Current Clinical Microbiology Reports

, Volume 3, Issue 3, pp 132–141 | Cite as

Nucleic Acid Sensing and Innate Immunity: Signaling Pathways Controlling Viral Pathogenesis and Autoimmunity

  • Laura R. H. Ahlers
  • Alan G. GoodmanEmail author
Virology (A Nicola, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Virology


Innate immunity refers to the body’s initial response to curb infection upon exposure to invading organisms. While the detection of pathogen-associated molecules is an ancient form of host defense, if dysfunctional, autoimmune disease may result. The innate immune response during pathogenic infection is initiated through the activation of receptors recognizing conserved molecular patterns, such as nucleic acids from a virus’ genome or replicative cycle. Additionally, the host’s own nucleic acids are capable of activating an immune response. Therefore, it follows that the nucleic acid-sensing pathways must be tightly controlled to avoid an autoimmune response from recognition of self, yet still be unimpeded to respond to viral infections. In this review, we will describe the nucleic acid sensing pathways and how they respond to virus infection. Moreover, we will discuss autoimmune diseases that develop when these pathways fail to signal properly and identify knowledge gaps that are prime for interrogation.


Autoimmunity Interferon RIG-I MDA5 STING cGAS 



Research in the Goodman Lab is funded by NIH Grant R00 AI106963 and funds from Washington State University. L.R.H. Ahlers is supported by NIH Training Grant T32 GM008336.

Compliance with Ethical Standards

Conflict of Interest

Laura Ahlers and Alan Goodman declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Kawai T, Akira S. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity. 2011;34:637–50.PubMedCrossRefGoogle Scholar
  2. 2.
    Sabin LR, Hanna SL, Cherry S. Innate antiviral immunity in Drosophila. Curr Opin Immunol. 2010;22:4–9.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Yoneyama M, Kikuchi M, Natsukawa T, Shinobu N, Imaizumi T, Miyagishi M, et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol. 2004;5:730–7.PubMedCrossRefGoogle Scholar
  4. 4.
    Paludan SR, Bowie AG. Immune sensing of DNA. Immunity. 2013;38:870–80.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Sharma S, tenOever BR, Grandvaux N, Zhou G-P, Lin R, Hiscott J. Triggering the interferon antiviral response through an IKK-related pathway. Science. 2003;300:1148–51.PubMedCrossRefGoogle Scholar
  6. 6.
    Sato M, Suemori H, Hata N, Asagiri M, Ogasawara K, Nakao K, et al. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity. 2000;13:539–48.PubMedCrossRefGoogle Scholar
  7. 7.
    Goodman AG, Zeng H, Proll SC, Peng X, Cilloniz C, Carter VS, et al. The alpha/beta interferon receptor provides protection against influenza virus replication but is dispensable for inflammatory response signaling. J Virol. 2010;84:2027–37.PubMedCrossRefGoogle Scholar
  8. 8.
    Darnell Jr JE, Kerr IM, Stark GR. Jak-STAT pathways and transcriptional activation in response to IFNs and other extracellular signaling proteins. Science. 1994;264:1415–21.PubMedCrossRefGoogle Scholar
  9. 9.
    Levy DE, Marie I, Smith E, Prakash A. Enhancement and diversification of IFN induction by IRF-7-mediated positive feedback. J Interf Cytokine Res. 2002;22:87–93.CrossRefGoogle Scholar
  10. 10.
    Pfeffer LM, Kim JG, Pfeffer SR, Carrigan DJ, Baker DP, Wei L, et al. Role of nuclear factor-{kappa}B in the antiviral action of interferon and interferon-regulated gene expression. J Biol Chem. 2004;279:31304–11.PubMedCrossRefGoogle Scholar
  11. 11.
    Ahn J, Barber GN. Self-DNA, STING-dependent signaling and the origins of autoinflammatory disease. Curr Opin Immunol. 2014;31:121–6.PubMedCrossRefGoogle Scholar
  12. 12.
