Skip to main content

Advertisement

Log in

Microbiome: Its Impact Is Being Revealed!

  • Mycology (J Perfect, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Thriving microbiome research for the past few years is providing new insights into biological mechanisms guiding human health and/or disease states. In this review, we will highlight the recent literature providing further evidence for the central role that the microbiota plays in association with the human host.

Recent Findings

The host microbiota, both bacteria and fungi, with their collective genome (metagenome) and metabolites (metabolome) play a key role in health and disease states. We now have enough evidence that there are strong relationships and multidirectional interactions between the human host and the commensal bacterial, fungal, and viral inhabitants.

Summary

Microbiome research has been at the forefront of research as a potential future target for precision medicine with the development of novel diagnostic assays and treatment approaches. Ongoing investigations are still unraveling the mechanisms by which such organisms contribute to health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Chen Y, Zhao Y, Cheng Q, Wu D, Liu H. The Role of Intestinal Microbiota in Acute Graft- versus-Host Disease. Journal of immunology research. 2015;2015:145859.

    PubMed  PubMed Central  Google Scholar 

  2. Manzo VE, Bhatt AS. The human microbiome in hematopoiesis and hematologic disorders. Blood. 2015;126(3):311–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Arthur JC, Jobin C. The struggle within: microbial influences on colorectal cancer. Inflammatory bowel diseases. 2011;17(1):396–409.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Breban M. Gut microbiota and inflammatory joint diseases. Joint, bone, spine: revue du rhumatisme. 2016.

  5. Doycheva I, Leise MD, Watt KD. The Intestinal Microbiome and the Liver Transplant Recipient: What We Know and What We Need to Know. Transplantation. 2016;100(1):61–8.

    Article  CAS  PubMed  Google Scholar 

  6. Hsiao EY, McBride SW, Hsien S, Sharon G, Hyde ER, McCue T, et al. Microbiota modulate behavioral and physiological abnormalities associated with neurodevelopmental disorders. Cell. 2013;155(7):1451–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, et al. Alterations of the human gut microbiome in multiple sclerosis. Nature communications. 2016;7:12015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nallu A, Sharma S, Ramezani A, Muralidharan J, Raj D. Gut microbiome in chronic kidney disease: challenges and opportunities. Transl Res. 2016.

  9. Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, et al. A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature. 2012;490(7418):55–60.

    Article  CAS  PubMed  Google Scholar 

  10. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, et al. Alterations of the human gut microbiome in liver cirrhosis. Nature. 2014;513(7516):59–64.

    Article  CAS  PubMed  Google Scholar 

  11. Serrano-Villar S, Rojo D, Martinez-Martinez M, Deusch S, Vazquez-Castellanos JF, Sainz T, et al. HIV infection results in metabolic alterations in the gut microbiota different from those induced by other diseases. Scientific reports. 2016;6:26192.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Stefka AT, Feehley T, Tripathi P, Qiu J, McCoy K, Mazmanian SK, et al. Commensal bacteria protect against food allergen sensitization. Proceedings of the National Academy of Sciences of the United States of America. 2014;111(36):13145–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Suhr MJ, Banjara N, Hallen-Adams HE. Sequence-based methods for detecting and evaluating the human gut mycobiome. Letters in applied microbiology. 2016;62(3):209–15.

    Article  CAS  PubMed  Google Scholar 

  14. Zilberman-Schapira G, Zmora N, Itav S, Bashiardes S, Elinav H, Elinav E. The gut microbiome in human immunodeficiency virus infection. BMC medicine. 2016;14(1):83.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Vieira AT, Fukumori C, Ferreira CM. New insights into therapeutic strategies for gut microbiota modulation in inflammatory diseases. Clinical & translational immunology. 2016;5(6):e87.

    Article  Google Scholar 

  16. Levy M, Blacher E, Elinav E. Microbiome, metabolites and host immunity. Current opinion in microbiology. 2016;35:8–15.

