Skip to main content

Advertisement

Log in

Brucella abortus: Current Research and Future Trends

  • Bacteriology (N Borel, Section Editor)
  • Published:
Current Clinical Microbiology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Brucella abortus is a Gram-negative, facultative intracellular bacterium of the genus Brucella and is the main causative agent of bovine brucellosis. An update on the recent research on B. abortus and diseases caused by B. abortus in animals and humans is provided.

Recent findings

In the last decade, intense efforts have focused on understanding the pathobiology, taxonomy, proteomics, and genomics of B. abortus. Proteomic analyses and complete genomic sequencing have provided information on the virulence of the brucellae; this information will help to identify novel antigens for better serodiagnosis and promising candidates for subunit vaccines.

Summary

The bacteria affect a broad variety of animal host species as well as humans, causing seriously debilitating disease. Short-course treatment regimens or licensed vaccines in humans do not exist. Diagnosis remains a challenge in endemic and non-endemic countries, and the effectiveness of current surveillance and control programs in animals is still under discussion. Brucellosis in bovines is a re-emerging disease in developing countries but is neglected by public (veterinary) health and family doctors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Alton GG, Jones LM, Angus RD, et al. Techniques for the brucellosis laboratory. Paris: Instituttional de la Recherche Agronomique; 1988. p. 17–62.

    Google Scholar 

  2. • Garin-Bastuji B, Mick V, Le Carrou G, et al. Examination of taxonomic uncertainties surrounding Brucella abortus bv. 7 by phenotypic and molecular approaches. Appl Environ Microbiol. 2014;80(5):1570–9. This study provides suggestion to return the biovar 7 to the taxonomy of B. abortus.

  3. •• Wareth G, Melzer F, El-Diasty M, et al. Isolation of Brucella abortus from a dog and a cat confirms their biological role in re-emergence and dissemination of bovine brucellosis on dairy farms. Transbound Emerg Dis. 2016. doi:10.1111/tbed.12535. This study provides information about the ability of B. abortus to cross host species barrier and provides first report of B. abortus in dog and cat globally.

  4. Tadepalli G, Singh AK, Balakrishna K, et al. Immunogenicity and protective efficacy of Brucella abortus recombinant protein cocktail (rOmp19 + rP39) against B. abortus 544 and B. melitensis 16M infection in murine model. Mol Immunol. 2016;71:34–41.

    Article  CAS  PubMed  Google Scholar 

  5. Tabynov K. Influenza viral vector based Brucella abortus vaccine: a novel vaccine candidate for veterinary practice. Expert Rev Vaccines. 2016;15:1237–39.

  6. Dorneles EM, Lima GK, Teixeira-Carvalho A, et al. Immune response of calves vaccinated with Brucella abortus S19 or RB51 and revaccinated with RB51. PLoS One. 2015;10, e0136696.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Abkar M, Lotfi AS, Amani J, et al. Survey of Omp19 immunogenicity against Brucella abortus and Brucella melitensis: influence of nanoparticulation versus traditional immunization. Vet Res Commun. 2015;39:217–28.

    Article  PubMed  Google Scholar 

  8. Poester FP, Samartino LE, Santos RL. Pathogenesis and pathobiology of brucellosis in livestock. Rev Sci Tech. 2013;32(1):105–15.

    CAS  PubMed  Google Scholar 

  9. Carvalho Neta AV, Mol JP, Xavier MN, et al. Pathogenesis of bovine brucellosis. Vet J. 2010;184(2):146–55.

    Article  PubMed  Google Scholar 

  10. • Wareth G, Melzer F, Weise C, et al. Proteomics-based identification of immunodominant proteins of Brucellae using sera from infected hosts points towards enhanced pathogen survival during the infection. Biophys Res Commun. 2015;456(1):202–62014. This study provides information about immunodominant proteins that plays role in survival of bacteria intracellular in early stage of infection.