    Crow YJ, Manel N. Aicardi-Goutieres syndrome and the type I interferonopathies. Nat Rev Immunol. 2015;15:429–40.PubMedCrossRefGoogle Scholar
  13. 13.
    Yoshida H, Okabe Y, Kawane K, Fukuyama H, Nagata S. Lethal anemia caused by interferon-beta produced in mouse embryos carrying undigested DNA. Nat Immunol. 2005;6:49–56.PubMedCrossRefGoogle Scholar
  14. 14.
    Kato H, Takeuchi O, Mikamo-Satoh E, Hirai R, Kawai T, Matsushita K, et al. Length-dependent recognition of double-stranded ribonucleic acids by retinoic acid–inducible gene-I and melanoma differentiation–associated gene 5. J Exp Med. 2008;205:1601–10.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Kang DC, Gopalkrishnan RV, Wu Q, Jankowsky E, Pyle AM, Fisher PB. mda-5: an interferon-inducible putative RNA helicase with double-stranded RNA-dependent ATPase activity and melanoma growth-suppressive properties. Proc Natl Acad Sci U S A. 2002;99:637–42.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Cui Y, Li M, Walton KD, Sun K, Hanover JA, Furth PA, et al. The Stat3/5 locus encodes novel endoplasmic reticulum and helicase-like proteins that are preferentially expressed in normal and neoplastic mammary tissue. Genomics. 2001;78:129–34.PubMedCrossRefGoogle Scholar
  17. 17.
    Yoneyama M, Kikuchi M, Matsumoto K, Imaizumi T, Miyagishi M, Taira K, et al. Shared and unique functions of the DExD/H-box helicases RIG-I, MDA5, and LGP2 in antiviral innate immunity. J Immunol. 2005;175:2851–8.PubMedCrossRefGoogle Scholar
  18. 18.
    Kawai T, Takahashi K, Sato S, Coban C, Kumar H, Kato H, et al. IPS-1, an adaptor triggering RIG-I- and Mda5-mediated type I interferon induction. Nat Immunol. 2005;6:981–8.PubMedCrossRefGoogle Scholar
  19. 19.
    Seth RB, Sun L, Ea C-K, Chen ZJ. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kB and IRF3. Cell. 2005;122:669–82.PubMedCrossRefGoogle Scholar
  20. 20.
    Kato H, Takeuchi O, Sato S, Yoneyama M, Yamamoto M, Matsui K, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441:101–5.PubMedCrossRefGoogle Scholar
  21. 21.
    Hornung V, Ellegast J, Kim S, Brzózka K, Jung A, Kato H, et al. 5′-Triphosphate RNA is the ligand for RIG-I. Science. 2006;314:994–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Loo Y-M, Fornek J, Crochet N, Bajwa G, Perwitasari O, Martinez-Sobrido L, et al. Distinct RIG-I and MDA5 signaling by RNA viruses in innate immunity. J Virol. 2008;82:335–45.PubMedCrossRefGoogle Scholar
  23. 23.
    Huang X, Yue Y, Li D, Zhao Y, Qiu L, Chen J, et al. Antibody-dependent enhancement of dengue virus infection inhibits RLR-mediated type-I IFN-independent signalling through upregulation of cellular autophagy. Sci Rep. 2016;6:22303.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Suthar MS, Ma DY, Thomas S, Lund JM, Zhang N, Daffis S, et al. IPS-1 is essential for the control of West Nile virus infection and immunity. PLoS Pathog. 2010;6:e1000757.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Loeb M, Eskandarian S, Rupp M, Fishman N, Gasink L, Patterson J, et al. Genetic variants and susceptibility to neurological complications following West Nile virus infection. J Infect Dis. 2011;204:1031–7.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Knip M, Veijola R, Virtanen SM, Hyöty H, Vaarala O, Åkerblom HK. Environmental triggers and determinants of type 1 diabetes. Diabetes. 2005;54:S125–36.PubMedCrossRefGoogle Scholar
  27. 27.