    Article  PubMed  Google Scholar 

  17. •• Ghannoum MA, Jurevic RJ, Mukherjee PK, Cui F, Sikaroodi M, Naqvi A, et al. Characterization of the oral fungal microbiome (mycobiome) in healthy individuals. PLoS pathogens. 2010;6(1):e1000713. The authors used next generation sequencing approaches to characterize the oral fungal mycobiome in healthy individuals.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, et al. Topographic diversity of fungal and bacterial communities in human skin. Nature. 2013;498(7454):367–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Iliev ID, Funari VA, Taylor KD, Nguyen Q, Reyes CN, Strom SP, et al. Interactions between commensal fungi and the C-type lectin receptor Dectin-1 influence colitis. Science (New York). 2012;336(6086):1314–7.

    Article  CAS  Google Scholar 

  20. Mukherjee PK, Sendid B, Hoarau G, Colombel JF, Poulain D, Ghannoum MA. Mycobiota in gastrointestinal diseases. Nature reviews Gastroenterology & hepatology. 2015;12(2):77–87.

    Article  Google Scholar 

  21. Ostaff MJ, Stange EF, Wehkamp J. Antimicrobial peptides and gut microbiota in homeostasis and pathology. EMBO molecular medicine. 2013;5(10):1465–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Singh B, Qin N, Reid G. Microbiome Regulation of Autoimmune, Gut and Liver Associated Diseases. Inflammation & allergy drug targets. 2015;14(2):84–93.

    Article  CAS  Google Scholar 

  23. Suhr MJ, Hallen-Adams HE. The human gut mycobiome: pitfalls and potentials--a mycologist's perspective. Mycologia. 2015;107(6):1057–73.

    Article  CAS  PubMed  Google Scholar 

  24. •• Mukherjee PK, Chandra J, Retuerto M, Sikaroodi M, Brown RE, Jurevic R, et al. Oral mycobiome analysis of HIV-infected patients: identification of Pichia as an antagonist of opportunistic fungi. PLoS pathogens. 2014;10(3):e1003996. The authors identified an interaction amongst members of the oral fungal community through the secretion of a product that could also serve as a potential novel antifungal agent.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Brown RE, Ghannoum MA, Mukherjee PK, Gillevet PM, Sikaroodi M. Quorum-sensing dysbiotic shifts in the HIV-infected oral metabiome. PloS one. 2015;10(4):e0123880.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Lu H, Wu Z, Xu W, Yang J, Chen Y, Li L. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic patients. Microbial ecology. 2011;61(3):693–703.

    Article  PubMed  Google Scholar 

  27. Chen Y, Chen Z, Guo R, Chen N, Lu H, Huang S, et al. Correlation between gastrointestinal fungi and varying degrees of chronic hepatitis B virus infection. Diagnostic microbiology and infectious disease. 2011;70(4):492–8.

    Article  PubMed  Google Scholar 

  28. Dollive S, Chen YY, Grunberg S, Bittinger K, Hoffmann C, Vandivier L, et al. Fungi of the murine gut: episodic variation and proliferation during antibiotic treatment. PloS one. 2013;8(8):e71806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kelly CR, Khoruts A, Staley C, Sadowsky MJ, Abd M, Alani M, et al. Effect of Fecal Microbiota Transplantation on Recurrence in Multiply Recurrent Clostridium difficile Infection: A Randomized Trial. Annals of internal medicine. 2016;165(9):609–16.

    Article  PubMed  Google Scholar 

  30. Rohlke F, Surawicz CM, Stollman N. Fecal flora reconstitution for recurrent Clostridium difficile infection: results and methodology. Journal of clinical gastroenterology. 2010;44(8):567–70.

    Article  PubMed  Google Scholar 

  31. Young VB. Therapeutic manipulation of the microbiota: past, present, and considerations for the future. Clin Microbiol Infect. 2016.

  32. Jin Y, Wu Y, Zeng Z, Jin C, Wu S, Wang Y, et al. From the Cover: Exposure to Oral Antibiotics Induces Gut Microbiota Dysbiosis Associated with Lipid Metabolism Dysfunction and Low-Grade Inflammation in Mice. Toxicological sciences: an official journal of the Society of Toxicology. 2016;154(1):140–52.

    Article  CAS  Google Scholar 

  33. Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW, Zheng SS. Application of metagenomics in the human gut microbiome. World journal of gastroenterology. 2015;21(3):803–14.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Imhann F, Vich Vila A, Bonder MJ, Fu J, Gevers D, Visschedijk MC, et al. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut. 2016.