    Article  CAS  Google Scholar 

  11. Ronneau S, Moussa S, Barbier T, Conde-Alvarez R, Zuniga-Ripa A, et al. Brucella, nitrogen and virulence. Crit Rev Microbiol. 2016;42: 507–25.

  12. • Lee JJ, Simborio HL, Reyes AW, et al. Influence of platelet-activating factor receptor (PAFR) on Brucella abortus infection: implications for manipulating the phagocytic strategy of B. abortus. BMC Microbiol. 2016;16(1):70. This study provides new information about phagocytic activity of Brucella abortus.

  13. Gorvel JP, Moreno E. Brucella intracellular life: from invasion to intracellular replication. Vet Microbiol. 2002;90(1–4):281–97.

    Article  CAS  PubMed  Google Scholar 

  14. Rhyan JC. Pathogenesis and pathobiology of brucellosis in wildlife. Rev Sci Tech. 2013;32(1):127–36.

    CAS  PubMed  Google Scholar 

  15. Diaz Aparicio E. Epidemiology of brucellosis in domestic animals caused by Brucella melitensis, Brucella melitensis, Brucella suis and Brucella abortus. Rev Sci Tech. 2013;32:43–51, 53–60.

  16. OIE. Brucellosis (Brucella abortus, B. melitensis and B. suis) (Infection with B. abortus, B. melitensis and B. suis). Manual of Diagnostic Test and Vaccines for Terristial Animals. (2016) Ch. 2.1.4.Vol. I.p.1–44. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.01.04_BRUCELLOSIS.pdf. Accessed 16 Jan 2017.

  17. Godfroid J, Garin-Bastuji B, Saegerman C, Blasco JM. Brucellosis in terrestrial wildlife. Rev Sci Tech. 2013;32:27–42.

  18. Kamath PL, Foster JT, Drees KP, et al. Genomics reveals historic and contemporary transmission dynamics of a bacterial disease among wildlife and livestock. Nat Commun. 2016;7:11448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cowie CE, Marreos N, Gortázar C, et al. Shared risk factors for multiple livestock diseases: a case study of bovine tuberculosis and brucellosis. Res Vet Sci. 2014;97(3):491–7.

    Article  CAS  PubMed  Google Scholar 

  20. Opara J, Okewole P. Brucella abortus infection in a multispecies livestock farm in Nigeria. Int J Biotechnol Food Sci. 2015;3(3):36–40.

    Google Scholar 

  21. Abubakar M, Mansoor M, Arshed MJ. Bovine brucellosis: old and new concepts with Pakistan perspective. Pak Vet J. 2012;32:147–55.

    Google Scholar 

  22. Rahman MS, Sarker RR, Melzer F, et al. Brucellosis in human and domestic animals in Bangladesh: a review. Afr J Microbiol Res. 2014;8(41):3580–94.

    Article  Google Scholar 

  23. Xavier MN, Costa ÉA, Paixão TA, Santos RL. The genus Brucella and clinical manifestations of brucellosis. Ciência Rural. 2009;39:2252–2260.

  24. Ullah S, Jamil T, Mushtaq M, et al. Prevalence of brucellosis among camels in district Muzaffargarh Pakistan. J Infect Mol Biol. 2015;3(2):52–6.

    Article  Google Scholar 

  25. Chiebao DP, Valadas SY, Minervino AH, et al. Variables associated with infections of cattle by Brucella abortus, Leptospira spp. and Neospora spp. in Amazon region in Brazil. Transbound Emerg Dis. 2015;62(5):e30–6.

    Article  CAS  PubMed  Google Scholar 

  26. Meneses A, Epaulard O, Maurin M, et al. Brucella bacteremia reactivation 70 years after the primary infection. Med Mal Infect. 2010;40(4):238–40.

    Article  CAS  PubMed  Google Scholar 

  27. Ali S, Akhter S, Neubauer H, et al. Serological, cultural, and molecular evidence of Brucella infection in small ruminants in Pakistan. J Inf Dev Ctries. 2015;9(5):470–5.