    Ylipaasto P, Klingel K, Lindberg AM, Otonkoski T, Kandolf R, Hovi T, et al. Enterovirus infection in human pancreatic islet cells, islet tropism in vivo and receptor involvement in cultured islet beta cells. Diabetologia. 2004;47:225–39.PubMedCrossRefGoogle Scholar
  28. 28.
    Clements GB, Galbraith DN, Taylor KW. Coxsackie B virus infection and onset of childhood diabetes. Lancet. 1995;346:221–3.PubMedCrossRefGoogle Scholar
  29. 29.
    Yeung WC, Rawlinson WD, Craig ME. Enterovirus infection and type 1 diabetes mellitus: systematic review and meta-analysis of observational molecular studies. BMJ. 2011;342:d35.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Liu S, Wang H, Jin Y, Podolsky R, Reddy MVPL, Pedersen J, et al. IFIH1 polymorphisms are significantly associated with type 1 diabetes and IFIH1 gene expression in peripheral blood mononuclear cells. Hum Mol Genet. 2009;18:358–65.PubMedCrossRefGoogle Scholar
  31. 31.•
    Funabiki M, Kato H, Miyachi Y, Toki H, Motegi H, Inoue M, et al. Autoimmune disorders associated with gain of function of the intracellular sensor MDA5. Immunity. 2014;40:199–212. This paper describes the generation of a mouse carrying a mutation in MDA5 through ENU mutagenesis and the mechanisms by which lupus-like autoimmune disease develops.PubMedCrossRefGoogle Scholar
  32. 32.
    Santin I, Moore F, Grieco FA, Marchetti P, Brancolini C, Eizirik DL. USP18 is a key regulator of the interferon-driven gene network modulating pancreatic beta cell inflammation and apoptosis. Cell Death Dis. 2012;3:e419.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.•
    Crow YJ, Chase DS, Lowenstein Schmidt J, Szynkiewicz M, Forte GM, Gornall HL, et al. Characterization of human disease phenotypes associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR, and IFIH1. Am J Med Genet A. 2015;167A:296–312. This paper describes a number of interferonopathies due to familial mutations in nucleic acid sensing proteins. They also describe potential therapeutic windows for autoimmune disease treatment.PubMedCrossRefGoogle Scholar
  34. 34.•
    Pestal K, Funk CC, Snyder JM, Price ND, Treuting PM, Stetson DB. Isoforms of RNA-editing enzyme ADAR1 independently control nucleic acid sensor MDA5-driven autoimmunity and multi-organ development. Immunity. 2015;43:933–44. This paper provides mechanistic data as to how mutations in ADAR control MDA5-MAVS signaling and organ development, leading to human diseases caused by ADAR mutations.PubMedCrossRefGoogle Scholar
  35. 35.
    Lincez PJ, Shanina I, Horwitz MS. Reduced expression of the MDA5 Gene IFIH1 prevents autoimmune diabetes. Diabetes. 2015;64:2184–93.PubMedCrossRefGoogle Scholar
  36. 36.
    McCartney SA, Vermi W, Lonardi S, Rossini C, Otero K, Calderon B, et al. RNA sensor-induced type I IFN prevents diabetes caused by a β cell-tropic virus in mice. J Clin Invest. 2011;121:1497–507.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Katze MG, Tomita J, Black T, Krug RM, Safer B, Hovanessian AG. Influenza virus regulates protein synthesis during infection by repressing the autophosphorylation and activity of the cellular 68,000- M r protein kinase. J Virol. 1988;62:3710–7.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Lee TG, Tomita J, Hovanessian AG, Katze MG. Purification and partial characterization of a cellular inhibitor of the interferon-induced protein kinase of M r 68,000 from influenza virus-infected cells. Proc Natl Acad Sci U S A. 1990;87:6208–12.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Goodman AG, Smith JA, Balachandran S, Perwitasari O, Proll SC, Thomas MJ, et al. The cellular protein P58IPK regulates influenza virus mRNA translation and replication through a PKR-mediated mechanism. J Virol. 2007;81:2221–30.PubMedCrossRefGoogle Scholar
  40. 40.
