Skip to main content
Log in

A Lanczos-like method for non-autonomous linear ordinary differential equations

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript

Abstract

The time-ordered exponential is defined as the function that solves a system of coupled first-order linear differential equations with generally non-constant coefficients. In spite of being at the heart of much system dynamics, control theory, and model reduction problems, the time-ordered exponential function remains elusively difficult to evaluate. The \(*\)-Lanczos algorithm is a (symbolic) algorithm capable of evaluating it by producing a tridiagonalization of the original differential system. In this paper, we explain how the \(*\)-Lanczos algorithm is built from a generalization of Krylov subspaces, and we prove crucial properties, such as the matching moment property. A strategy for its numerical implementation is also outlined and will be subject of future investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. The \(\#\)P class is the class of problems equivalent to counting the number of accepting paths of a polynomial-time non-deterministic Turing machine. Problems in \(\#\)P-complete are at least as hard as NP-complete problems.

References

  1. Dyson, F.J.: Divergence of perturbation theory in quantum electrodynamics. Phys. Rev. 85(4), 631–632 (1952). https://doi.org/10.1103/PhysRev.85.631

    Article  MathSciNet  MATH  Google Scholar 

  2. Xie, Q., Hai, W.: Analytical results for a monochromatically driven two-level system. Phys. Rev. A 82, 032117 (2010)

    Article  Google Scholar 

  3. Hortaçsu, M.: Heun functions and some of their applications in physics. Adv. High Energy Phys. 2018, 8621573 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blanes, S., Casas, F., Oteo, J.A., Ros, J.: The Magnus expansion and some of its applications. Phys. Rep. 470(5), 151–238 (2009)

    Article  MathSciNet  Google Scholar 

  5. Autler, S.H., Townes, C.H.: Stark effect in rapidly varying fields. Phys. Rev. 100, 703–722 (1955)

    Article  Google Scholar 

  6. Shirley, J.H.: Solution of the Schrödinger equation with a Hamiltonian periodic in time. Phys. Rev. 138, 979–987 (1965)

    Article  Google Scholar 

  7. Lauder, M.A., Knight, P.L., Greenland, P.T.: Pulse-shape effects in intense-field laser excitation of atoms. Opt. Acta 33(10), 1231–1252 (1986)

    Article  Google Scholar 

  8. Reid, W.T.: Riccati matrix differential equations and non-oscillation criteria for associated linear differential systems. Pac. J. Math. 13(2), 665–685 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kwakernaak, H., Sivan, R.: Linear Optimal Control Systems, vol. 1. Wiley-interscience, New York (1972)

    MATH  Google Scholar 

  10. Corless, M., Frazho, A.: Linear Systems and Control: An Operator Perspective. Pure and Applied Mathematics. Marcel Dekker, New York (2003)

    Book  MATH  Google Scholar 

  11. Blanes, S.: High order structure preserving explicit methods for solving linear-quadratic optimal control problems. Numer. Algor. 69(2), 271–290 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Benner, P., Cohen, A., Ohlberger, M., Willcox, K.: Model Reduction and Approximation: Theory and Algorithms. Computational Science and Engineering. SIAM, Philadelphia (2017)

    Book  MATH  Google Scholar 

  13. Kučera, V.: A review of the matrix Riccati equation. Kybernetika 9(1), 42–61 (1973)

    MathSciNet  MATH  Google Scholar 

  14. Abou-Kandil, H., Freiling, G., Ionescu, V., Jank, G.: Matrix Riccati Equations in Control and Systems. Theory Systems & Control: Foundations & Applications. Birkhäuser, Basel (2003)

    Book  MATH  Google Scholar 

  15. Hached, M., Jbilou, K.: Numerical solutions to large-scale differential Lyapunov matrix equations. Numer. Algor. 79(3), 741–757 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kirsten, G., Simoncini, V.: Order reduction methods for solving large-scale differential matrix Riccati equations. SIAM J. Sci. Comput. 42(4), 2182–2205 (2020). https://doi.org/10.1137/19m1264217

    Article  MathSciNet  MATH  Google Scholar 

  17. Giscard, P.-L., Pozza, S.: Tridiagonalization of systems of coupled linear differential equations with variable coefficients by a Lanczos-like method. Linear Algebra Appl. 624, 153–173 (2021). https://doi.org/10.1016/j.laa.2021.04.011