    Google Scholar 

  28. Gumaa MM, Osman HM, Omer MM, et al. Seroprevalence of brucellosis in sheep and isolation of Brucella abortus biovar 6 in Kassala State, Eastern Sudan. Rev Sci Tech. 2014;33:957–65.

  29. Viana M, Shirima GM, John KS, et al. Integrating serological and genetic data to quantify cross-species transmission: brucellosis as a case study. Parasitology. 2016;143(7):821–34.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Esmaeili H. Brucellosis in Islamic republic of Iran. J Med Bacteriol. 2015;3(3–4):47–57.

    Google Scholar 

  31. Mukarim A, Dechassa T, Mahendra P. Equine bacterial and viral zoonosis: a systematic review. Austin J Trop Med Hyg. 2015;1(1):1001–6.

    Google Scholar 

  32. Ocholi R, Bertu W, Kwaga J, et al. Carpal bursitis associated with Brucella abortus in a horse in Nigeria. Vet Rec. 2004;155(18):566–7.

    Article  CAS  PubMed  Google Scholar 

  33. Khamesipour F, Doosti AB, Rahimi E. Molecular study of brucellosis in camels by the use of TaqMan® real-time PCR. Acta Microbiol Immunol Hung. 2015;62(4):409–21.

    Article  CAS  PubMed  Google Scholar 

  34. Wernery U. Camelid brucellosis: a review. Rev Sci Tech. 2014;33(3):839–57.

    CAS  PubMed  Google Scholar 

  35. Al-Ruwaili MA, Khalil OM, Selim SA. Viral and bacterial infections associated with camel (Camelus dromedarius) calf diarrhea in North Province, Saudi Arabia. Saudi J Biol Sci. 2012;19(1):35–41.

    Article  PubMed  Google Scholar 

  36. Ayoola MC, Ogugua AJ, Akinseye VO, et al. Sero-epidemiological survey and risk factors associated with brucellosis in dogs in south-western Nigeria. Pan Afr Med J. 2016;23:29. doi:10.11604/pamj.2016.23.29.7794.

  37. Kim J-Y, Her M, Kang S, et al. Epidemiologic relatedness between Brucella abortus isolates from livestock and wildlife in South Korea. J Wildl Dis. 2013;49(2):451–4.

    Article  PubMed  Google Scholar 

  38. Maiti S, Mohan K. Sero-epidemiological and therapeutic aspects of brucellosis (Brucella abortus) in cattle & buffaloes. J Anim Res. 2013;3(1):65–74.

    Google Scholar 

  39. Radwan AI, Bekairi SI, al-Bokmy AM, et al. Successful therapeutic regimens for treating Brucella melitensis and Brucella abortus infections in cows. Rev Sci Tech. 1993;12(3):909–22.

  40. Singh SV, Gupta VK, Kumar A, et al. Therapeutic management of bovine brucellosis in endemically infected dairy cattle herd of native Sahiwal breed. Adv Anim Vet Sci. 2014;2:32–6.

    Article  Google Scholar 

  41. Islam MA, Khatun MM, Werre SR, et al. A review of Brucella seroprevalence among humans and animals in Bangladesh with special emphasis on epidemiology, risk factors and control opportunities. Vet Microbiol. 2013;166(3–4):317–26.

    Article  PubMed  Google Scholar 

  42. Moriyon I, Grillo MJ, Monreal D, et al. Rough vaccines in animal brucellosis: structural and genetic basis and present status. Vet Res. 2004;35(1):1–38.

    Article  PubMed  Google Scholar 

  43. Avila-Calderón ED, Lopez-Merino A, Sriranganathan N, et al. A history of the development of Brucella vaccines. Biomed Res Int. 2013;2013:743509. doi:10.1155/2013/743509.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Yang X, Skyberg JA, Cao L, et al. Progress in Brucella vaccine development. Front Biol. 2013;8(1):60–77.

