Current Clinical Microbiology Reports

, Volume 3, Issue 4, pp 175–185 | Cite as

Reexamining Chronic Toxoplasma gondii Infection: Surprising Activity for a “Dormant” Parasite

  • Anthony P. SinaiEmail author
  • Elizabeth A. Watts
  • Animesh Dhara
  • Robert D. Murphy
  • Matthew S. Gentry
  • Abhijit Patwardhan
Parasitology (A Vaidya, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Parasitology


Purpose of Review

Despite over a third of the world’s population being chronically infected with Toxoplasma gondii, little is known about this largely asymptomatic phase of infection. This stage is mediated in vivo by bradyzoites within tissue cysts. The absence of overt symptoms has been attributed to the dormancy of bradyzoites. In this review, we reexamine the conventional view of chronic toxoplasmosis in light of emerging evidence challenging both the nature of dormancy and the consequences of infection in the CNS.

Recent Findings

New and emerging data reveal a previously unrecognized level of physiological and replicative capacity of bradyzoites within tissue cysts. These findings have emerged in the context of a reexamination of the chronic infection in the brain that correlates with changes in neuronal architecture, neurochemistry, and behavior that suggest that the chronic infection is not without consequence.


The emerging data driven by the development of new approaches to study the progression of chronic toxoplasma infection reveals significant physiological and replicative capacity for what has been viewed as a dormant state. The emergence of bradyzoite and tissue cyst biology from what was viewed as a physiological “black box” offers exciting new areas for investigation with direct implications on the approaches to drug development targeting this drug-refractory state. In addition, new insights from studies on the neurobiology on chronic infection reveal a complex and dynamic interplay between the parasite, brain microenvironment, and the immune response that results in the detente that promotes the life-long persistence of the parasite in the host.


Toxoplasma Tissue cyst Bradyzoite Glycosylation CNS infection 



Preparation of this article was supported in part by NIH/NIAID R21AI122894 awarded to APS and IDeA award from NIH/NIGMS 5P30GM110787 (COBRE for the Center for Molecular Medicine. PI Louis B Hersh, University of Kentucky) project awarded jointly to APS and MSG.

