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Reisen WK. Epidemiology. In: Marcondes CB, editor. Arthropod borne diseases. Cham: Springer International Publishing; 2017. p. 7–34.

    Google Scholar 

  31. Fine PEM. Vectors and vertical transmission: an epidemiological perspective. Ann N Y Acad Sci. 1975;266(1):173–94. https://doi.org/10.1111/j.1749-6632.1975.tb35099.x.

    Article  CAS  PubMed  Google Scholar 

  32. Klock LE, Olsen PF, Fukushima T. Tularemia epidemic associated with the deerfly. JAMA. 1973;226(2):149–52. https://doi.org/10.1001/jama.1973.03230020019005.

    Article  CAS  PubMed  Google Scholar 

  33. Kollars TM Jr, Oliver JH Jr, Durden LA, Kollars PG. Host association and seasonal activity of Amblyomma americanum (Acari: Ixodidae) in Missouri. J Parasitol. 2000;86(5):1156–9.

  34. Kollars TM Jr, Oliver JH Jr, Masters EJ, Kollars PG, Durden LA. Host utilization and seasonal occurrence of Dermacentor species (Acari:Ixodidae) in Missouri, USA. Exp Appl Acarol. 2000;24(8):631–43.

    Article  PubMed  Google Scholar 

  35. Eliasson H, Lindbäck J, Nuorti JP, Arneborn M, Giesecke J, Tegnell A. The 2000 tularemia outbreak: a case-control study of risk factors in disease-endemic and emergent areas, Sweden. Emerg Infect Dis. 2002;8(9):956–60. https://doi.org/10.3201/eid0809.020051.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Ryden P, Bjork R, Schafer ML, Lundstrom JO, Petersen B, Lindblom A, et al. Outbreaks of tularemia in a boreal forest region depends on mosquito prevalence. J Infect Dis. 2012;205(2):297–304. https://doi.org/10.1093/infdis/jir732.

    Article  PubMed  Google Scholar 

  37. Tärnvik A, Priebe HS, Grunow R. Tularaemia in Europe: an epidemiological overview. Scand J Infect Dis. 2004;36(5):350–5. https://doi.org/10.1080/00365540410020442.

    Article  PubMed  Google Scholar 

  38. Hubalek Z, Treml F, Halouzka J, Juricova Z, Hunady M, Janik V. Frequent isolation of Francisella tularensis from Dermacentor reticulatus ticks in an enzootic focus of tularaemia. Med Vet Entomol. 1996;10(3):241–6. https://doi.org/10.1111/j.1365-2915.1996.tb00737.x.

    Article  CAS  PubMed  Google Scholar 

  39. Hubálek Z, Juricová Z, Halouzka J. Francisella tularensis from ixodid ticks in Czechoslovakia. Folia Parasitol(Praha). 1990;37(3):255–60.

    Google Scholar 

  40. Hanke CA, Otten JE, Berner R, Serr A, Splettstoesser W, von Schnakenburg C. Ulceroglandular tularemia in a toddler in Germany after a mosquito bite. Eur J Pediatr. 2009;168(8):937–40. https://doi.org/10.1007/s00431-008-0862-3.

    Article  PubMed  Google Scholar 

  41. Telford SR 3rd, Goethert HK. Toward an understanding of the perpetuation of the agent of tularemia. Front Microbiol. 2010;1:150. https://doi.org/10.3389/fmicb.2010.00150.

    PubMed  Google Scholar 

  42. Mani RJ, Reichard MV, Morton RJ, Kocan KM, Clinkenbeard KD. Biology of Francisella tularensis subspecies holarctica live vaccine strain in the tick vector Dermacentor variabilis. PLoS One. 2012;7(4):e35441. https://doi.org/10.1371/journal.pone.0035441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. •• Mani RJ, Metcalf JA, Clinkenbeard KD. Amblyomma americanum as a bridging vector for human infection with Francisella tularensis. PLoS One. 2015;10(6):e0130513. https://doi.org/10.1371/journal.pone.0130513. Transmission infection model of F. tularensis in ticks.