  35. •• Hoarau G, Mukherjee PK, Gower-Rousseau C, Hager C, Chandra J, Retuerto MA, et al. Bacteriome and Mycobiome Interactions Underscore Microbial Dysbiosis in Familial Crohn's Disease. mBio. 2016;7(5). The authors identify specific inter-kingdom correlations between bacteria and fungi in the gut microbiota using in vitro biofilms in Crohn’s Disease.

  36. Ghannoum M. Cooperative Evolutionary Strategy between the Bacteriome and Mycobiome. mBio. 2016;7(6).

  37. Zwolinska-Wcislo M, Brzozowski T, Budak A, Kwiecien S, Sliwowski Z, Drozdowicz D, et al. Effect of Candida colonization on human ulcerative colitis and the healing of inflammatory changes of the colon in the experimental model of colitis ulcerosa. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society. 2009;60(1):107–18.

    CAS  Google Scholar 

  38. Samuel S, Loftus Jr EV, Sandborn WJ. The effects of itraconazole on inflammatory bowel disease activity in patients treated for histoplasmosis. Alimentary pharmacology & therapeutics. 2010;32(9):1207–9.

    Article  CAS  Google Scholar 

  39. Ley RE, Backhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI. Obesity alters gut microbial ecology. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(31):11070–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Furet JP, Kong LC, Tap J, Poitou C, Basdevant A, Bouillot JL, et al. Differential adaptation of human gut microbiota to bariatric surgery-induced weight loss: links with metabolic and low- grade inflammation markers. Diabetes. 2010;59(12):3049–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al. Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring, Md). 2010;18(1):190–5.

    Article  Google Scholar 

  42. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen YY, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science (New York). 2011;334(6052):105–8.

    Article  CAS  Google Scholar 

  43. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE, et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–63.

    Article  CAS  PubMed  Google Scholar 

  44. Backhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, et al. The gut microbiota as an environmental factor that regulates fat storage. Proceedings of the National Academy of Sciences of the United States of America. 2004;101(44):15718–23.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science (New York). 2013;341(6150):1241214.

    Article  Google Scholar 

  46. Tilg H, Cani PD, Mayer EA. Gut microbiome and liver diseases. Gut. 2016.

  47. Burcelin R, Cani PD, Knauf C. Glucagon-like peptide-1 and energy homeostasis. The Journal of nutrition. 2007;137(11 Suppl):2534s–8s.

    CAS  PubMed  Google Scholar 

  48. Cani PD, Delzenne NM. Gut microflora as a target for energy and metabolic homeostasis. Current opinion in clinical nutrition and metabolic care. 2007;10(6):729–34.

    Article  PubMed  Google Scholar 

  49. Delzenne NM, Cani PD, Neyrinck AM. Modulation of glucagon-like peptide 1 and energy metabolism by inulin and oligofructose: experimental data. The Journal of nutrition. 2007;137(11 Suppl):2547s–51s.

    CAS  PubMed  Google Scholar 

  50. Pospisilik JA, Knauf C, Joza N, Benit P, Orthofer M, Cani PD, et al. Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell. 2007;131(3):476–91.

    Article  CAS  PubMed  Google Scholar 

  51. Stenman LK, Lehtinen MJ, Meland N, Christensen JE, Yeung N, Saarinen MT, et al. Probiotic With or Without Fiber Controls Body Fat Mass, Associated With Serum Zonulin, in Overweight and Obese Adults-Randomized Controlled Trial. EBioMedicine. 2016.

  52. Malik A, Sharma D, Zhu Q, Karki R, Guy CS, Vogel P, et al. IL-33 regulates the IgA- microbiota axis to restrain IL-1alpha-dependent colitis and tumorigenesis. J Clin Invest. 2016.

  53. Wang X, Yang Y, Huycke MM. Microbiome-driven carcinogenesis in colorectal cancer: models and mechanisms. Free Radic Biol Med. 2016.

  54. Coleman OI, Nunes T. Role of the Microbiota in Colorectal Cancer: Updates on Microbial Associations and Therapeutic Implications. BioResearch open access. 2016;5(1):279–88.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Yamamura K, Baba Y, Nakagawa S, Mima K, Miyake K, Nakamura K, et al. Human Microbiome Fusobacterium Nucleatum in Esophageal Cancer Tissue Is Associated with Prognosis. Clin Cancer Res. 2016.