    Goodman AG, Tanner BCW, Chang ST, Esteban M, Katze MG. Virus infection rapidly activates the P58IPK pathway, delaying peak kinase activation to enhance viral replication. Virology. 2011;417:27–36.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Zhang HM, Qiu Y, Ye X, Hemida MG, Hanson P, Yang D. P58(IPK) inhibits coxsackievirus-induced apoptosis via the PI3K/Akt pathway requiring activation of ATF6a and subsequent upregulation of mitofusin 2. Cell Microbiol. 2014;16:411–24.PubMedCrossRefGoogle Scholar
  42. 42.
    Goodman AG, Fornek JL, Medigeshi GR, Perrone LA, Peng X, Dyer MD, et al. P58(IPK): a novel "CIHD" member of the host innate defense response against pathogenic virus infection. PLoS Pathog. 2009;5:e1000438.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Yan W, Frank CL, Korth MJ, Sopher BL, Novoa I, Ron D, et al. Control of PERK eIF2a kinase activity by the endoplasmic reticulum stress-induced molecular chaperone P58 IPK. Proc Natl Acad Sci U S A. 2002;99:15920–5.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Ladiges WC, Knoblaugh SE, Morton JF, Korth MJ, Sopher BL, Baskin CR, et al. Pancreatic beta-cell failure and diabetes in mice with a deletion mutation of the endoplasmic reticulum molecular chaperone gene P58IPK. Diabetes. 2005;54:1074–81.PubMedCrossRefGoogle Scholar
  45. 45.
    Harding HP, Zeng H, Zhang Y, Jungries R, Chung P, Plesken H, et al. Diabetes mellitus and exocrine pancreatic dysfunction in Perk −/− mice reveals a role for translational control in secretory cell survival. Mol Cell. 2001;7:1153–63.PubMedCrossRefGoogle Scholar
  46. 46.••
    Synofzik M, Haack TB, Kopajtich R, Gorza M, Rapaport D, Greiner M, et al. Absence of BiP co-chaperone DNAJC3 causes diabetes mellitus and multisystemic neurodegeneration. Am J Hum Genet. 2014;95:689–97. This study screened 226,194 individuals for mutations in Dnajc3 and found 8 individuals who all had mutations in Dnajc3. Individuals lacking Dnajc3 had a recessive form of diabetes mellitus and widespread neurodegeneration.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Wang Y, Zhang H-X, Sun Y-P, Liu Z-X, Liu X-S, Wang L, et al. Rig-I −/− mice develop colitis associated with downregulation of Gαi2. Cell Res. 2007;17:858–68.PubMedCrossRefGoogle Scholar
  48. 48.
    Funke B, Lasitschka F, Roth W, Penzel R, Meuer S, Saile M, et al. Selective downregulation of retinoic acid-inducible gene I within the intestinal epithelial compartment in Crohn’s disease. Inflamm Bowel Dis. 2011;17:1943–54.PubMedCrossRefGoogle Scholar
  49. 49.
    Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A, Xin K-Q, et al. The Atg5–Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci U S A. 2007;104:14050–5.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Morosky SA, Zhu J, Mukherjee A, Sarkar SN, Coyne CB. Retinoic Acid-induced Gene-I (RIG-I) associates with nucleotide-binding oligomerization domain-2 (NOD2) to negatively regulate inflammatory signaling. J Biol Chem. 2011;286:28574–83.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS, Iwasaki A. Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A. 2009;106:2770–5.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Bretin A, Carrière J, Dalmasso G, Bergougnoux A, B’Chir W, Maurin A-C, et al. Activation of the EIF2AK4-EIF2A/eIF2α-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive Escherichia coli infection. Autophagy. 2016;12:1–14.CrossRefGoogle Scholar
  53. 53.