    Article  PubMed  PubMed Central  Google Scholar 

  44. •• Genchi M, Prati P, Vicari N, Manfredini A, Sacchi L, Clementi E, et al. Francisella tularensis: no evidence for Transovarial transmission in the tularemia tick vectors Dermacentor reticulatus and Ixodes ricinus. PLoS One. 2015;10(8):e0133593. https://doi.org/10.1371/journal.pone.0133593. Study of transovarial transmission of F. tularensis in ticks.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Abd H, Johansson T, Golovliov I, Sandstrom G, Forsman M. Survival and growth of Francisella tularensis in Acanthamoeba castellanii. Appl Environ Microbiol. 2003;69(1):600–6. https://doi.org/10.1128/AEM.69.1.600-606.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Santic M, Ozanic M, Semic V, Pavokovic G, Mrvcic V, Kwaik YA. Intra-vacuolar proliferation of Francisella novicida within Hartmannella vermiformis. Front Microbiol. 2011;2:78. https://doi.org/10.3389/fmicb.2011.00078.

    Article  PubMed  PubMed Central  Google Scholar 

  47. El-Etr SH, Margolis JJ, Monack D, Robison RA, Cohen M, Moore E, et al. Francisella tularensis type A strains cause the rapid encystment of Acanthamoeba castellanii and survive in amoebal cysts for three weeks postinfection. Appl Environ Microbiol. 2009;75(23):7488–500. https://doi.org/10.1128/AEM.01829-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. White GB, Faust C. Appendix 4—medical acarology and entomology. Manson’s Tropical Infectious Diseases. 23rd ed. London: W.B. Saunders; 2014. p. 1258–72.e2.

    Book  Google Scholar 

  49. Nava S, Venzal JM, González-Acuña D, Martins TF, Guglielmone AA. Chapter 1—tick classification, external tick anatomy with a glossary, and biological cycles. In: Ticks of the Southern Cone of America. Cambridge: Academic Press; 2017. p. 1–23.

    Google Scholar 

  50. Reese SM, Dietrich G, Dolan MC, Sheldon SW, Piesman J, Petersen JM, et al. Transmission dynamics of Francisella tularensis subspecies and clades by nymphal Dermacentor variabilis (Acari: Ixodidae). Am J Trop Med Hyg. 2010;83(3):645–52. https://doi.org/10.4269/ajtmh.2010.10-0127.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Reese SM, Petersen JM, Sheldon SW, Dolan MC, Dietrich G, Piesman J, et al. Transmission efficiency of Francisella tularensis by adult American dog ticks (Acari: Ixodidae). J Med Entomol. 2011;48(4):884–90. https://doi.org/10.1603/ME11005.

    Article  PubMed  Google Scholar 

  52. • Coburn J, Maier T, Casey M, Padmore L, Sato H, Frank DW. Reproducible and quantitative model of infection of Dermacentor variabilis with the live vaccine strain of Francisella tularensis. Appl Environ Microbiol. 2015;81(1):386–95. https://doi.org/10.1128/AEM.02917-14. F. tularensis transmission study in ticks.

    Article  PubMed  Google Scholar 

  53. Hopla CE, Downs CM. The isolation of Bacterium tularensis from the tick Amblyomma americanum. J Kansas Entomol Soc. 1953;26:72–3.

    Google Scholar 

  54. Hopla CE. The transmission of tularemia organisms by ticks in the southern states. South Med J. 1960;53(1):92–7. https://doi.org/10.1097/00007611-196001000-00020.

    Article  CAS  PubMed  Google Scholar 

  55. Parker RR, Spencer RR, Francis E. Tularaemia infection in ticks of the species Dermacentor andersoni stiles in the Bitterroot Valley, Mont. Public Health Rep. 1924;39(19):1057–73. https://doi.org/10.2307/4577151.

    Article  Google Scholar 

  56. Petrov VG. Experimental study of Dermacentor marginatus Sulz. and Rhipicephalus rossicus Jak. et K. Jak. ticks as vectors of tularemia. J Parasitol. 1960;46(6):877–84. https://doi.org/10.2307/3275554.

    Article  CAS  PubMed  Google Scholar 

  57. Philip CB, Jellison WL. The American dog tick Dermacentor variabilis as a host of Bacterium tularense. Public Health Rep. 1934;49(12):386–92. https://doi.org/10.2307/4581119.

    Article  Google Scholar 

  58. Suzuki J, Hashino M, Matsumoto S, Takano A, Kawabata H, Takada N, et al. Detection of Francisella tularensis and analysis of bacterial growth in ticks in Japan. Lett Appl Microbiol. 2016;63(4):240–6. https://doi.org/10.1111/lam.12616.