Compliance of Ethical Standards

Conflict of Interest

Matthew Gentry, Anthony Sinai, Animesh Dhara, Elizabeth Watts, Abhijit Patwardhan, and Robert Murphy declare that they have no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Dubey JP. Advances in the life cycle of Toxoplasma gondii. Int J Parasitol. 1998;28(7):1019–24.CrossRefPubMedGoogle Scholar
  2. 2.
    Hill D, Dubey JP. Toxoplasma gondii: transmission, diagnosis and prevention. Clin Microbiol Infect. 2002;8(10):634–40.CrossRefPubMedGoogle Scholar
  3. 3.
    Dubey JP, Lindsay DS, Speer CA. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev. 1998;11(2):267–99.PubMedPubMedCentralGoogle Scholar
  4. 4.
    Dubey JP, Jones JL. Toxoplasma gondii infection in humans and animals in the United States. Int J Parasitol. 2008;38(11):1257–78.CrossRefPubMedGoogle Scholar
  5. 5.
    Chew WK, Wah MJ, Ambu S, Segarra I. Toxoplasma gondii: determination of the onset of chronic infection in mice and the in vitro reactivation of brain cysts. Exp Parasitol. 2012;130(1):22–5.CrossRefPubMedGoogle Scholar
  6. 6.
    Israelski DM, Chmiel JS, Poggensee L, Phair JP, Remington JS. Prevalence of Toxoplasma infection in a cohort of homosexual men at risk of AIDS and toxoplasmic encephalitis. J Acquir Immune Defic Syndr. 1993;6(4):414–8.PubMedGoogle Scholar
  7. 7.
    Nath A, Sinai AP. Cerebral Toxoplasmosis. Curr Treat Options Neurol. 2003;5(1):3–12.CrossRefPubMedGoogle Scholar
  8. 8.
    Tenter AM, Heckeroth AR, Weiss LM. Toxoplasma gondii: from animals to humans. Int J Parasitol. 2000;30(12-13):1217–58.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Ferguson DJ. Use of molecular and ultrastructural markers to evaluate stage conversion of Toxoplasma gondii in both the intermediate and definitive host. Int J Parasitol. 2004;34(3):347–60.CrossRefPubMedGoogle Scholar
  10. 10.
    Ferguson DJ, Graham DI, Hutchison WM. Pathological changes in the brains of mice infected with Toxoplasma gondii: a histological, immunocytochemical and ultrastructural study. Int J Exp Pathol. 1991;72(4):463–74.PubMedPubMedCentralGoogle Scholar
  11. 11.
    Ferguson DJ, Hutchison WM. An ultrastructural study of the early development and tissue cyst formation of Toxoplasma gondii in the brains of mice. Parasitol Res. 1987;73(6):483–91.CrossRefPubMedGoogle Scholar
  12. 12.
    Fortier B, Coignard-Chatain C, Soete M, Dubremetz JF. Structure and biology of Toxoplasma gondii bradyzoites. C R Seances Soc Biol Fil. 1996;190(4):385–94.PubMedGoogle Scholar
  13. 13.
    Sims TA, Hay J, Talbot IC. Ultrastructural immunocytochemistry of the intact tissue cyst of Toxoplasma in the brains of mice with congenital toxoplasmosis. Ann Trop Med Parasitol. 1990;84(2):141–7.PubMedGoogle Scholar
  14. 14.
    Dzierszinski F, Nishi M, Ouko L, Roos DS. Dynamics of Toxoplasma gondii differentiation. Eukaryotic Cell. 2004;3(4):992–1003.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Singh U, Brewer JL, Boothroyd JC. Genetic analysis of tachyzoite to bradyzoite differentiation mutants in Toxoplasma gondii reveals a hierarchy of gene induction. Mol Microbiol. 2002;44(3):721–33.CrossRefPubMedGoogle Scholar
  16. 16.
    White MW, Radke JR, Radke JB. Toxoplasma development-turn the switch on or off? Cellular microbiology. 2014.Google Scholar
  17. 17.
    Fritz HM, Buchholz KR, Chen X, Durbin-Johnson B, Rocke DM, Conrad PA, et al. Transcriptomic analysis of toxoplasma development reveals many novel functions and structures specific to sporozoites and oocysts. PLoS One. 2012;7(2):e29998.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.•
    Pittman KJ, Aliota MT, Knoll LJ. Dual transcriptional profiling of mice and Toxoplasma gondii during acute and chronic infection. BMC Genomics. 2014;15:806. The use of RNASeq to simultaneously establish the interplay between parasite and host at the level of gene expression hold the promise of dissecting the complex interplay during different stages of the chronic infection.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Knoll LJ, Tomita T, Weiss LM. Bradyzoite Development In: Weiss LM, Kim K, editors. Toxoplasma gondii The Model Apicomplexan: Perspectives and Methods 2nd Edition ed. London, United Kingdom: Academic Press (Elsevier); 2014. p. 521-49.Google Scholar
  20. 20.