    Gao H, Lin L, Haq IU, Zeng SM. Inhibition of NF-kB promotes autophagy via JNK signaling pathway in porcine granulosa cells. Biochem Biophys Res Commun. 2016;473:311–6.PubMedCrossRefGoogle Scholar
  54. 54.
    Palomino-Morales RJ, Oliver J, Gómez-García M, López-Nevot MA, Rodrigo L, Nieto A, et al. Association of ATG16L1 and IRGM genes polymorphisms with inflammatory bowel disease: a meta-analysis approach. Genes Immun. 2009;10:356–64.PubMedCrossRefGoogle Scholar
  55. 55.
    Rutsch F, MacDougall M, Lu C, Buers I, Mamaeva O, Nitschke Y, et al. A specific IFIH1 gain-of-function mutation causes Singleton-Merten syndrome. Am J Hum Genet. 2015;96:275–82.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.•
    Jang MA, Kim EK, Now H, Nguyen NT, Kim WJ, Yoo JY, et al. Mutations in DDX58, which encodes RIG-I, cause atypical Singleton-Merten syndrome. Am J Hum Genet. 2015;96:266–74. This study describes a family with atypical SMS carries a genetic variant in the gene encoding RIG-I. This variant results in constitutive activation of RIG-I and increased IFN levels.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Butbul Aviel Y, Mandel H, Avitan Hersh E, Bergman R, Adiv OE, Luder A, et al. Prolidase deficiency associated with systemic lupus erythematosus (SLE): single site experience and literature review. Pediatr Rheumatol Online J. 2012;10:18.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.••
    Lubick KJ, Robertson SJ, McNally KL, Freedman BA, Rasmussen AL, Taylor RT, et al. Flavivirus Antagonism of Type I Interferon Signaling Reveals Prolidase as a Regulator of IFNAR1 Surface Expression. Cell Host Microbe. 2015;18:61–74. This study describes the use of West Nile virus infection to uncover that prolidase is required for normal type I IFN receptor expression and provides mechanistic data as to why mutations in prolidase lead to autoimmune disease.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Ishikawa H, Barber GN. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature. 2008;455:674–8.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Jin L, Hill KK, Filak H, Mogan J, Knowles H, Zhang B, et al. MPYS is required for IFN response factor 3 activation and type I IFN production in the response of cultured phagocytes to bacterial second messengers cyclic-di-AMP and cyclic-di-GMP. J Immunol. 2011;187:2595–601.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Sun W, Li Y, Chen L, Chen H, You F, Zhou X, et al. ERIS, an endoplasmic reticulum IFN stimulator, activates innate immune signaling through dimerization. Proc Natl Acad Sci U S A. 2009;106:8653–8.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Zhong B, Yang Y, Li S, Wang YY, Li Y, Diao F, et al. The adaptor protein MITA links virus-sensing receptors to IRF3 transcription factor activation. Immunity. 2008;29:538–50.PubMedCrossRefGoogle Scholar
  63. 63.
    Takaoka A, Wang Z, Choi MK, Yanai H, Negishi H, Ban T, et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature. 2007;448:501–5.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang Z, Yuan B, Bao M, Lu N, Kim T, Liu YJ. The helicase DDX41 senses intracellular DNA mediated by the adaptor STING in dendritic cells. Nat Immunol. 2011;12:959–65.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Unterholzner L, Keating SE, Baran M, Horan KA, Jensen SB, Sharma S, et al. IFI16 is an innate immune sensor for intracellular DNA. Nat Immunol. 2010;11:997–1004.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Johnson KE, Bottero V, Flaherty S, Dutta S, Singh VV, Chandran B. IFI16 restricts HSV-1 replication by accumulating on the hsv-1 genome, repressing HSV-1 gene expression, and directly or indirectly modulating histone modifications. PLoS Pathog. 2014;10:e1004503.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Li T, Chen J, Cristea IM. Human cytomegalovirus tegument protein pUL83 inhibits IFI16-mediated DNA sensing for immune evasion. Cell Host Microbe. 2013;14:591–9.PubMedCrossRefGoogle Scholar
  68. 68.