    Article  CAS  PubMed  Google Scholar 

  59. Hopla CE. The multiplication of tularemia organisms in the lone star tick. Am J Hyg. 1955;61(3):371–80.

    CAS  PubMed  Google Scholar 

  60. Calhoun EL. Natural occurrence of tularemia in the lone star tick, Amblyomma americanus (Linn.), and in dogs in Arkansas. Am J Trop Med Hyg. 1954;3(2):360–6. https://doi.org/10.4269/ajtmh.1954.3.360.

    Article  CAS  PubMed  Google Scholar 

  61. Calhoun EL, Alford HI Jr. Incidence of tularemia and Rocky Mountain spotted fever among common ticks of Arkansas. Am J Trop Med Hyg. 1955;4(2):310–7. https://doi.org/10.4269/ajtmh.1955.4.310.

    Article  CAS  PubMed  Google Scholar 

  62. Goethert HK, Telford SR 3rd. Differential mortality of dog tick vectors due to infection by diverse Francisella tularensis tularensis genotypes. Vector Borne Zoonotic Dis. 2011;11(9):1263–8. https://doi.org/10.1089/vbz.2010.0237.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Goethert HK, Shani I, Telford SR III. Genotypic diversity of Francisella tularensis infecting Dermacentor variabilis ticks on Martha’s vineyard, Massachusetts. J Clin Microbiol. 2004;42(11):4968–73. https://doi.org/10.1128/JCM.42.11.4968-4973.2004.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Goethert HK, Telford SR III. Nonrandom distribution of vector ticks (Dermacentor variabilis) infected by Francisella tularensis. PLoS Pathog. 2009;5(2):e1000319. https://doi.org/10.1371/journal.ppat.1000319.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Merritt RW, Dadd RH, Walker ED. Feeding behavior, natural food, and nutritional relationships of larval mosquitoes. Annu Rev Entomol. 1992;37(1):349–76. https://doi.org/10.1146/annurev.en.37.010192.002025.

    Article  CAS  PubMed  Google Scholar 

  66. Eldridge BF. Chapter 172—mosquitoes A2—Resh, Vincent H. In: Cardé RT, editor. Encyclopedia of insects. 2nd ed. San Diego: Academic Press; 2009. p. 658–63. https://doi.org/10.1016/B978-0-12-374144-8.00181-8.

    Chapter  Google Scholar 

  67. Philip CB, Davis GE, Parker RR. Experimental transmission of tularemia by mosquitoes. Public Health Rep (1896–1970). 1932;47(43):2077–88. https://doi.org/10.2307/4580588.

    Article  Google Scholar 

  68. Lundstrom JO, Andersson AC, Backman S, Schafer ML, Forsman M, Thelaus J. Transstadial transmission of Francisella tularensis holarctica in mosquitoes, Sweden. Emerg Infect Dis. 2011;17(5):794–9. https://doi.org/10.3201/eid1705.100426.

    Article  PubMed  PubMed Central  Google Scholar 

  69. •• Thelaus J, Andersson A, Broman T, Backman S, Granberg M, Karlsson L, et al. Francisella tularensis subspecies holarctica occurs in Swedish mosquitoes, persists through the developmental stages of laboratory-infected mosquitoes and is transmissible during blood feeding. Microb Ecol. 2014;67(1):96–107. https://doi.org/10.1007/s00248-013-0285-1. Screening of caught wild mosquitos and F. tularensis transmission study in laboratory mosquitos.

    Article  CAS  PubMed  Google Scholar 

  70. •• Backman S, Naslund J, Forsman M, Thelaus J. Transmission of tularemia from a water source by transstadial maintenance in a mosquito vector. Sci Rep. 2015;5(1):7793. https://doi.org/10.1038/srep07793. F. tularensis transmission study in mosquitos.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Mahajan UV, Gravgaard J, Turnbull M, Jacobs DB, McNealy TL. Larval exposure to Francisella tularensis LVS affects fitness of the mosquito Culex quinquefasciatus. FEMS Microbiol Ecol. 2011;78(3):520–30. https://doi.org/10.1111/j.1574-6941.2011.01182.x.