  56. Michaud DS, Izard J, Wilhelm-Benartzi CS, You DH, Grote VA, Tjonneland A, et al. Plasma antibodies to oral bacteria and risk of pancreatic cancer in a large European prospective cohort study. Gut. 2013;62(12):1764–70.

    Article  PubMed  Google Scholar 

  57. Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2016.

  58. Florez AB, Sierra M, Ruas-Madiedo P, Mayo B. Susceptibility of lactic acid bacteria, bifidobacteria and other bacteria of intestinal origin to chemotherapeutic agents. International journal of antimicrobial agents. 2016;48(5):547–50.

    Article  CAS  PubMed  Google Scholar 

  59. Viaud S, Saccheri F, Mignot G, Yamazaki T, Daillere R, Hannani D, et al. The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science (New York). 2013;342(6161):971–6.

    Article  CAS  Google Scholar 

  60. Iida N, Dzutsev A, Stewart CA, Smith L, Bouladoux N, Weingarten RA, et al. Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment. Science (New York). 2013;342(6161):967–70.

    Article  CAS  Google Scholar 

  61. Kwa M, Plottel CS, Blaser MJ, Adams S. The Intestinal Microbiome and Estrogen Receptor-Positive Female Breast Cancer. J Natl Cancer Inst. 2016;108(8).

  62. Sivan A, Corrales L, Hubert N, Williams JB, Aquino-Michaels K, Earley ZM, et al. Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science (New York). 2015;350(6264):1084–9.

    Article  CAS  Google Scholar 

  63. Kawamoto S, Tran TH, Maruya M, Suzuki K, Doi Y, Tsutsui Y, et al. The inhibitory receptor PD-1 regulates IgA selection and bacterial composition in the gut. Science (New York). 2012;336(6080):485–9.

    Article  CAS  Google Scholar 

  64. Botticelli A, Zizzari I, Mazzuca F, Ascierto PA, Putignani L, Marchetti L, et al. Cross-talk between microbiota and immune fitness to steer and control response to anti PD-1/PDL-1 treatment. Oncotarget. 2016.

  65. Hooper LV, Littman DR, Macpherson AJ. Interactions between the microbiota and the immune system. Science (New York). 2012;336(6086):1268–73.

    Article  CAS  PubMed Central  Google Scholar 

  66. Atarashi K, Tanoue T, Ando M, Kamada N, Nagano Y, Narushima S, et al. Th17 Cell Induction by Adhesion of Microbes to Intestinal Epithelial Cells. Cell. 2015;163(2):367–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Atarashi K, Tanoue T, Shima T, Imaoka A, Kuwahara T, Momose Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science (New York). 2011;331(6015):337–41.

    Article  CAS  Google Scholar 

  68. Ivanov II, Atarashi K, Manel N, Brodie EL, Shima T, Karaoz U, et al. Induction of intestinal Th17 cells by segmented filamentous bacteria. Cell. 2009;139(3):485–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Jones L, Ho WQ, Ying S, Ramakrishna L, Srinivasan KG, Yurieva M, et al. A subpopulation of high IL-21-producing CD4(+) T cells in Peyer's Patches is induced by the microbiota and regulates germinal centers. Scientific reports. 2016;6:30784.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kawamoto S, Maruya M, Kato LM, Suda W, Atarashi K, Doi Y, et al. Foxp3(+) T cells regulate immunoglobulin a selection and facilitate diversification of bacterial species responsible for immune homeostasis. Immunity. 2014;41(1):152–65.

    Article  CAS  PubMed  Google Scholar 

  71. Nishio J, Baba M, Atarashi K, Tanoue T, Negishi H, Yanai H, et al. Requirement of full TCR repertoire for regulatory T cells to maintain intestinal homeostasis. Proceedings of the National Academy of Sciences of the United States of America. 2015;112(41):12770–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Ochi T, Feng Y, Kitamoto S, Nagao-Kitamoto H, Kuffa P, Atarashi K, et al. Diet-dependent, microbiota-independent regulation of IL-10-producing lamina propria macrophages in the small intestine. Scientific reports. 2016;6:27634.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ohnmacht C, Park JH, Cording S, Wing JB, Atarashi K, Obata Y, et al. MUCOSAL IMMUNOLOGY. The microbiota regulates type 2 immunity through RORgammat(+) T cells. Science (New York). 2015;349(6251):989–93.