    Orzalli MH, Conwell SE, Berrios C, DeCaprio JA, Knipe DM. Nuclear interferon-inducible protein 16 promotes silencing of herpesviral and transfected DNA. Proc Natl Acad Sci U S A. 2013;110:E4492–501.PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Fernandes-Alnemri T, Yu JW, Datta P, Wu J, Alnemri ES. AIM2 activates the inflammasome and cell death in response to cytoplasmic DNA. Nature. 2009;458:509–13.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Hornung V, Ablasser A, Charrel-Dennis M, Bauernfeind F, Horvath G, Caffrey DR, et al. AIM2 recognizes cytosolic dsDNA and forms a caspase-1-activating inflammasome with ASC. Nature. 2009;458:514–8.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Rathinam VA, Jiang Z, Waggoner SN, Sharma S, Cole LE, Waggoner L, et al. The AIM2 inflammasome is essential for host defense against cytosolic bacteria and DNA viruses. Nat Immunol. 2010;11:395–402.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Brunette RL, Young JM, Whitley DG, Brodsky IE, Malik HS, Stetson DB. Extensive evolutionary and functional diversity among mammalian AIM2-like receptors. J Exp Med. 2012;209:1969–83.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Burdette DL, Monroe KM, Sotelo-Troha K, Iwig JS, Eckert B, Hyodo M, et al. STING is a direct innate immune sensor of cyclic di-GMP. Nature. 2011;478:515–8.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Ouyang S, Song X, Wang Y, Ru H, Shaw N, Jiang Y, et al. Structural analysis of the STING adaptor protein reveals a hydrophobic dimer interface and mode of cyclic di-GMP binding. Immunity. 2012;36:1073–86.PubMedCrossRefGoogle Scholar
  75. 75.
    Shang G, Zhu D, Li N, Zhang J, Zhu C, Lu D, et al. Crystal structures of STING protein reveal basis for recognition of cyclic di-GMP. Nat Struct Mol Biol. 2012;19:725–7.PubMedCrossRefGoogle Scholar
  76. 76.
    Shu C, Yi G, Watts T, Kao CC, Li P. Structure of STING bound to cyclic di-GMP reveals the mechanism of cyclic dinucleotide recognition by the immune system. Nat Struct Mol Biol. 2012;19:722–4.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Yin Q, Tian Y, Kabaleeswaran V, Jiang X, Tu D, Eck MJ, et al. Cyclic di-GMP sensing via the innate immune signaling protein STING. Mol Cell. 2012;46:735–45.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Woodward JJ, Iavarone AT, Portnoy DA. c-di-AMP secreted by intracellular Listeria monocytogenes activates a host type I interferon response. Science. 2010;328:1703–5.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Sauer JD, Sotelo-Troha K, von Moltke J, Monroe KM, Rae CS, Brubaker SW, et al. The N-ethyl-N-nitrosourea-induced Goldenticket mouse mutant reveals an essential function of Sting in the in vivo interferon response to Listeria monocytogenes and cyclic dinucleotides. Infect Immun. 2011;79:688–94.PubMedCrossRefGoogle Scholar
  80. 80.
    Ablasser A, Goldeck M, Cavlar T, Deimling T, Witte G, Rohl I, et al. cGAS produces a 2′-5′-linked cyclic dinucleotide second messenger that activates STING. Nature. 2013;498:380–4.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Diner EJ, Burdette DL, Wilson SC, Monroe KM, Kellenberger CA, Hyodo M, et al. The innate immune DNA sensor cGAS produces a noncanonical cyclic dinucleotide that activates human STING. Cell Rep. 2013;3:1355–61.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.••
    Sun L, Wu J, Du F, Chen X, Chen ZJ. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science. 2013;339:786–91. This is the first paper to identify cGAS and show that it binds cytosolic DNA to generate cGAMP and activate type I IFN.PubMedCrossRefGoogle Scholar
  83. 83.