    Article  Google Scholar 

  45. •• Dorneles EM, Sriranganathan N, Lage AP. Recent advances in Brucella abortus vaccines. Vet Res. 2015;46(1):1–10. This study provides the update information about Brucella vaccines.

  46. Nielsen K. Diagnosis of brucellosis by serology. Vet Microbiol. 2002;90(1–4):447–59.

    Article  CAS  PubMed  Google Scholar 

  47. Perkins SD, Smither SJ, Atkins HS. Towards a Brucella vaccine for humans. FEMS Microbiol Rev. 2010;34(3):379–94.

    Article  CAS  PubMed  Google Scholar 

  48. Rubach MP, Halliday JEB, Cleaveland S, et al. Brucellosis in low-income and middle-income countries. Curr Opin Infect Dis. 2013;26(5):404–12.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Garshasbi M, Ramazani A, Sorouri R, et al. Molecular detection of Brucella species in patients suspicious of Brucellosis from Zanjan, Iran. Braz J Microbiol. 2014;45(2):533–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Parlak M, Guducuoglu H, Bayram Y, et al. Identification and determination of antibiotic susceptibilities of Brucella strains isolated from patients in van, Turkey by conventional and molecular methods. Int J Med Sci. 2013;10(10):1406–11.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Garcell HG, Garcia EG, Pueyo PV, et al. Outbreaks of brucellosis related to the consumption of unpasteurized camel milk. J Infect Public Health. 2016;9(4):523–7.

    Article  PubMed  Google Scholar 

  52. Kamal IH, Al Gashgari B, Moselhy SS, et al. Two-stage PCR assay for detection of human brucellosis in endemic areas. BMC Infect Dis. 2013;13:145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pathak AD, Dubal ZB, Doijad S, et al. Human brucellosis among pyrexia of unknown origin cases and occupationally exposed individuals in Goa Region, India. Emerg Health Threats J. 2014;7:23846.

    PubMed  Google Scholar 

  54. Lee KH, Kang H, Kim T, et al. A case of unusual septic knee arthritis with Brucella abortus after arthroscopic meniscus surgery. Acta Orthop Traumatol Turc. 2016;50(3):385–7.

    PubMed  Google Scholar 

  55. Yoo JR, Heo ST, Lee KH, et al. Foodborne outbreak of human brucellosis caused by ingested raw materials of fetal calf on Jeju island. Am J Trop Med Hyg. 2015;92(2):267–9.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Lee S, Hwang K-J, Park M-Y, et al. Evaluation and selection of multilocus variable-number tandem-repeat analysis primers for genotyping Brucella abortus biovar 1 isolated from human patients. Osong Public Health Res Perspect. 2013;4(5):265–70.

  57. Ali S, Ali Q, Neubauer H, et al. Seroprevalence and risk factors associated with brucellosis as a professional hazard in Pakistan. Foodborne Pathog Dis. 2013;10(6):500–5.

    Article  PubMed  Google Scholar 

  58. Rahman AK, Dirk B, Fretin D, Saegerman C, Ahmed MU, et al. Seroprevalence and risk factors for brucellosis in a high-risk group of individuals in Bangladesh. Foodborne Pathog Dis. 2012;9:190–7.

  59. Osman AE, Hassan AN, Ali AE, et al. Brucella melitensis biovar 1 and Brucella abortus S19 vaccine strain infections in milkers working at cattle farms in the Khartoum Area, Sudan. PLoS One. 2015;10(5), e0123374.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Lucero NE, Ayala SM, Escobar GI, et al. Brucella isolated in humans and animals in Latin America from 1968 to 2006. Epidemiol Infect. 2008;136(04):496–503.

    Article  CAS  PubMed  Google Scholar 

  61. Norman FF, Monge-Maillo B, Chamorro-Tojeiro S, et al. Imported brucellosis: a case series and literature review. Travel Med Infect Dis. 2016;14(3):182–99.