    Pittman KJ, Knoll LJ. Long-Term Relationships: the Complicated Interplay between the Host and the Developmental Stages of Toxoplasma gondii during Acute and Chronic Infections. Microbiol Mole Biol Rev : MMBR. 2015;79(4):387–401.CrossRefGoogle Scholar
  21. 21.••
    Watts E, Zhao Y, Dhara A, Eller B, Patwardhan A, Sinai AP. Novel Approaches Reveal that Toxoplasma gondii Bradyzoites within Tissue Cysts Are Dynamic and Replicating Entities In Vivo. mBio. 2015;6(5):e01155–15. This work conclusively dispels the notion that parasite replication does not occur during the chronic phase of infection. The work reveals that bradyzoites within cysts are not uniform and that the properties of tissue cysts vary during the course of infection. Quantification of bradyzoites within tissue cysts vastly reveals an unappreciated level of complexity in the progression of chronic toxoplasmosis.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Skariah S, McIntyre MK, Mordue DG. Toxoplasma gondii: determinants of tachyzoite to bradyzoite conversion. Parasitol Res. 2010;107(2):253–60.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Lemgruber L, Lupetti P, Martins-Duarte ES, De Souza W, Vommaro RC. The organization of the wall filaments and characterization of the matrix structures of Toxoplasma gondii cyst form. Cell Microbiol. 2011;13(12):1920–32.CrossRefPubMedGoogle Scholar
  24. 24.
    Ferguson DJ, Huskinson-Mark J, Araujo FG, Remington JS. A morphological study of chronic cerebral toxoplasmosis in mice: comparison of four different strains of Toxoplasma gondii. Parasitol Res. 1994;80(6):493–501.CrossRefPubMedGoogle Scholar
  25. 25.
    Scholtyseck E, Mehlhorn H, Muller BE. Fine structure of cyst and cyst wall of Sarcocystis tenella, Besnoitia jellisoni, Frenkelia sp. and Toxoplasma gondii. J Protozool. 1974;21(2):284–94.CrossRefGoogle Scholar
  26. 26.
    van der Zypen E, Piekarski G. On the ultrastructure of the Toxoplasma gondii cyst wall in the brain of the white mouse. Z Parasitenkd. 1966;28(1):45–59.PubMedGoogle Scholar
  27. 27.
    de Carvalho L, Souto-Padron T, de Souza W. Localization of lectin-binding sites and sugar-binding proteins in tachyzoites of Toxoplasma gondii. J Parasitol. 1991;77(1):156–61.CrossRefPubMedGoogle Scholar
  28. 28.
    Fauquenoy S, Morelle W, Hovasse A, Bednarczyk A, Slomianny C, Schaeffer C, et al. Proteomics and glycomics analyses of N-glycosylated structures involved in Toxoplasma gondii--host cell interactions. Mol Cell Proteomics. 2008;7(5):891–910.CrossRefPubMedGoogle Scholar
  29. 29.
    Cummings RD, Etzler ME. Antibodies and Lectins in Glycan Analysis. In: Varki A, Cummings RD, Esko JD, Freeze HH, Stanley P, Bertozzo CR, et al., editors. Essentials of Glycobiology 2nd edition. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 2008. p. 633-49.Google Scholar
  30. 30.
    Derouin F, Beauvais B, Lariviere M, Guillot J. Binding of fluorescein-labelled lectins on trophozoites and cysts of 3 strains of Toxoplasma gondii. C R Seances Soc Biol Fil. 1981;175(6):761–8.PubMedGoogle Scholar
  31. 31.
    Sethi KK, Rahman A, Pelster B, Brandis H. Search for the presence of lectin-binding sites on Toxoplasma gondii. J Parasitol. 1977;63(6):1076–80.CrossRefPubMedGoogle Scholar
  32. 32.••
    Tomita T, Bzik DJ, Ma YF, Fox BA, Markillie LM, Taylor RC, et al. The Toxoplasma gondii Cyst Wall Protein CST1 Is Critical for Cyst Wall Integrity and Promotes Bradyzoite Persistence. PLoS Pathog. 2013;9(12):e1003823. Identification of the primary protein target responsible for lectin lableling of the cyst wall also establishes TgCST1 as a key strutural element in the mantaining cyst integrity.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tomita T, Tatsuki T, Yakubu R, Tu V, Ma YF, Weiss LM. Making home sweet and sturdy: Toxoplasma gondii ppGalNAc-ts glycosylate in heirarchical order and confer cyst wall rigidity..mBio. 2016;Submitted.Google Scholar
  34. 34.•
    Caffaro CE, Koshy AA, Liu L, Zeiner GM, Hirschberg CB, Boothroyd JC. A nucleotide sugar transporter involved in glycosylation of the Toxoplasma tissue cyst wall is required for efficient persistence of bradyzoites. PLoS Pathog. 2013;9(5):e1003331. Confirms the central role for glycoslylation in the maintenance of chronic toxoplasma infections.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.•