    Gao D, Wu J, Wu YT, Du F, Aroh C, Yan N, et al. Cyclic GMP-AMP synthase is an innate immune sensor of HIV and other retroviruses. Science. 2013;341:903–6.PubMedCrossRefGoogle Scholar
  84. 84.
    Wu J, Sun L, Chen X, Du F, Shi H, Chen C, et al. Cyclic GMP-AMP is an endogenous second messenger in innate immune signaling by cytosolic DNA. Science. 2013;339:826–30.PubMedCrossRefGoogle Scholar
  85. 85.•
    Liu S, Cai X, Wu J, Cong Q, Chen X, Li T, et al. Phosphorylation of innate immune adaptor proteins MAVS, STING, and TRIF induces IRF3 activation. Science. 2015;347:aaa2630. This study describes a common mechanism that both MAVS and STING use to activate IRF3 through TBK1 and TRIF.PubMedCrossRefGoogle Scholar
  86. 86.
    Tsuchida T, Zou J, Saitoh T, Kumar H, Abe T, Matsuura Y, et al. The ubiquitin ligase TRIM56 regulates innate immune responses to intracellular double-stranded DNA. Immunity. 2010;33:765–76.PubMedCrossRefGoogle Scholar
  87. 87.
    Zhang J, Hu MM, Wang YY, Shu HB. TRIM32 protein modulates type I interferon induction and cellular antiviral response by targeting MITA/STING protein for K63-linked ubiquitination. J Biol Chem. 2012;287:28646–55.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Qin Y, Zhou MT, Hu MM, Hu YH, Zhang J, Guo L, et al. RNF26 temporally regulates virus-triggered type I interferon induction by two distinct mechanisms. PLoS Pathog. 2014;10:e1004358.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Zhong B, Zhang L, Lei C, Li Y, Mao A-P, Yang Y, et al. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity. 2009;30:397–407.PubMedCrossRefGoogle Scholar
  90. 90.•
    Konno H, Konno K, Barber GN. Cyclic dinucleotides trigger ULK1 (ATG1) phosphorylation of STING to prevent sustained innate immune signaling. Cell. 2013;155:688–98. This study shows how STING is negatively regulated through ULK1, which is also activated by cGAMP, to prevent STING hyperactivity.PubMedCrossRefGoogle Scholar
  91. 91.
    Ishikawa H, Ma Z, Barber GN. STING regulates intracellular DNA-mediated, type I interferon-dependent innate immunity. Nature. 2009;461:788–92.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Kalamvoki M, Roizman B. HSV-1 degrades, stabilizes, requires, or is stung by STING depending on ICP0, the US3 protein kinase, and cell derivation. Proc Natl Acad Sci U S A. 2014;111:E611–7.PubMedPubMedCentralCrossRefGoogle Scholar
  93. 93.
    Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science. 2013;341:1390–4.PubMedCrossRefGoogle Scholar
  94. 94.
    Ma Z, Jacobs SR, West JA, Stopford C, Zhang Z, Davis Z, Barber GN, Glaunsinger BA, Dittmer DP, Damania B. Modulation of the cGAS-STING DNA sensing pathway by gammaherpesviruses. Proc Natl Acad Sci U S A. 2015.Google Scholar
  95. 95.
    Wu JJ, Li W, Shao Y, Avey D, Fu B, Gillen J, et al. Inhibition of cGAS DNA sensing by a herpesvirus virion protein. Cell Host Microbe. 2015;18:333–44.PubMedCrossRefGoogle Scholar
  96. 96.••
    Lau L, Gray EE, Brunette RL, Stetson DB. DNA tumor virus oncogenes antagonize the cGAS-STING DNA-sensing pathway. Science. 2015;350:568–71. This study identifies that transformed cell lines harbor viral oncogenes that inhibit the cGAS/STING pathway.PubMedCrossRefGoogle Scholar
  97. 97.