    Article  PubMed  Google Scholar 

  62. Zhang J, Sun GQ, Sun XD, et al. Prediction and control of brucellosis transmission of dairy cattle in Zhejiang province, China. PLoS One. 2014;9(11), e108592.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Arroyo Carrera I, López Rodríguez MJ, Sapiña AM, et al. Probable transmission of brucellosis by breast milk. J Trop Pediatr. 2006;52(5):380–1.

    Article  PubMed  Google Scholar 

  64. Kato Y, Masuda G, Itoda I, et al. Brucellosis in a returned traveler and his wife: probable person-to-person transmission of Brucella melitensis. J Travel Med. 2007;14(5):343–5.

    Article  PubMed  Google Scholar 

  65. Meltzer E, Sidi Y, Smolen G, et al. Sexually transmitted brucellosis in humans. Clin Infect Dis. 2010;51(2):e12–5.

    Article  PubMed  Google Scholar 

  66. Young EJ. An overview of human brucellosis. Clin Infect Dis. 1995;21(2):283–90.

    Article  CAS  PubMed  Google Scholar 

  67. Troy SB, Rickman LS, Davis CE. Brucellosis in San Diego: epidemiology and species-related differences in acute clinical presentations. Medicine. 2005;84(3):174–87.

    Article  PubMed  Google Scholar 

  68. Wallach JC, Delpino MV, Scian R, et al. Prepatellar bursitis due to Brucella abortus: case report and analysis of the local immune response. J Med Microbiol. 2010;59(Pt 12):1514–8.

    Article  PubMed  Google Scholar 

  69. Skalsky K, Yahav D, Bishara J, et al. Treatment of human brucellosis: systematic review and meta-analysis of randomised controlled trials. BMJ. 2008;336(7646):701–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Solís García del Pozo J, Solera J. Systematic review and meta-analysis of randomized clinical trials in the treatment of human brucellosis. PLoS ONE. 2012;7(2), e32090.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sáez D, Guzmán I, Andrews E, et al. Evaluation of Brucella abortus DNA and RNA vaccines expressing Cu–Zn superoxide dismutase (SOD) gene in cattle. Vet Microbiol. 2008;129(3–4):396–403.

    Article  PubMed  Google Scholar 

  72. Al-Dahouk S, Nöckler K, Scholz HC, et al. Immunoproteomic characterization of Brucella abortus 1119-3 preparations used for the serodiagnosis of Brucella infections. J Immunol Methods. 2006;309:34–47.

    Article  CAS  PubMed  Google Scholar 

  73. Matope G, Bhebhe E, Muma JB, et al. Risk factors for Brucella spp. infection in smallholder household herds. Epidemiol Infect. 2011;139(01):157–64.

    Article  CAS  PubMed  Google Scholar 

  74. Mert A, Ozaras R, Tabak F, et al. The sensitivity and specificity of Brucella agglutination tests. Diagn Microbiol Infect Dis. 2003;46(4):241–3.

    Article  PubMed  Google Scholar 

  75. Gall D, Nielsen K. Serological diagnosis of bovine brucellosis: a review of test performance and cost comparison. Rev Sci Tech Off int Epiz. 2004;23(3):989–1002.

    Article  CAS  Google Scholar 

  76. • Simborio HL, Lee JJ, Bernardo Reyes AW, et al. Evaluation of the combined use of the recombinant Brucella abortus Omp10, Omp19 and Omp28 proteins for the clinical diagnosis of bovine brucellosis. Microb Pathog. 2015;84:41–6. This study provides trials to use protein antigen in serodiagnosis of brucellosis.

    Article  Google Scholar 

  77. Grillo MJ, Blasco JM, Gorvel JP, et al. What have we learned from brucellosis in the mouse model? Vet Res. 2012;43(1):29. doi:10.1186/1297-9716-1143-1129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Poester FP, Nielsen K, Samartino LE, et al. Diagnosis of brucellosis. Open Vet Sci J. 2010;4:46–60.

