Skip to main content

Advertisement

Log in

Arbovirus Adaptation: Roles in Transmission and Emergence

  • Virology (A Nicola, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Arthropod-borne viruses (arboviruses) comprise a diverse group of clinically and economically relevant animal and plant pathogens. These unique pathogens must cycle through very disparate environments and thus arboviruses must rapidly evolve and adapt to maintain a successful infectious lifecycle. In this review, we highlight natural adaptation events as well as efforts to proactively study arbovirus adaptation in the laboratory.

Recent Findings

Natural adaptation events, in both viral protein and RNA elements, have led to outbreaks and epidemics of important human pathogens. In addition, numerous studies in the laboratory have added to our understanding of how arboviruses evolve to vectors, hosts, and external pressures.

Summary

Arboviruses rapidly adapt to their ever-changing environments. Studies retrospective to disease outbreaks as well as proactive studies understanding how arboviruses evolve have shed light on how arboviruses adapt during the course of a complete lifecycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hubalek Z, Rudolf I, Nowotny N. Arboviruses pathogenic for domestic and wild animals. Adv Virus Res. 2014;89:201–75.

    Article  CAS  PubMed  Google Scholar 

  2. Weaver SC, Reisen WK. Present and future arboviral threats. Antivir Res. 2010;85(2):328–45.

    Article  CAS  PubMed  Google Scholar 

  3. Weaver SC, et al. Alphaviruses: population genetics and determinants of emergence. Antivir Res. 2012;94(3):242–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Harris E, et al. Molecular biology of flaviviruses. Novartis Found Symp. 2006;277:23–39. discussion 40, 71–3, 251–3

    Article  CAS  PubMed  Google Scholar 

  5. Gould EA, Solomon T. Pathogenic flaviviruses. Lancet. 2008;371(9611):500–9.

    Article  CAS  PubMed  Google Scholar 

  6. Soldan SS, Gonzalez-Scarano F. Emerging infectious diseases: the Bunyaviridae. J Neurovirol. 2005;11(5):412–23.

    Article  PubMed  Google Scholar 

  7. Kuzmin IV, et al. The rhabdoviruses: biodiversity, phylogenetics, and evolution. Infect Genet Evol. 2009;9(4):541–53.

    Article  CAS  PubMed  Google Scholar 

  8. Silverstein SC, Christman JK, Acs G. The reovirus replicative cycle. Annu Rev Biochem. 1976;45:375–408.

    Article  CAS  PubMed  Google Scholar 

  9. Jones LD, et al. Reassortment of Thogoto virus (a tick-borne influenza-like virus) in a vertebrate host. J Gen Virol. 1987;68(Pt 5):1299–306.

    Article  PubMed  Google Scholar 

  10. Dixon LK, et al. African swine fever virus replication and genomics. Virus Res. 2013;173(1):3–14.

    Article  CAS  PubMed  Google Scholar 

  11. Lauring AS, Andino R. Quasispecies theory and the behavior of RNA viruses. PLoS Pathog. 2010;6(7):e1001005.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Eigen M. Viral quasispecies. Sci Am. 1993;269(1):42–9.

    Article  CAS  PubMed  Google Scholar 

  13. Grubaugh ND, Ebel GD. Dynamics of West Nile virus evolution in mosquito vectors. Curr Opin Virol. 2016;21:132–8.

    Article  PubMed  Google Scholar 

  14. Drake JW, Holland JJ. Mutation rates among RNA viruses. Proc Natl Acad Sci U S A. 1999;96(24):13910–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Duffy S, Shackelton LA, Holmes EC. Rates of evolutionary change in viruses: patterns and determinants. Nat Rev Genet. 2008;9(4):267–76.

    Article  CAS  PubMed  Google Scholar 

  16. Coffey LL, et al. Factors shaping the adaptive landscape for arboviruses: implications for the emergence of disease. Future Microbiol. 2013;8(2):155–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Weaver SC. Evolutionary influences in arboviral disease. Curr Top Microbiol Immunol. 2006;299:285–314.

    CAS  PubMed  Google Scholar 

  18. Weaver SC, Barrett AD. Transmission cycles, host range, evolution and emergence of arboviral disease. Nat Rev Microbiol. 2004;2(10):789–801.

    Article  CAS  PubMed  Google Scholar 

  19. Suhrbier A, Jaffar-Bandjee MC, Gasque P. Arthritogenic alphaviruses—an overview. Nat Rev Rheumatol. 2012;8(7):420–9.

    Article  CAS  PubMed  Google Scholar 

  20. Caglioti C, et al. Chikungunya virus infection: an overview. New Microbiol. 2013;36(3):211–27.

    PubMed  Google Scholar 

  21. Powers AM, et al. Re-emergence of chikungunya and O’nyong-nyong viruses: evidence for distinct geographical lineages and distant evolutionary relationships. J Gen Virol. 2000;81(Pt 2):471–9.