    Xia T, Konno H, Ahn J, Barber GN. Deregulation of STING signaling in colorectal carcinoma constrains DNA damage responses and correlates with tumorigenesis. Cell Rep. 2016;14:282–97.PubMedCrossRefGoogle Scholar
  98. 98.
    Ahn J, Konno H, Barber GN. Diverse roles of STING-dependent signaling on the development of cancer. Oncogene. 2015;34:5302–8.PubMedCrossRefGoogle Scholar
  99. 99.
    Crow YJ, Hayward BE, Parmar R, Robins P, Leitch A, Ali M, et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi-Goutieres syndrome at the AGS1 locus. Nat Genet. 2006;38:917–20.PubMedCrossRefGoogle Scholar
  100. 100.
    Lee-Kirsch MA, Gong M, Chowdhury D, Senenko L, Engel K, Lee YA, et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 are associated with systemic lupus erythematosus. Nat Genet. 2007;39:1065–7.PubMedCrossRefGoogle Scholar
  101. 101.
    Gall A, Treuting P, Elkon KB, Loo Y-M, Gale Jr M, Barber GN, et al. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity. 2012;36:120–31.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Ahn J, Ruiz P, Barber GN. Intrinsic self-DNA triggers inflammatory disease dependent on STING. J Immunol. 2014;193:4634–42.PubMedCrossRefGoogle Scholar
  103. 103.••
    Liu Y, Jesus AA, Marrero B, Yang D, Ramsey SE, Sanchez GA, Tenbrock K, Wittkowski H, Jones OY, Kuehn HS, et al. Activated STING in a vascular and pulmonary syndrome. N Engl J Med. 2014. This paper shows that children carrying conserved mutations in the gene encoding STING display a form of autoimmune disease through STING hyperactivation and constituitive Stat1 signaling. Google Scholar
  104. 104.
    Jeremiah N, Neven B, Gentili M, Callebaut I, Maschalidi S, Stolzenberg MC, et al. Inherited STING-activating mutation underlies a familial inflammatory syndrome with lupus-like manifestations. J Clin Invest. 2014;124:5516–20.PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Crow YJ, Leitch A, Hayward BE, Garner A, Parmar R, Griffith E, et al. Mutations in genes encoding ribonuclease H2 subunits cause Aicardi-Goutieres syndrome and mimic congenital viral brain infection. Nat Genet. 2006;38:910–6.PubMedCrossRefGoogle Scholar
  106. 106.•
    Wang F, Alain T, Szretter KJ, Stephenson K, Pol JG, Atherton MJ, Hoang HD, Fonseca BD, Zakaria C, Chen L, et al. S6K-STING interaction regulates cytosolic DNA-mediated activation of the transcription factor IRF3. Nat Immunol. 2016. This paper uncovers the role of the ribosomal protein S6K1 in STING/TBK1-mediated IRF3 activation, implicating S6K1 as a target to treat autoimmune disease. Google Scholar
  107. 107.
    Takada I, Yogiashi Y, Makishima M. The ribosomal S6 kinase inhibitor BI-D1870 ameliorated experimental autoimmune encephalomyelitis in mice. Immunobiology. 2016;221:188–92.PubMedCrossRefGoogle Scholar
  108. 108.
    Lemos H, Huang L, Chandler PR, Mohamed E, Souza GR, Li L, et al. Activation of the STING adaptor attenuates experimental autoimmune encephalitis. J Immunol. 2014;192:5571–8.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.••
    Gao D, Li T, Li XD, Chen X, Li QZ, Wight-Carter M, et al. Activation of cyclic GMP-AMP synthase by self-DNA causes autoimmune diseases. Proc Natl Acad Sci U S A. 2015;112:E5699–705. This study provides mechanistic data as to how cGAS hyperactivation may lead to a hyperinflammatory response, implicating it as a major target to treat autoimmune diseases.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  1. 1.School of Molecular Biosciences, College of Veterinary MedicineWashington State UniversityPullmanUSA
  2. 2.Protein Biotechnology Graduate Training ProgramWashington State UniversityPullmanUSA

Personalised recommendations