    Article  MathSciNet  MATH  Google Scholar 

  18. Giscard, P.-L., Pozza, S.: Lanczos-like algorithm for the time-ordered exponential: the \(\ast \)-inverse problem. Appl. Math. 65(6), 807–827 (2020). https://doi.org/10.21136/am.2020.0342-19

    Article  MathSciNet  MATH  Google Scholar 

  19. Magnus, W.: On the exponential solution of differential equations for a linear operator. Comm. Pure Appl. Math. 7(4), 649–673 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  20. Casas, F.: Sufficient conditions for the convergence of the Magnus expansion. J. Phys. A 40(50), 15001–15017 (2007). https://doi.org/10.1088/1751-8113/40/50/006

    Article  MathSciNet  MATH  Google Scholar 

  21. Fel’dman, E.B.: On the convergence of the Magnus expansion for spin systems in periodic magnetic fields. Phys. Lett. 104A(9), 479–481 (1984)

    Article  Google Scholar 

  22. Maricq, M.M.: Convergence of the Magnus expansion for time dependent two level systems. J. Chem. Phys. 86(10), 5647–5651 (1987)

    Article  MathSciNet  Google Scholar 

  23. Iserles, A., Munthe-Kaas, H.Z., Nørsett, S.P., Zanna, A.: Lie-group methods. Acta Numer. 9, 215–365 (2000). https://doi.org/10.1017/S0962492900002154

    Article  MathSciNet  MATH  Google Scholar 

  24. Moan, P.C., Niesen, J.: Convergence of the Magnus series. Found. Comput. Math. 8(3), 291–301 (2007). https://doi.org/10.1007/s10208-007-9010-0

    Article  MathSciNet  MATH  Google Scholar 

  25. Sánchez, S., Casas, F., Fernández, A.: New analytic approximations based on the Magnus expansion. J. Math. Chem. 49(8), 1741–1758 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  26. Giscard, P.-L., Lui, K., Thwaite, S.J., Jaksch, D.: An exact formulation of the time-ordered exponential using path-sums. J. Math. Phys. 56(5), 053503 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  27. Balasubramanian, V., DeCross, M., Kar, A., Parrikar, O.: Quantum complexity of time evolution with chaotic Hamiltonians. J. High Energ. Phys. 134 (2020)

  28. Giscard, P.-L., Bonhomme, C.: Dynamics of quantum systems driven by time-varying Hamiltonians: solution for the Bloch–Siegert Hamiltonian and applications to NMR. Phys. Rev. Res. (2020). https://doi.org/10.1103/PhysRevResearch.2.023081

    Article  Google Scholar 

  29. Flum, J., Grohe, M.: The parameterized complexity of counting problems. SIAM J. Comput. 33, 892–922 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  30. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix. SIAM Rev. 20(4), 801–836 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  31. Moler, C., Van Loan, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years later. SIAM Rev. 45(1), 3–49 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Higham, N.J.: Functions of Matrices. Theory and Computation, p. 425. SIAM, Philadelphia (2008)

    Book  MATH  Google Scholar 

  33. Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos process and related algorithms. I. SIAM J. Matrix Anal. Appl. 13(2), 594–639 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gutknecht, M.H.: A completed theory of the unsymmetric Lanczos process and related algorithms. II. SIAM J. Matrix Anal. Appl. 15(1), 15–58 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  35. Golub, G.H., Meurant, G.: Matrices, Moments and Quadrature with Applications. Princeton Ser. Appl. Math. Princeton University Press, Princeton, p. 363 (2010)

  36. Liesen, J., Strakoš, Z.: Krylov Subspace Methods: Principles and Analysis. Numer. Math. Sci. Comput. Oxford University Press, Oxford (2013)

    MATH  Google Scholar 

  37. Pozza, S., Pranić, M.S., Strakoš, Z.: Gauss quadrature for quasi-definite linear functionals. IMA J. Numer. Anal. 37(3), 1468–1495 (2017)

    MathSciNet  MATH  Google Scholar 

  38. Pozza, S., Pranić, M.S., Strakoš, Z.: The Lanczos algorithm and complex Gauss quadrature. Electron. Trans. Numer. Anal. 50, 1–19 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  39. Parlett, B.N.: Reduction to tridiagonal form and minimal realizations. SIAM J. Matrix Anal. Appl. 13(2), 567–593 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  40. Draux, A.: Polynômes Orthogonaux Formels. Lecture Notes in Math., vol. 974. Springer, Berlin, p. 625 (1983)