    Article  Google Scholar 

  79. Reyes AW, Simborio HL, Hop HT, et al. Molecular cloning, purification and immunogenicity of recombinant Brucella abortus 544 malate dehydrogenase protein. J Vet Sci. 2016;17(1):119–22.

    Article  PubMed  PubMed Central  Google Scholar 

  80. •• Hop HT, Arayan LT, Simborio HL, et al. An evaluation of ELISA using recombinant Brucella abortus bacterioferritin (Bfr) for bovine brucellosis. Comp Immunol Microbiol Infect Dis. 2016;45:16–9. This study provides trials to use protein antigen in serodiagnosis of brucellosis instate of LPS.

    Article  PubMed  Google Scholar 

  81. Im YB, Park WB, Jung M, et al. Evaluation of Th1/Th2-related immune response against recombinant proteins of Brucella abortus infection in mice. J Microbiol Biotechnol. 2016;26(6):1132–9.

    Article  CAS  PubMed  Google Scholar 

  82. Vicente AF, Antunes JM, Lara GH, Mioni MS, Allendorf SD, et al. Evaluation of three formulations of culture media for isolation of Brucella spp. regarding their ability to inhibit the growth of contaminating organisms. Biomed Res Int. 2014;702072. doi:10.1155/2014/702072.

  83. Al-Dahouk S, Flèche PL, Nöckler K, et al. Evaluation of Brucella MLVA typing for human brucellosis. J Microbiol Methods. 2007;69(1):137–45.

    Article  CAS  PubMed  Google Scholar 

  84. Grissa I, Bouchon P, Pourcel C, et al. On-line resources for bacterial micro-evolution studies using MLVA or CRISPR typing. Biochimie. 2008;90:660–8.

    Article  CAS  PubMed  Google Scholar 

  85. Le Fleche P, Jacques I, Grayon M, et al. Evaluation and selection of tandem repeat loci for a Brucella MLVA typing assay. BMC Microbiol. 2006;6:9.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Huber B, Scholz H, Lucero N, et al. Development of a PCR assay for typing and subtyping of Brucella species. Int J Med Microbiol. 2009;299(8):563–73.

    Article  CAS  PubMed  Google Scholar 

  87. Bricker BJ, Ewalt DR, Olsen SC, et al. Evaluation of the Brucella abortus species-specific polymerase chain reaction assay, an improved version of the Brucella AMOS polymerase chain reaction assay for cattle. J Vet Diagn Investig. 2003;15:374–8.

    Article  Google Scholar 

  88. Ocampo-Sosa AA, Aguero-Balbin J, Garcia-Lobo JM. Development of a new PCR assay to identify Brucella abortus biovars 5, 6 and 9 and the new subgroup 3b of biovar 3. Vet Microbiol. 2005;110:41–51.

    Article  CAS  PubMed  Google Scholar 

  89. Lopez-Goni I, Garcia-Yoldi D, Marin CM, et al. Evaluation of a multiplex PCR assay (Bruce-ladder) for molecular typing of all Brucella species, including the vaccine strains. J Clin Microbiol. 2008;46(10):3484–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mitka S, Anetakis C, Souliou E, et al. Evaluation of different PCR assays for early detection of acute and relapsing brucellosis in humans in comparison with conventional methods. J Clin Microbiol. 2007;45(4):1211–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Vejarano MP, Matrone M, Keid LB, et al. Evaluation of four DNA extraction protocols for Brucella abortus detection by PCR in tissues from experimentally infected cows with the 2308 strain. Vector Borne Zoonotic Dis. 2013;13(4):237–42.