    Article  CAS  PubMed  Google Scholar 

  22. Leparc-Goffart I, et al. Chikungunya in the Americas. Lancet. 2014;383(9916):514.

    Article  PubMed  Google Scholar 

  23. Ramachandran V, et al. Persistent arthralgia among chikungunya patients and associated risk factors in Chennai, South India. J Postgrad Med. 2014;60(1):3–6.

    Article  CAS  PubMed  Google Scholar 

  24. Strauss JH, Strauss EG. The alphaviruses: gene expression, replication, and evolution. Microbiol Rev. 1994;58(3):491–562.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Stapleford KA, Moratorio G, Vignuzzi M. Genetic diversity of arboviruses. Arboviruses: molecular biology, evolution and control, 2016: p. 121–134.

  26. Rozen-Gagnon K, et al. Alphavirus mutator variants present host-specific defects and attenuation in mammalian and insect models. PLoS Pathog. 2014;10(1):e1003877.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Coffey LL, et al. Arbovirus high fidelity variant loses fitness in mosquitoes and mice. Proc Natl Acad Sci U S A. 2011;108(38):16038–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tsetsarkin KA, et al. Chikungunya virus: evolution and genetic determinants of emergence. Curr Opin Virol. 2011;1(4):310–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ng LC, Hapuarachchi HC. Tracing the path of chikungunya virus—evolution and adaptation. Infect Genet Evol. 2010;10(7):876–85.

    Article  PubMed  Google Scholar 

  30. Schuffenecker I, et al. Genome microevolution of chikungunya viruses causing the Indian Ocean outbreak. PLoS Med. 2006;3(7):e263.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Rezza G, et al. Infection with chikungunya virus in Italy: an outbreak in a temperate region. Lancet. 2007;370(9602):1840–6.

    Article  CAS  PubMed  Google Scholar 

  32. Grandadam M, et al. Chikungunya virus, southeastern France. Emerg Infect Dis. 2011;17(5):910–3.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Amraoui F, Failloux AB. Chikungunya: an unexpected emergence in Europe. Curr Opin Virol. 2016;21:146–50.

    Article  PubMed  Google Scholar 

  34. Arias-Goeta C, et al. Chikungunya virus adaptation to a mosquito vector correlates with only few point mutations in the viral envelope glycoprotein. Infect Genet Evol. 2014;24:116–26.

    Article  CAS  PubMed  Google Scholar 

  35. Tsetsarkin KA, et al. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007;3(12):e201.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tsetsarkin KA, McGee CE, Higgs S. Chikungunya virus adaptation to Aedes albopictus mosquitoes does not correlate with acquisition of cholesterol dependence or decreased pH threshold for fusion reaction. Virol J. 2011;8:376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tsetsarkin KA, et al. Epistatic roles of E2 glycoprotein mutations in adaption of chikungunya virus to Aedes albopictus and Ae. aegypti mosquitoes. PLoS One. 2009;4(8):e6835.

    Article  PubMed  PubMed Central  Google Scholar 

  38. • Tsetsarkin KA, et al. Multi-peaked adaptive landscape for chikungunya virus evolution predicts continued fitness optimization in Aedes albopictus mosquitoes. Nat Commun. 2014;5:4084. This study began to defined the adaptation landscape of chikungunya virus and provided novel determinants of where chikungunya could evolve.

    Article  CAS  PubMed  Google Scholar 

  39. Weaver SC, et al. Venezuelan equine encephalitis. Annu Rev Entomol. 2004;49:141–74.

    Article  CAS  PubMed  Google Scholar 

  40. Zacks MA, Paessler S. Encephalitic alphaviruses. Vet Microbiol. 2010;140(3–4):281–6.

    Article  CAS  PubMed  Google Scholar 

  41. Wang E, et al. Virulence and viremia characteristics of 1992 epizootic subtype IC Venezuelan equine encephalitis viruses and closely related enzootic subtype ID strains. Am J Trop Med Hyg. 2001;65(1):64–9.

    Article  CAS  PubMed  Google Scholar 

  42. Walton TE, et al. Experimental infection of horses with enzootic and epizootic strains of Venezuelan equine encephalomyelitis virus. J Infect Dis. 1973;128(3):271–82.

    Article  CAS  PubMed  Google Scholar 

  43. Brault AC, et al. Positively charged amino acid substitutions in the e2 envelope glycoprotein are associated with the emergence of Venezuelan equine encephalitis virus. J Virol. 2002;76(4):1718–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sudia WD, et al. Epidemic Venezuelan equine encephalitis in North America in 1971: vector studies. Am J Epidemiol. 1975;101(1):17–35.