    Article  CAS  PubMed  Google Scholar 

  72. Kenney A, Cusick A, Payne J, Gaughenbaugh A, Renshaw A, Wright J, et al. The potential for flower nectar to allow mosquito to mosquito transmission of Francisella tularensis. PLoS One. 2017;12(5):e0175157. https://doi.org/10.1371/journal.pone.0175157.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Triebenbach AN, Vogl SJ, Lotspeich-Cole L, Sikes DS, Happ GM, Hueffer K. Detection of Francisella tularensis in Alaskan mosquitoes (Diptera: Culicidae) and assessment of a laboratory model for transmission. J Med Entomol. 2010;47(4):639–48. https://doi.org/10.1093/jmedent/47.4.639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Reif KE, Palmer GH, Crowder DW, Ueti MW, Noh SM. Restriction of Francisella novicida genetic diversity during infection of the vector midgut. PLoS Pathog. 2014;10(10):e1004499. https://doi.org/10.1371/journal.ppat.1004499.

    Article  PubMed  PubMed Central  Google Scholar 

  75. •• Bonnet SI, Binetruy F, Hernandez-Jarguin AM, Duron O. The tick microbiome: why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front Cell Infect Microbiol. 2017;7:236. https://doi.org/10.3389/fcimb.2017.00236. Review about microbiome research in ticks.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Carpi G, Cagnacci F, Wittekindt NE, Zhao F, Qi J, Tomsho LP, et al. Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS One. 2011;6(10):e25604. https://doi.org/10.1371/journal.pone.0025604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Vayssier-Taussat M, Moutailler S, Michelet L, Devillers E, Bonnet S, Cheval J, et al. Next generation sequencing uncovers unexpected bacterial pathogens in ticks in western Europe. PLoS One. 2013;8(11):e81439. https://doi.org/10.1371/journal.pone.0081439.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lawrence AL, Hii SF, Chong R, Webb CE, Traub R, Brown G, Šlapeta J. Evaluation of the bacterial microbiome of two flea species using different DNA-isolation techniques provides insights into flea host ecology. FEMS Microbiol Ecol. 2015;91(12). https://doi.org/10.1093/femsec/fiv134.

  79. Pornwiroon W, Kearney MT, Husseneder C, Foil LD, Macaluso KR. Comparative microbiota of Rickettsia felis-uninfected and -infected colonized cat fleas, Ctenocephalides felis. ISME J. 2007;1(5):394–402. https://doi.org/10.1038/ismej.2007.38.

    Article  CAS  PubMed  Google Scholar 

  80. Duguma D, Hall MW, Smartt CT, Neufeld JD. Temporal variations of microbiota associated with the immature stages of two Florida Culex Mosquito vectors. Microb Ecol. 2017;74(4):979–89. https://doi.org/10.1007/s00248-017-0988-9.

    Article  PubMed  Google Scholar 

  81. Muturi EJ, Kim CH, Bara J, Bach EM, Siddappaji MH. Culex pipiens and Culex restuans mosquitoes harbor distinct microbiota dominated by few bacterial taxa. Parasit Vectors. 2016;9(1):18. https://doi.org/10.1186/s13071-016-1299-6.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Steiner FE, Pinger RR, Vann CN, Grindle N, Civitello D, Clay K, et al. Infection and co-infection rates of Anaplasma phagocytophilum variants, Babesia spp., Borrelia burgdorferi, and the rickettsial endosymbiont in Ixodes scapularis (Acari: Ixodidae) from sites in Indiana, Maine, Pennsylvania, and Wisconsin. J Med Entomol. 2008;45(2):289–97. https://doi.org/10.1093/jmedent/45.2.289.

    Article  CAS  PubMed  Google Scholar 

  83. Abraham NM, Liu L, Jutras BL, Yadav AK, Narasimhan S, Gopalakrishnan V, et al. Pathogen-mediated manipulation of arthropod microbiota to promote infection. Proc Natl Acad Sci U S A. 2017;114(5):E781–E90. https://doi.org/10.1073/pnas.1613422114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Current work performed by Paola Pilo and related to Francisella tularensis is supported by the Swiss Federal Office for the Environment (contract number 15.0023.KP/O234-1291).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Pilo.

Ethics declarations

Conflict of Interest

The author declares that she has no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the author.

Additional information

This article is part of the Topical Collection on Bacteriology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pilo, P. Arthropod Infection Models for Francisella tularensis. Curr Clin Micro Rpt 5, 10–17 (2018). https://doi.org/10.1007/s40588-018-0084-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-018-0084-z

Keywords

Navigation