    Nazarova LA, Ochoa RJ, Jones KA, Morrissette NS, Prescher JA. Extracellular Toxoplasma gondii tachyzoites metabolize and incorporate unnatural sugars into cellular proteins. Microbes and infection/Institut Pasteur. 2016;18(3):199–210. This technical advance is the first use of chemical biology approaches to identify glycoproteins in Toxoplasma.CrossRefGoogle Scholar
  36. 36.
    Bushkin GG, Ratner DM, Cui J, Banerjee S, Duraisingh MT, Jennings CV, et al. Suggestive evidence for Darwinian Selection against asparagine-linked glycans of Plasmodium falciparum and Toxoplasma gondii. Eukaryotic Cell. 2010;9(2):228–41.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Samuelson J, Robbins PW. Effects of N-glycan precursor length diversity on quality control of protein folding and on protein glycosylation. Semin Cell Dev Biol. 2015;41:121–8.CrossRefPubMedGoogle Scholar
  38. 38.
    Odenthal-Schnittler M, Tomavo S, Becker D, Dubremetz JF, Schwarz RT. Evidence for N-linked glycosylation in Toxoplasma gondii. Biochem J. 1993;291(Pt 3):713–21.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Coppin A, Dzierszinski F, Legrand S, Mortuaire M, Ferguson D, Tomavo S. Developmentally regulated biosynthesis of carbohydrate and storage polysaccharide during differentiation and tissue cyst formation in Toxoplasma gondii. Biochimie. 2003;85(3-4):353–61.CrossRefPubMedGoogle Scholar
  40. 40.
    Coppin A, Varre JS, Lienard L, Dauvillee D, Guerardel Y, Soyer-Gobillard MO, et al. Evolution of plant-like crystalline storage polysaccharide in the protozoan parasite Toxoplasma gondii argues for a red alga ancestry. J Mol Evol. 2005;60(2):257–67.CrossRefPubMedGoogle Scholar
  41. 41.
    Guerardel Y, Leleu D, Coppin A, Lienard L, Slomianny C, Strecker G, et al. Amylopectin biogenesis and characterization in the protozoan parasite Toxoplasma gondii, the intracellular development of which is restricted in the HepG2 cell line. Microbes Infect/Institut Pasteur. 2005;7(1):41–8.CrossRefGoogle Scholar
  42. 42.••
    Uboldi AD, McCoy JM, Blume M, Gerlic M, Ferguson DJ, Dagley LF, et al. Regulation of Starch Stores by a Ca(2+)-Dependent Protein Kinase Is Essential for Viable Cyst Development in Toxoplasma gondii. Cell Host Microbe. 2015;18(6):670–81. This work demonstrates that the dysregualtion of amylopectin metabolism is lethal to bradyzoites and promotes the clearance of tissue cysts. It demonstrates that amylopectin must play a role in bradyzoites rather than serve merely as an energy storage system for rapid growth following reactivation. This presents amylopecting metabolism as a potential drug target in chronic toxoplasmosis.CrossRefPubMedGoogle Scholar
  43. 43.
    Dubey JP. Distribution of tissue cysts in organs of rats fed Toxoplasma gondii oocysts. J Parasitol. 1997;83(4):755–7.CrossRefPubMedGoogle Scholar
  44. 44.
    Scallan E, Hoekstra RM, Mahon BE, Jones TF, Griffin PM. An assessment of the human health impact of seven leading foodborne pathogens in the United States using disability adjusted life years. Epidemiol Infect. 2015;143(13):2795–804.CrossRefPubMedGoogle Scholar
  45. 45.
    Tonino P, Finol HJ, Marquez A. Skeletal muscle pathology in mice experimentally infected with Toxoplasma gondii. J Submicrosc Cytol Pathol. 1996;28(4):521–6.PubMedGoogle Scholar
  46. 46.
    Ferreira-da-Silva Mda F, Takacs AC, Barbosa HS, Gross U, Luder CG. Primary skeletal muscle cells trigger spontaneous Toxoplasma gondii tachyzoite-to-bradyzoite conversion at higher rates than fibroblasts. Int J Med Microbiol: IJMM. 2009;299(5):381–8.CrossRefPubMedGoogle Scholar
  47. 47.
    Guimaraes EV, de Carvalho L, Barbosa HS. Primary culture of skeletal muscle cells as a model for studies of Toxoplasma gondii cystogenesis. J Parasitol. 2008;94(1):72–83.CrossRefPubMedGoogle Scholar
  48. 48.
    Swierzy IJ, Luder CG. Withdrawal of skeletal muscle cells from cell cycle progression triggers differentiation of Toxoplasma gondii towards the bradyzoite stage. Cell Microbiol. 2015;17(1):2–17.CrossRefPubMedGoogle Scholar
  49. 49.
    Cornelissen AW, Overdulve JP, Hoenderboom JM. Separation of Isospora (Toxoplasma) gondii cysts and cystozoites from mouse brain tissue by continuous density-gradient centrifugation. Parasitology. 1981;83(Pt 1):103–8.CrossRefPubMedGoogle Scholar