    Article  CAS  Google Scholar 

  74. Penack O, Holler E, van den Brink MR. Graft-versus-host disease: regulation by microbe- associated molecules and innate immune receptors. Blood. 2010;115(10):1865–72.

    Article  CAS  PubMed  Google Scholar 

  75. Shlomchik WD. Graft-versus-host disease. Nature reviews Immunology. 2007;7(5):340–52.

    Article  CAS  PubMed  Google Scholar 

  76. Eriguchi Y, Nakamura K, Hashimoto D, Shimoda S, Shimono N, Akashi K, et al. Decreased secretion of Paneth cell alpha-defensins in graft-versus-host disease. Transplant infectious disease: an official journal of the Transplantation Society. 2015;17(5):702–6.

    Article  CAS  Google Scholar 

  77. Levine JE, Huber E, Hammer ST, Harris AC, Greenson JK, Braun TM, et al. Low Paneth cell numbers at onset of gastrointestinal graft-versus-host disease identify patients at high risk for nonrelapse mortality. Blood. 2013;122(8):1505–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Schroeder BO, Ehmann D, Precht JC, Castillo PA, Kuchler R, Berger J, et al. Paneth cell alpha-defensin 6 (HD-6) is an antimicrobial peptide. Mucosal immunology. 2015;8(3):661–71.

    Article  CAS  PubMed  Google Scholar 

  79. Ferrara JL, Harris AC, Greenson JK, Braun TM, Holler E, Teshima T, et al. Regenerating islet-derived 3-alpha is a biomarker of gastrointestinal graft-versus-host disease. Blood. 2011;118(25):6702–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Buckner CD, Clift RA, Sanders JE, Meyers JD, Counts GW, Farewell VT, et al. Protective environment for marrow transplant recipients: a prospective study. Annals of internal medicine. 1978;89(6):893–901.

    Article  CAS  PubMed  Google Scholar 

  81. Storb R, Prentice RL, Buckner CD, Clift RA, Appelbaum F, Deeg J, et al. Graft-versus-host disease and survival in patients with aplastic anemia treated by marrow grafts from HLA- identical siblings. Beneficial effect of a protective environment. The New England journal of medicine. 1983;308(6):302–7.

    Article  CAS  PubMed  Google Scholar 

  82. Vossen JM, Heidt PJ, van den Berg H, Gerritsen EJ, Hermans J, Dooren LJ. Prevention of infection and graft-versus-host disease by suppression of intestinal microflora in children treated with allogeneic bone marrow transplantation. European journal of clinical microbiology & infectious diseases: official publication of the European Society of Clinical Microbiology. 1990;9(1):14–23.

    Article  CAS  Google Scholar 

  83. Beelen DW, Haralambie E, Brandt H, Linzenmeier G, Muller KD, Quabeck K, et al. Evidence that sustained growth suppression of intestinal anaerobic bacteria reduces the risk of acute graft-versus-host disease after sibling marrow transplantation. Blood. 1992;80(10):2668–76.

    CAS  PubMed  Google Scholar 

  84. Beelen DW, Elmaagacli A, Muller KD, Hirche H, Schaefer UW. Influence of intestinal bacterial decontamination using metronidazole and ciprofloxacin or ciprofloxacin alone on the development of acute graft-versus-host disease after marrow transplantation in patients with hematologic malignancies: final results and long-term follow-up of an open-label prospective randomized trial. Blood. 1999;93(10):3267–75.

    CAS  PubMed  Google Scholar 

  85. Vossen JM, Guiot HF, Lankester AC, Vossen AC, Bredius RG, Wolterbeek R, et al. Complete suppression of the gut microbiome prevents acute graft-versus-host disease following allogeneic bone marrow transplantation. PloS one. 2014;9(9):e105706.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Taur Y, Jenq RR, Perales MA, Littmann ER, Morjaria S, Ling L, et al. The effects of intestinal tract bacterial diversity on mortality following allogeneic hematopoietic stem cell transplantation. Blood. 2014;124(7):1174–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Taur Y, Xavier JB, Lipuma L, Ubeda C, Goldberg J, Gobourne A, et al. Intestinal domination and the risk of bacteremia in patients undergoing allogeneic hematopoietic stem cell transplantation. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 2012;55(7):905–14.