  41. Schwartz, L.: Théorie Des Distributions, Nouvelle édition, entièrement corrigée, refondue et augmentée. Hermann, Paris (1978)

    MATH  Google Scholar 

  42. Halperin, I., Schwartz, L.: Introduction to the Theory of Distributions. University of Toronto Press, Toronto (2019). https://doi.org/10.3138/9781442615151. https://toronto.degruyter.com/view/title/550976

  43. Volterra, V., Pérès, J.: Leçons sur la Composition et les Fonctions Permutables. Éditions Jacques Gabay, Paris (1928)

    MATH  Google Scholar 

  44. Giscard, P.-L., Thwaite, S.J., Jaksch, D.: Walk-sums, continued fractions and unique factorisation on digraphs (2012). arXiv:1202.5523 [cs.DM]

  45. Kılıç, E.: Explicit formula for the inverse of a tridiagonal matrix by backward continued fractions. Appl. Math. Comput. 197(1), 345–357 (2008)

    MathSciNet  MATH  Google Scholar 

  46. Taylor, D.R.: Analysis of the look ahead Lanczos algorithm. PhD thesis, University of California, Berkeley (1982)

  47. Parlett, B.N., Taylor, D.R., Liu, Z.A.: A look-ahead Lanczos algorithm for unsymmetric matrices. Math. Comp. 44(169), 105–124 (1985)

    MathSciNet  MATH  Google Scholar 

  48. Freund, R.W., Gutknecht, M.H., Nachtigal, N.M.: An implementation of the look-ahead Lanczos algorithm for non-Hermitian matrices. SIAM J. Sci. Comput. 14, 137–158 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  49. Hochbruck, M., Lubich, C.: Exponential integrators for quantum-classical molecular dynamics. BIT Numer. Math. 39(4), 620–645 (1999). https://doi.org/10.1023/A:1022335122807

    Article  MathSciNet  MATH  Google Scholar 

  50. Budd, C.J., Iserles, A., Iserles, A., Nørsett, S.P.: On the solution of linear differential equations in lie groups. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 357(1754), 983–1019 (1999). https://doi.org/10.1098/rsta.1999.0362

    Article  MathSciNet  MATH  Google Scholar 

  51. Iserles, A.: On the global error of discretization methods for highly-oscillatory ordinary differential equations. BIT Numer. Math. 42(3), 561–599 (2002). https://doi.org/10.1023/A:1022049814688

    Article  MathSciNet  MATH  Google Scholar 

  52. Iserles, A.: On the method of Neumann series for highly oscillatory equations. BIT Numer. Math. 44(3), 473–488 (2004). https://doi.org/10.1023/B:BITN.0000046810.25353.95

    Article  MathSciNet  MATH  Google Scholar 

  53. Degani, I., Schiff, J.: RCMS: Right correction Magnus series approach for oscillatory ODEs. J. Comput. Appl. Math. 193(2), 413–436 (2006). https://doi.org/10.1016/j.cam.2005.07.001

    Article  MathSciNet  MATH  Google Scholar 

  54. Cohen, D., Jahnke, T., Lorenz, K., Lubich, C.: Numerical integrators for highly oscillatory Hamiltonian systems: A review. In: Mielke, A. (ed.) Analysis, Modeling and Simulation of Multiscale Problems, pp. 553–576. Springer, Berlin (2006)

    Chapter  Google Scholar 

  55. Bader, P., Iserles, A., Kropielnicka, K., Singh, P.: Efficient methods for linear Schrödinger equation in the semiclassical regime with time-dependent potential. Proc. R. Soc. A Math. Phys. Eng. Sci. 472, 20150733 (2016)

    MATH  Google Scholar 

  56. Blanes, S., Casas, F.: A Concise Introduction to Geometric Numerical Integration. CRC Press, Bocan Raton (2017)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

We thank Francesca Arrigo, Des Higham, Jennifer Pestana, and Francesco Tudisco for their invitation to the University of Strathclyde, without which this work would not have come to fruition. The first author was supported in part by 2019 Alcohol project ANR-19-CE40-0006 and 2020 Magica project ANR-20-CE29-0007. The second author was supported by Charles University Research programs No. PRIMUS/21/SCI/009 and UNCE/SCI/023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Pozza.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giscard, PL., Pozza, S. A Lanczos-like method for non-autonomous linear ordinary differential equations. Boll Unione Mat Ital 16, 81–102 (2023). https://doi.org/10.1007/s40574-022-00328-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40574-022-00328-6

Keywords

Navigation