  50. 50.
    Dubey JP. Comparative infectivity of Toxoplasma gondii bradyzoites in rats and mice. J Parasitol. 1998;84(6):1279–82.CrossRefPubMedGoogle Scholar
  51. 51.••
    Dubey JP, Ferreira LR, Alsaad M, Verma SK, Alves DA, Holland GN, et al. Experimental Toxoplasmosis in Rats Induced Orally with Eleven Strains of Toxoplasma gondii of Seven Genotypes: Tissue Tropism, Tissue Cyst Size, Neural Lesions, Tissue Cyst Rupture without Reactivation, and Ocular Lesions. PloS One. 2016;11(5):e0156255. This comprehensive study and review of the literature in rats and mice presents the simialrites and differences in these model rodent systems. Given the body of behavioral work in rats, the revisiting of the rat infection model will be useful for the integration of future behavioral studies.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Van Der Waaij D. Formation, growth and multiplication of Toxoplasma gondii cysts in mouse brain. Trop Georg Med. 1959;11:345–60.Google Scholar
  53. 53.
    Sullivan AM, Zhao X, Suzuki Y, Ochiai E, Crutcher S, Gilchrist MA. Evidence for finely-regulated asynchronous growth of Toxoplasma gondii cysts based on data-driven model selection. PLoS Comput Biol. 2013;9(11):e1003283.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Hooshyar H, Rostamkhani P, Arbabi M. Study on growth of Toxoplasma gondii tissue cyst in laboratory mouse. Jundishpur J Microbiol. 2009;2(4):140–3.Google Scholar
  55. 55.
    Weiss LM, Kim K. The development and biology of bradyzoites of Toxoplasma gondii. Front Biosci. 2000;5:D391–405.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Anderson-White BR, Ivey FD, Cheng K, Szatanek T, Lorestani A, Beckers CJ, et al. A family of intermediate filament-like proteins is sequentially assembled into the cytoskeleton of Toxoplasma gondii. Cell Microbiol. 2011;13(1):18–31.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Elsheikha HM, Busselberg D, Zhu XQ. The known and missing links between Toxoplasma gondii and schizophrenia. Metab Brain Dis. 2016;31(4):749–59.CrossRefPubMedGoogle Scholar
  58. 58.
    Sutterland AL, Fond G, Kuin A, Koeter MW, Lutter R, van Gool T, et al. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta psychiatrica Scandinavica. 2015.Google Scholar
  59. 59.
    Ngoungou EB, Bhalla D, Nzoghe A, Darde ML, Preux PM. Toxoplasmosis and epilepsy--systematic review and meta analysis. PLoS Negl Trop Dis. 2015;9(2):e0003525.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Mahami-Oskouei M, Hamidi F, Talebi M, Farhoudi M, Taheraghdam AA, Kazemi T, et al. Toxoplasmosis and Alzheimer: can Toxoplasma gondii really be introduced as a risk factor in etiology of Alzheimer? Parasitol Res. 2016.Google Scholar
  61. 61.
    Mohle L, Israel N, Paarmann K, Krohn M, Pietkiewicz S, Muller A, et al. Chronic Toxoplasma gondii infection enhances beta-amyloid phagocytosis and clearance by recruited monocytes. Acta Neuropathol Commun. 2016;4:25.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Prandota J. Possible link between Toxoplasma gondii and the anosmia associated with neurodegenerative diseases. Am J Alzheimer’s Dis Other Dementias. 2014;29(3):205–14.CrossRefGoogle Scholar
  63. 63.
    McConkey GA, Martin HL, Bristow GC, Webster JP. Toxoplasma gondii infection and behaviour - location, location, location? J Exp Biol. 2013;216(Pt 1):113–9.CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Webster JP, Kaushik M, Bristow GC, McConkey GA. Toxoplasma gondii infection, from predation to schizophrenia: can animal behaviour help us understand human behaviour? J Exp Biol. 2013;216(Pt 1):99–112.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Flegr J. Effects of toxoplasma on human behavior. Schizophr Bull. 2007;33(3):757–60.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Parlog A, Schluter D, Dunay IR. Toxoplasma gondii-induced neuronal alterations. Parasite Immunol. 2015;37(3):159–70.CrossRefPubMedGoogle Scholar
  67. 67.
