Skip to main content
Log in

Non-homogeneous Hamiltonian structures for quasilinear systems

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

This paper aims at investigating necessary (and sufficient) conditions for quasilinear systems of first order PDEs to be Hamiltonian, with non-homogeneous operators of order \(1+0\), also with degenerate leading coefficient. As a byproduct, Tsarev’s compatibility conditions are extended to degenerate operators. Some examples are finally discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dell’Atti, M., Vergallo, P.: Classification of degenerate non-homogeneous Hamiltonian operators. J. Math. Phys. 64(3) (2022). https://doi.org/10.1063/5.0135134. arXiv:2210.14289. March 2023

  2. Dubrovin, B.A., Krichever, I.M., Novikov, S.P.: Integrable systems. I. In: Dynamical Systems IV, volume 4 of Encyclopaedia of Mathematical Sciences, 2nd edn., pp. 173–280. Springer, Berlin (2001)

    Google Scholar 

  3. Dubrovin, B.A., Novikov, S.P.: Hamiltonian formalism of one-dimensional systems of hydrodynamic type and the Bogolyubov–Whitham averaging method. Soviet Math. Dokl. 27(3), 665–669 (1983)

    Google Scholar 

  4. Dubrovin, B.A., Novikov, S.P.: Poisson brackets of hydrodynamic type. Soviet Math. Dokl. 30, 651–654 (1984)

    Google Scholar 

  5. Falqui, G.: On a Camassa–Holm type equation with two dependent variables. J. Phys. A. Math. Gen. 39, 327–342 (2006)

    Article  MathSciNet  Google Scholar 

  6. Ferapontov, E.V., Pavlov, M.V., Vitolo, R.F.: Projective-geometric aspects of homogeneous third-order Hamiltonian operators. J. Geom. Phys. 85, 16–28 (2014). https://doi.org/10.1016/j.geomphys.2014.05.027

    Article  MathSciNet  Google Scholar 

  7. Ferapontov, E.V., Pavlov, M.V., Vitolo, R.: Systems of conservation laws with third-order Hamiltonian structures. Lett. Math. Phys. 108(6), 1525–1550 (2018)

    Article  MathSciNet  Google Scholar 

  8. Kersten, P., Krasil’shchik, I., Verbovetsky, A.: Hamiltonian operators and \(\ell ^*\)-coverings. J. Geom. Phys. 50, 273–302 (2004)

    Article  MathSciNet  Google Scholar 

  9. Krasil’shchik, J., Verbovetsky, A., Vitolo, R.: The symbolic computation of integrability structures for partial differential equations. In: Texts and Monographs in Symbolic Computation. Springer (2018). ISBN 978-3-319-71654-1. see http://gdeq.org/Symbolic_Book for downloading program files that are discussed in the book

  10. Mokhov, O.I., Ferapontov, E.V.: Hamiltonian pairs associated with skew-symmetric killing tensors on spaces of constant curvature. Funktsional. Anal. i Prilozhen. 28(2), 60–63 (1994)

    Article  MathSciNet  Google Scholar 

  11. Mokhov, O.I., Ferapontov, E.V.: Hamiltonian pairs associated with skew-symmetric killing tensors on spaces of constant curvature. Funct. Anal. Appl. 28(2), 123–125 (1994)

    Article  MathSciNet  Google Scholar 

  12. Mokhov, O.I.: Symplectic and Poisson geometry on loop spaces of smooth manifolds and integrable equations. In: Novikov, S.P., Krichever, I.M. (eds.) Reviews in Mathematics and Mathematical Physics, vol. 11, pp. 1–128. Harwood Academic Publishers, Reading (1998)

    Google Scholar 

  13. Novikov, S.P., Manakov, S.V., Pitaevskii, L.P., Zakharov, V.E.: Theory of Solitons. Plenum Press, New York (1984)

    Google Scholar 

  14. Olver, P.J.: Applications of Lie Groups to Differential Equations, 2nd edn. Springer, Berlin (1993)

    Book  Google Scholar 

  15. Tsarev, S.P.: On Poisson brackets and one-dimensional Hamiltonian systems of hydrodynamic type. Soviet Math. Dokl. 31(3), 488–491 (1985)

    MathSciNet  Google Scholar 

  16. Tsarev, S.P.: The geometry of Hamiltonian systems of hydrodynamic type. The generalized hodograph method. Math. USSR-Izv. 37(2), 397–419 (1991)

    Article  MathSciNet  Google Scholar 

  17. Tsarev, S.P.: The Hamiltonian property of stationary and inverse equations of condensed matter mechanics and mathematical physics. Math. Notes 46, 569–573 (1989)

    Article  MathSciNet  Google Scholar 

  18. Vergallo, P.: Quasilinear systems of first order PDEs and nonlocal Hamiltonian structures. Math. Phys. Anal. Geom. 25, 26 (2022). https://doi.org/10.1007/s11040-022-09438-1

    Article  MathSciNet  Google Scholar 

  19. Vergallo, P., Ferapontov, E.V.: Hamiltonian systems of Jordan block type: delta-functional reductions of the kinetic equation for soliton gas. arXiv:2212.01413 (2022)

  20. Vergallo, P., Vitolo, R.: Homogeneous Hamiltonian operators and the theory of coverings. Differ. Geom. Appl. 75, 101713 (2021). arXiv:2007.15294

    Article  MathSciNet  Google Scholar 

  21. Vergallo, P., Vitolo, R.: Projective geometry of homogeneous second order Hamiltonian operators. arXiv, arxiv:2203.04237 (2022)

  22. Vitolo, R.: Computing with Hamiltonian operators. Comput. Phys. Commun. 244, 228–245 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The author thanks R. Vitolo, M. Menale and M. Dell’Atti for stimulating discussions. The author also acknowledges the financial support of GNFM of the Istituto Nazionale di Alta Matematica, of PRIN 2017 “Multiscale phenomena in Continuum Mechanics: singular limits, off-equilibrium and transitions”, project number 2017YBKNCE and of the research project Mathematical Methods in Non-Linear Physics (MMNLP) by the Commissione Scientifica Nazionale – Gruppo 4 – Fisica Teorica of the Istituto Nazionale di Fisica Nucleare (INFN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierandrea Vergallo.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data availability

No data are used in the present article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vergallo, P. Non-homogeneous Hamiltonian structures for quasilinear systems. Boll Unione Mat Ital 17, 513–526 (2024). https://doi.org/10.1007/s40574-023-00369-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-023-00369-5

Keywords

Navigation