    Article  CAS  Google Scholar 

  88. Jenq RR, Ubeda C, Taur Y, Menezes CC, Khanin R, Dudakov JA, et al. Regulation of intestinal inflammation by microbiota following allogeneic bone marrow transplantation. The Journal of experimental medicine. 2012;209(5):903–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Holler E, Butzhammer P, Schmid K, Hundsrucker C, Koestler J, Peter K, et al. Metagenomic analysis of the stool microbiome in patients receiving allogeneic stem cell transplantation: loss of diversity is associated with use of systemic antibiotics and more pronounced in gastrointestinal graft-versus-host disease. Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation. 2014;20(5):640–5.

    Article  Google Scholar 

  90. Weber D, Oefner PJ, Hiergeist A, Koestler J, Gessner A, Weber M, et al. Low urinary indoxyl sulfate levels early after transplantation reflect a disrupted microbiome and are associated with poor outcome. Blood. 2015;126(14):1723–8.

    Article  CAS  PubMed  Google Scholar 

  91. Collins MD, Lawson PA, Willems A, Cordoba JJ, Fernandez-Garayzabal J, Garcia P, et al. The phylogeny of the genus Clostridium: proposal of five new genera and eleven new species combinations. International journal of systematic bacteriology. 1994;44(4):812–26.

    Article  CAS  PubMed  Google Scholar 

  92. Mathewson ND, Jenq R, Mathew AV, Koenigsknecht M, Hanash A, Toubai T, et al. Gut microbiome-derived metabolites modulate intestinal epithelial cell damage and mitigate graft- versus-host disease. Nature immunology. 2016;17(5):505–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Jenq RR, Taur Y, Devlin SM, Ponce DM, Goldberg JD, Ahr KF, et al. Intestinal Blautia Is Associated with Reduced Death from Graft-versus-Host Disease. Biology of blood and marrow transplantation: journal of the American Society for Blood and Marrow Transplantation. 2015;21(8):1373–83.

    Article  Google Scholar 

  94. Eriguchi Y, Takashima S, Oka H, Shimoji S, Nakamura K, Uryu H, et al. Graft-versus-host disease disrupts intestinal microbial ecology by inhibiting Paneth cell production of alpha- defensins. Blood. 2012;120(1):223–31.

    Article  CAS  PubMed  Google Scholar 

  95. Gerbitz A, Schultz M, Wilke A, Linde HJ, Scholmerich J, Andreesen R, et al. Probiotic effects on experimental graft-versus-host disease: let them eat yogurt. Blood. 2004;103(11):4365–7.

    Article  CAS  PubMed  Google Scholar 

  96. van der Velden WJ, Netea MG, de Haan AF, Huls GA, Donnelly JP, Blijlevens NM. Role of the mycobiome in human acute graft-versus-host disease. Biology of blood and marrow transplantation : journal of the American Society for Blood and Marrow Transplantation. 2013;19(2):329–32.

    Article  Google Scholar 

  97. Pamer EG, Taur Y, Jenq R, van den Brink MRM. Impact of the Intestinal Microbiota on Infections and Survival Following Hematopoietic Stem Cell Transplantation. Blood. 2014;124(21):SCI-48-SCI.

    Google Scholar 

  98. Marr KA, Seidel K, Slavin MA, Bowden RA, Schoch HG, Flowers ME, et al. Prolonged fluconazole prophylaxis is associated with persistent protection against candidiasis-related death in allogeneic marrow transplant recipients: long-term follow-up of a randomized, placebo- controlled trial. Blood. 2000;96(6):2055–61.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Ghannoum.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Mycology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Jurdi, N., de Lima, M., Lazarus, H. et al. Microbiome: Its Impact Is Being Revealed!. Curr Clin Micro Rpt 4, 78–87 (2017). https://doi.org/10.1007/s40588-017-0063-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-017-0063-9

Keywords

Navigation