    Vyas A. Mechanisms of Host Behavioral Change in Toxoplasma gondii Rodent Association. PLoS Pathog. 2015;11(7):e1004935.CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Gatkowska J, Wieczorek M, Dziadek B, Dzitko K, Dlugonska H. Behavioral changes in mice caused by Toxoplasma gondii invasion of brain. Parasitol Res. 2012;111(1):53–8.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Berenreiterova M, Flegr J, Kubena AA, Nemec P. The distribution of Toxoplasma gondii cysts in the brain of a mouse with latent toxoplasmosis: implications for the behavioral manipulation hypothesis. PLoS One. 2011;6(12):e28925.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Afonso C, Paixao VB, Costa RM. Chronic Toxoplasma infection modifies the structure and the risk of host behavior. PLoS One. 2012;7(3):e32489.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Di Cristina M, Marocco D, Galizi R, Proietti C, Spaccapelo R, Crisanti A. Temporal and spatial distribution of Toxoplasma gondii differentiation into Bradyzoites and tissue cyst formation in vivo. Infect Immun. 2008;76(8):3491–501.CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Cabral CM, Tuladhar S, Dietrich HK, Nguyen E, MacDonald WR, Trivedi T, et al. Neurons are the Primary Target Cell for the Brain-Tropic Intracellular Parasite Toxoplasma gondii. PLoS Pathog. 2016;12(2):e1005447.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Hermes G, Ajioka JW, Kelly KA, Mui E, Roberts F, Kasza K, et al. Neurological and behavioral abnormalities, ventricular dilatation, altered cellular functions, inflammation, and neuronal injury in brains of mice due to common, persistent, parasitic infection. J Neuroinflammation. 2008;5:48.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Melzer TC, Cranston HJ, Weiss LM, Halonen SK. Host Cell Preference of Toxoplasma gondii Cysts in Murine Brain: A Confocal Study. J Neuroparasitology. 2010;1.Google Scholar
  75. 75.
    Sibley LD, Qiu W, Fentress S, Taylor SJ, Khan A, Hui R. Forward genetics in Toxoplasma gondii reveals a family of rhoptry kinases that mediates pathogenesis. Eukaryotic Cell. 2009;8(8):1085–93.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Koshy AA, Dietrich HK, Christian DA, Melehani JH, Shastri AJ, Hunter CA, et al. Toxoplasma co-opts host cells it does not invade. PLoS Pathog. 2012;8(7):e1002825.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Boothroyd JC, Dubremetz JF. Kiss and spit: the dual roles of Toxoplasma rhoptries. Nat Rev Microbiol. 2008;6(1):79–88.CrossRefPubMedGoogle Scholar
  78. 78.
    Rangel-Barajas C, Coronel I, Floran B. Dopamine Receptors and Neurodegeneration. Aging Dis. 2015;6(5):349–68.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.•
    Gaskell EA, Smith JE, Pinney JW, Westhead DR, McConkey GA. A unique dual activity amino acid hydroxylase in Toxoplasma gondii. PloS One. 2009;4(3):e4801. The potential for direct inteference with dopamine metabolism establishes a potential mechanism for parasite mediated modulation of CNS function.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Prandovszky E, Gaskell E, Martin H, Dubey JP, Webster JP, McConkey GA. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism. PLoS One. 2011;6(9):e23866.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.•
    Brooks JM, Carrillo GL, Su J, Lindsay DS, Fox MA, Blader IJ. Toxoplasma gondii Infections Alter GABAergic Synapses and Signaling in the Central Nervous System. mBio. 2015;6(6):e01428–15. Exposition of infection mediated neurological changes and their association with structural changes in GABAergic responses begins to examine the basis for potential paasrite driven changes during chronic infection.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.••
    David CN, Frias ES, Szu JI, Vieira PA, Hubbard JA, Lovelace J, et al. GLT-1-Dependent Disruption of CNS Glutamate Homeostasis and Neuronal Function by the Protozoan Parasite Toxoplasma gondii. PLoS Pathogens. 2016;12(6):e1005643. This study is important in that it not only describes the changes instituted in the infected mouse brain but also provides a mechansitic framework supported by biochemical data in addition to quantitative moprhometry to document infection-related changes in the brain.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Lau A, Tymianski M. Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch - Eur J Physiol. 2010;460(2):525–42.CrossRefGoogle Scholar
  84. 84.
    Hunter CA, Sibley LD. Modulation of innate immunity by Toxoplasma gondii virulence effectors. Nat Rev Microbiol. 2012;10(11):766–78.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Kaye A. Toxoplasmosis: diagnosis, treatment, and prevention in congenitally exposed infants. J Pediatr Health Care. 2011;25(6):355–64.CrossRefPubMedGoogle Scholar