    Article  CAS  PubMed  Google Scholar 

  92. • Kim JY, Kang SI, Lee JJ, et al. Differential diagnosis of Brucella abortus by real-time PCR based on a single-nucleotide polymorphisms. J Vet Med Sci. 2016;78(4):557–62. This study provides new PCR method for diagnosis of B. abortus.

  93. Kang S, Her M, Kim J, et al. Rapid and specific identification of Brucella abortus using the loop-mediated isothermal amplification (LAMP) assay. Comp Immunol Microbiol Infect Dis. 2015;40:1–6.

    Article  PubMed  Google Scholar 

  94. Al Dahouk S, Tomaso H, Prenger-Berninghoff E, et al. Identification of Brucella species and biotypes using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Crit Rev Microbiol. 2005;31(4):191–6.

    Article  PubMed  Google Scholar 

  95. Scott J, Koylass M, Stubberfield M, et al. Multiplex assay based on single-nucleotide polymorphisms for rapid identification of Brucella isolates at the species level. Appl Environ Microbiol. 2007;73(22):7331–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Garofolo G. Multiple-locus Variable-Number Tandem Repeat (VNTR) analysis (MLVA) using multiplex PCR and multicolor capillary electrophoresis: application to the genotyping of Brucella species. Methods Mol Biol. 2015;1247:335–47. doi:10.1007/978-1-4939-2004-4_24.

  97. Dean AS, Schelling E, Bonfoh B, Kulo AE, Boukaya GA, et al. Deletion in the gene BruAb2_0168 of Brucella abortus strains: diagnostic challenges. Clin Microbiol Infect. 2014;20(9):O550-553. doi:10.1111/1469-0691.12554.

  98. Kaynak-Onurdag F, Okten S, Sen B. Screening Brucella spp. in bovine raw milk by real-time quantitative PCR and conventional methods in a pilot region of vaccination, Edirne, Turkey. J Dairy Sci. 2016;99(5):3351–7.

    Article  CAS  PubMed  Google Scholar 

  99. Vyas SS, Jadhav SV, Majee SB, et al. Development of immunochromatographic strip test using fluorescent, micellar silica nanosensors for rapid detection of B. abortus antibodies in milk samples. Biosens Bioelectron. 2015;70:254–60.

    Article  CAS  PubMed  Google Scholar 

  100. Silbereisen A, Tamborrini M, Wittwer M, et al. Development of a bead-based Luminex assay using lipopolysaccharide specific monoclonal antibodies to detect biological threats from Brucella species. BMC Microbiol. 2015;15(198):015–0534.

    Google Scholar 

  101. Tiwari A, Kumar S, Pal V, et al. Evaluation of the recombinant 10-kilodalton immunodominant region of the BP26 protein of Brucella abortus for specific diagnosis of bovine brucellosis. Clin Vaccine Immunol. 2011;18(10):1760–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. McGiven J, Howells L, Duncombe L, et al. Improved serodiagnosis of bovine brucellosis by novel synthetic oligosaccharide antigens representing the capping m epitope elements of Brucella O-polysaccharide. J Clin Microbiol. 2015;53:1204–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Shome R, Filia G, Padmashree BS, et al. Evaluation of lateral flow assay as a field test for investigation of brucellosis outbreak in an organized buffalo farm: a pilot study. Vet World. 2015;8(4):492–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Qiu J, Wang W, Wu J, et al. Characterization of periplasmic protein BP26 epitopes of Brucella melitensis reacting with murine monoclonal and sheep antibodies. PLoS ONE. 2012;7(3):23.

    Google Scholar 

  105. McGiven JA. New developments in the immunodiagnosis of brucellosis in livestock and wildlife. Rev Sci Tech. 2013;32(1):163–76.

    CAS  PubMed  Google Scholar 

  106. Brotz-Oesterhelt H, Bandow JE, Labischinski H. Bacterial proteomics and its role in antibacterial drug discovery. Mass Spectrom Rev. 2005;24(4):549–65.