    Article  CAS  PubMed  Google Scholar 

  45. Kramer LD, Scherer WF. Vector competence of mosquitoes as a marker to distinguish Central American and Mexican epizootic from enzootic strains of Venezuelan encephalitis virus. Am J Trop Med Hyg. 1976;25(2):336–46.

    Article  CAS  PubMed  Google Scholar 

  46. Brault AC, et al. Venezuelan equine encephalitis emergence: enhanced vector infection from a single amino acid substitution in the envelope glycoprotein. Proc Natl Acad Sci U S A. 2004;101(31):11344–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Davis LE, Beckham JD, Tyler KL. North American encephalitic arboviruses. Neurol Clin. 2008;26(3):727–57. ix

    Article  PubMed  PubMed Central  Google Scholar 

  48. Brinton MA. The molecular biology of West Nile virus: a new invader of the western hemisphere. Annu Rev Microbiol. 2002;56:371–402.

    Article  CAS  PubMed  Google Scholar 

  49. Kramer LD, Styer LM, Ebel GD. A global perspective on the epidemiology of West Nile virus. Annu Rev Entomol. 2008;53:61–81.

    Article  CAS  PubMed  Google Scholar 

  50. McMullen AR, et al. Evolution of new genotype of West Nile virus in North America. Emerg Infect Dis. 2011;17(5):785–93.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ebel GD, et al. Genetic and phenotypic variation of West Nile virus in New York, 2000-2003. Am J Trop Med Hyg. 2004;71(4):493–500.

    CAS  PubMed  Google Scholar 

  52. Moudy RM, et al. A newly emergent genotype of West Nile virus is transmitted earlier and more efficiently by Culex mosquitoes. Am J Trop Med Hyg. 2007;77(2):365–70.

    CAS  PubMed  Google Scholar 

  53. Brault AC, et al. A single positively selected West Nile viral mutation confers increased virogenesis in American crows. Nat Genet. 2007;39(9):1162–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Schuessler A, et al. West Nile virus noncoding subgenomic RNA contributes to viral evasion of the type I interferon-mediated antiviral response. J Virol. 2012;86(10):5708–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pijlman GP, et al. A highly structured, nuclease-resistant, noncoding RNA produced by flaviviruses is required for pathogenicity. Cell Host Microbe. 2008;4(6):579–91.

    Article  CAS  PubMed  Google Scholar 

  56. Goertz GP, et al. Noncoding subgenomic flavivirus RNA is processed by the mosquito RNA interference machinery and determines West Nile virus transmission by Culex pipiens mosquitoes. J Virol. 2016;90(22):10145–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Chen R, et al. Chikungunya virus 3′ untranslated region: adaptation to mosquitoes and a population bottleneck as major evolutionary forces. PLoS Pathog. 2013;9(8):e1003591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Filomatori CV, et al. Dengue virus genomic variation associated with mosquito adaptation defines the pattern of viral non-coding RNAs and fitness in human cells. PLoS Pathog. 2017;13(3):e1006265.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Villordo SM, et al. Dengue virus RNA structure specialization facilitates host adaptation. PLoS Pathog. 2015;11(1):e1004604.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Villordo SM, et al. RNA structure duplications and flavivirus host adaptation. Trends Microbiol. 2016;24(4):270–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hyde JL, et al. The 5′ and 3′ ends of alphavirus RNAs–non-coding is not non-functional. Virus Res. 2015;206:99–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Trobaugh DW, et al. RNA viruses can hijack vertebrate microRNAs to suppress innate immunity. Nature. 2014;506(7487):245–8.

    Article  CAS  PubMed  Google Scholar 

  63. Chikungunya—coming to America. Lancet, 2014. 383(9916): p. 488.

  64. Stapleford KA, et al. Whole-genome sequencing analysis from the chikungunya virus Caribbean outbreak reveals novel evolutionary genomic elements. PLoS Negl Trop Dis. 2016;10(1):e0004402.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chen R, et al. Comprehensive genome scale phylogenetic study provides new insights on the global expansion of chikungunya virus. J Virol. 2016;90(23):10600–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Gritsun TS, Gould EA. Direct repeats in the flavivirus 3′ untranslated region; a strategy for survival in the environment? Virology. 2007;358(2):258–65.

    Article  CAS  PubMed  Google Scholar 

  67. Gritsun TS, Gould EA. Origin and evolution of 3′UTR of flaviviruses: long direct repeats as a basis for the formation of secondary structures and their significance for virus transmission. Adv Virus Res. 2007;69:203–48.

    Article  CAS  PubMed  Google Scholar 

  68. Khromykh AA, et al. Essential role of cyclization sequences in flavivirus RNA replication. J Virol. 2001;75(14):6719–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wallner G, et al. The flavivirus 3′-noncoding region: extensive size heterogeneity independent of evolutionary relationships among strains of tick-borne encephalitis virus. Virology. 1995;213(1):169–78.