  86. 86.
    Rajapakse S, Chrishan Shivanthan M, Samaranayake N, Rodrigo C, Deepika FS. Antibiotics for human toxoplasmosis: a systematic review of randomized trials. Pathog Glob Health. 2013;107(4):162–9.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Hyde JE. Targeting purine and pyrimidine metabolism in human apicomplexan parasites. Curr Drug Targets. 2007;8(1):31–47.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Notarangelo FM, Wilson EH, Horning KJ, Thomas MA, Harris TH, Fang Q, et al. Evaluation of kynurenine pathway metabolism in Toxoplasma gondii-infected mice: implications for schizophrenia. Schizophr Res. 2014;152(1):261–7.CrossRefPubMedGoogle Scholar
  89. 89.
    Araujo FG, Huskinson-Mark J, Gutteridge WE, Remington JS. In vitro and in vivo activities of the hydroxynaphthoquinone 566C80 against the cyst form of Toxoplasma gondii. Antimicrob Agents Chemother. 1992;36(2):326–30.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Ferguson DJ, Huskinson-Mark J, Araujo FG, Remington JS. An ultrastructural study of the effect of treatment with atovaquone in brains of mice chronically infected with the ME49 strain of Toxoplasma gondii. Int J Exp Pathol. 1994;75(2):111–6.PubMedPubMedCentralGoogle Scholar
  91. 91.
    Huskinson-Mark J, Araujo FG, Remington JS. Evaluation of the effect of drugs on the cyst form of Toxoplasma gondii. J Infect Dis. 1991;164(1):170–1.CrossRefPubMedGoogle Scholar
  92. 92.
    McFadden DC, Boothroyd JC. Cytochrome b mutation identified in a decoquinate-resistant mutant of Toxoplasma gondii. J Eukaryot Microbiol. 1999;46(5):81S–2S.PubMedGoogle Scholar
  93. 93.••
    Doggett JS, Nilsen A, Forquer I, Wegmann KW, Jones-Brando L, Yolken RH, et al. Endochin-like quinolones are highly efficacious against acute and latent experimental toxoplasmosis. Proc Nat Acad Sci USA. 2012;109(39):15936–41. The first family of drugs that exhibit signficant efficacy in the clearance of tissue cysts in the mouse model. The study also provides valuable insights into the metabolic and physiological state of bradyzoites supporting a view for their being more active than previously considered.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Zhang M, Joyce BR, Sullivan Jr WJ, Nussenzweig V. Translational control in Plasmodium and toxoplasma parasites. Eukaryotic Cell. 2013;12(2):161–7.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.•
    Benmerzouga I, Checkley LA, Ferdig MT, Arrizabalaga G, Wek RC, Sullivan Jr WJ. Guanabenz repurposed as an antiparasitic with activity against acute and latent toxoplasmosis. Antimicrob Agents Chemother. 2015;59(11):6939–45. The establishment of translational control as a potential target for drug dvelopment. The study also highlights the utility of drug repurposing as a strategy to streamline drug dvelopment for what may be considered orphan infections.CrossRefPubMedPubMedCentralGoogle Scholar
  96. 96.•
    Vidadala RS, Rivas KL, Ojo KK, Hulverson MA, Zambriski JA, Bruzual I, et al. Development of an Orally Available and Central Nervous System (CNS) Penetrant Toxoplasma gondii Calcium-Dependent Protein Kinase 1 (TgCDPK1) Inhibitor with Minimal Human Ether-a-go-go-Related Gene (hERG) Activity for the Treatment of Toxoplasmosis. J Med Chem. 2016;59(13):6531–46. Identification of TgCDPK’s as targets for drug development against chronic toxoplasma infections presents an additional and legitimate target. The development of an orally available compound holds promise for treatment.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Anthony P. Sinai
    • 1
    Email author
  • Elizabeth A. Watts
    • 1
    • 2
  • Animesh Dhara
    • 1
  • Robert D. Murphy
    • 3
  • Matthew S. Gentry
    • 3
  • Abhijit Patwardhan
    • 4
  1. 1.Department of Microbiology Immunology and Molecular GeneticsLexingtonUSA
  2. 2.Department of Biochemistry and Molecular BiologyUniversity of GeorgiaAthensUSA
  3. 3.Department of Molecular and Cellular Biochemistry, College of MedicineUniversity of KentuckyLexingtonUSA
  4. 4.Department of Biomedical Engineering, College of EngineeringUniversity of KentuckyLexingtonUSA

Personalised recommendations