    Article  PubMed  Google Scholar 

  107. Schmidt F, Volker U. Proteome analysis of host-pathogen interactions: investigation of pathogen responses to the host cell environment. Proteomics. 2011;11(15):3203–11.

    Article  CAS  PubMed  Google Scholar 

  108. Wattam AR, Williams KP, Snyder EE, et al. Analysis of ten Brucella genomes reveals evidence for horizontal gene transfer despite a preferred intracellular lifestyle. J Bacteriol. 2009;191(11):3569–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Eschenbrenner M, Horn TA, Wagner MA, et al. Comparative proteome analysis of laboratory grown Brucella abortus 2308 and Brucella melitensis 16M. J Proteome Res. 2006;5(7):1731–40.

    Article  CAS  PubMed  Google Scholar 

  110. •• Wareth G, Eravci M, Weise C, et al. Comprehensive identification of immunodominant proteins of Brucella abortus and Brucella melitensis using antibodies in the sera from naturally infected hosts. Int J Mol Sci. 2016;17(5). This study provides novel information about immunodominant proteins suggested to be antigen for serodiagnosis of brucellosis and provides comparative proteomic analysis between B. abortus and B. melitensis.

  111. Kyung YK, Kim J-W, Her M, et al. Immunogenic proteins of Brucella abortus to minimize cross reactions in brucellosis diagnosis. Vet Microbiol. 2012;156(3–4):374–80.

    Google Scholar 

  112. Connolly JP, Comerci D, Alefantis TG, et al. Proteomic analysis of Brucella abortus cell envelope and identification of immunogenic candidate proteins for vaccine development. Proteomics. 2006;6:3767–80.

    Article  CAS  PubMed  Google Scholar 

  113. Paredes-Cervantes V, Flores-Mejía R, Moreno-Lafont MC, et al. Comparative proteome analysis of Brucella abortus 2308 and its virB type IV secretion system mutant reveals new T4SS-related candidate proteins. J Proteome. 2011;74(12):2959–71.

    Article  CAS  Google Scholar 

  114. Lee JJ, Lim JJ, Kim DG, et al. Characterization of culture supernatant proteins from Brucella abortus and its protection effects against murine brucellosis. Comp Immunol Microbiol Infect Dis. 2014;37(4):221–8.

    Article  PubMed  Google Scholar 

  115. Lee JJ, Simborio HL, Reyes AW, et al. Proteomic analyses of the time course responses of mice infected with Brucella abortus 544 reveal immunogenic antigens. FEMS Microbiol Lett. 2014;357(2):164–74.

    CAS  PubMed  Google Scholar 

  116. Minogue TD, Daligault HA, Davenport KW, et al. Whole-genome sequences of 24 Brucella strains. Genome Announc. 2014;2(5):e00915-14. doi:10.1128/genomeA.00915-14.

  117. • Yu D, Hui Y, Zai X, et al. Comparative genomic analysis of Brucella abortus vaccine strain 104M reveals a set of candidate genes associated with its virulence attenuation. Virulence. 2015;6(8):745–54. This study provides a set of genes plays a significant role in virulence.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Shallom S, Tae H, Sarmento L, et al. Comparison of genome diversity of Brucella spp. field isolates using universal bio-signature detection array and whole genome sequencing reveals limitations of current diagnostic methods. Gene. 2012;509(1):142–8.

    Article  CAS  PubMed  Google Scholar 

  119. Garofolo G, Foster JT, Drees K, et al. genome sequences of 11 Brucella abortus isolates from persistently infected Italian regions. Genome Announc. 2015;3(6):e01402–15. doi:10.1128/genomeA.01402-15.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamal Wareth.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Bacteriology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamil, T., Melzer, F., Njeru, J. et al. Brucella abortus: Current Research and Future Trends. Curr Clin Micro Rpt 4, 1–10 (2017). https://doi.org/10.1007/s40588-017-0052-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40588-017-0052-z

Keywords

Navigation