    Article  CAS  PubMed  Google Scholar 

  70. Chapman EG, et al. The structural basis of pathogenic subgenomic flavivirus RNA (sfRNA) production. Science. 2014;344(6181):307–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Urosevic N, et al. Molecular characterization of virus-specific RNA produced in the brains of flavivirus-susceptible and -resistant mice after challenge with Murray Valley encephalitis virus. J Gen Virol. 1997;78(Pt 1):23–9.

    Article  CAS  PubMed  Google Scholar 

  72. Lin KC, Chang HL, Chang RY. Accumulation of a 3′-terminal genome fragment in Japanese encephalitis virus-infected mammalian and mosquito cells. J Virol. 2004;78(10):5133–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Akiyama BM, et al. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science. 2016;354(6316):1148–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bavia L, et al. A glance at subgenomic flavivirus RNAs and microRNAs in flavivirus infections. Virol J. 2016;13:84.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Moon SL, et al. Flavivirus sfRNA suppresses antiviral RNA interference in cultured cells and mosquitoes and directly interacts with the RNAi machinery. Virology. 2015;485:322–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Weger-Lucarelli J, et al. Development and characterization of recombinant virus generated from a New World zika virus infectious clone. J Virol. 2017;91(1):e01765.

    Article  CAS  PubMed  Google Scholar 

  77. Tsetsarkin KA, et al. A full-length infectious cDNA Clone of Zika Virus from the 2015 Epidemic in Brazil as a genetic platform for studies of virus-host interactions and vaccine development. MBio, 2016. 7(4):e01114.

  78. Shan C, et al. An infectious cDNA Clone of Zika virus to study viral virulence, mosquito transmission, and antiviral inhibitors. Cell Host Microbe. 2016;19(6):891–900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Reynolds ES, Hart ChE, Hermance ME, Brining DL and E. Saravanan Thangamani An overview of animal models for arthropod-borne viruses. Comp Med. 2017.

  80. Morrison TE, Diamond MS. Animal models of zika virus infection, pathogenesis, and immunity. J Virol. 2017;91(8):e00009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Stapleford KA, et al. Emergence and transmission of arbovirus evolutionary intermediates with epidemic potential. Cell Host Microbe. 2014;15(6):706–16.

    Article  CAS  PubMed  Google Scholar 

  82. Coffey LL, et al. Enhanced arbovirus surveillance with deep sequencing: identification of novel rhabdoviruses and bunyaviruses in Australian mosquitoes. Virology. 2014;448:146–58.

    Article  CAS  PubMed  Google Scholar 

  83. • Grubaugh ND, et al. Genetic drift during systemic arbovirus infection of mosquito vectors leads to decreased relative fitness during host switching. Cell Host Microbe. 2016;19(4):481–92. This work laid out a deep-sequencing and bioinformatic system for the detailed study of West Nile adaptation in mosqutioes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Coffey LL, et al. Arbovirus evolution in vivo is constrained by host alternation. Proc Natl Acad Sci U S A. 2008;105(19):6970–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Ciota AT, Kramer LD. Insights into arbovirus evolution and adaptation from experimental studies. Viruses. 2010;2(12):2594–617.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Griesemer SB, et al. Mutagen resistance and mutation restriction of St. Louis encephalitis virus. J Gen Virol. 2016;98:201–11.

    Google Scholar 

  87. Goo L, et al. A single mutation in the envelope protein modulates flavivirus antigenicity, stability, and pathogenesis. PLoS Pathog. 2017;13(2):e1006178.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Nuttall PA, et al. Adaptations of arboviruses to ticks. J Med Entomol. 1994;31(1):1–9.

    Article  CAS  PubMed  Google Scholar 

  89. Lukashev AN. Evidence for recombination in Crimean-Congo hemorrhagic fever virus. J Gen Virol. 2005;86(Pt 8):2333–8.

    Article  CAS  PubMed  Google Scholar 

  90. Weaver SC, et al. Recombinational history and molecular evolution of western equine encephalomyelitis complex alphaviruses. J Virol. 1997;71(1):613–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Reese SM, et al. Potential for La Crosse virus segment reassortment in nature. Virol J. 2008;5:164.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Shaw AE, et al. Reassortment between two serologically unrelated bluetongue virus strains is flexible and can involve any genome segment. J Virol. 2013;87(1):543–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang H, et al. Analysis of synonymous codon usage bias of Zika virus and its adaption to the hosts. PLoS One. 2016;11(11):e0166260.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenneth A. Stapleford.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Virology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Webster, J.L., Stapleford, K.A. Arbovirus Adaptation: Roles in Transmission and Emergence. Curr Clin Micro Rpt 4, 159–166 (2017). https://doi.org/10.1007/s40588-017-0068-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-017-0068-4

Keywords

Navigation