Abstract
We extend the formalism of “log spaces” of Gillam and Molcho (Log differentiable spaces and manifolds with corners. arXiv:1507.06752, 2015) to topoi equipped with a sheaf of monoids, and discuss Deligne–Faltings structures and root stacks in this context.
This is a preview of subscription content, access via your institution.
References
Abramovich, D., Chen, Q.: Stable logarithmic maps to Deligne–Faltings pairs II. Asian J. Math. 18(3), 465–488 (2014)
Abramovich, D., Chen, Q., Gillam, D., Huang, Y., Olsson, M., Satriano, M., Sun, S.: Logarithmic geometry and moduli. In: Farkas, G., Morrison, H. (eds.) Handbook of Moduli. International Press, Vienna (2013)
Borne, N., Vistoli, A.: Parabolic sheaves on logarithmic schemes. Adv. Math. 231(3–4), 1327–1363 (2012)
Chen, Q.: Stable logarithmic maps to Deligne–Faltings pairs I. Ann. Math. (2) 180(2), 455–521 (2014)
Carchedi, D., Scherotzke, S., Sibilla, N., Talpo, M.: Kato–Nakayama spaces, infinite root stacks, and the profinite homotopy type of log schemes. Geom. Topol. 21(5), 3093–3158 (2017)
Gillam, W.D., Molcho, S.: Log differentiable spaces and manifolds with corners. Preprint arXiv:1507.06752 (2015)
Gillam, W.D., Molcho, S.: A theory of stacky fans. Preprint arXiv:1512.07586 (2015)
Gabber, O., Ramero, L.: Foundations for almost ring theory. arXiv:math/0409584 (2016)
Gross, M., Siebert, B.: Mirror symmetry via logarithmic degeneration data I. J. Differ. Geom. 72(2), 169–338 (2006)
Gross, M., Siebert, B.: Mirror symmetry via logarithmic degeneration data II. J. Algebraic Geom. 19(4), 679–780 (2010)
Gross, M., Siebert, B.: From real affine geometry to complex geometry. Ann. Math. (2) 174(3), 1301–1428 (2011)
Gross, M., Siebert, B.: Logarithmic Gromov–Witten invariants. J. Am. Math. Soc. 26(2), 451–510 (2013)
Kato, K.: Logarithmic Structures of Fontaine–Illusie, Algebraic Analysis, Geometry, and Number Theory (Baltimore, MD, 1988), pp. 191–224. Johns Hopkins University Press, Baltimore (1989)
Kato, F.: Log smooth deformation and moduli of log smooth curves. Int. J. Math. 11(2), 215–232 (2000)
Kato, K., Nakayama, C.: Log Betti cohomology, log étale cohomology, and log de Rham cohomology of log schemes over \({ C}\). Kodai Math. J. 22(2), 161–186 (1999)
Olsson, M.C.: Logarithmic geometry and algebraic stacks. Ann. Sci. École Norm. Sup. (4) 36(5), 747–791 (2003)
Olsson, M.C.: Semistable degenerations and period spaces for polarized \(K3\) surfaces. Duke Math. J. 125(1), 121–203 (2004)
Olsson, M.: Logarithmic interpretation of the main component in toric Hilbert schemes. In: Curves and Abelian Varieties, volume 465 of Contemp. Math., pp 231–252. American Mathematical Society, Providence, RI (2008)
Olsson, M.C.: Compactifying moduli spaces for abelian varieties. Lecture Notes in Mathematics, vol. 1958. Springer, Berlin (2008)
Rédei, L.: The Theory of Finitely Generated Commutative Semigroups: International Series of Monographs on Pure and Applied Mathematics, 82nd edn. Elsevier, New York (2014)
Talpo, M., Vistoli, A.: Infinite Root Stacks and Quasi-Coherent Sheaves on Logarithmic Schemes. Preprint arXiv:1410.1164 (2014)
Talpo, M., Vistoli, A.: The Kato–Nakayama space as a transcendental root stack. arXiv:1611.04041, pulished online in International Mathematics Research Notices (2017)
Acknowledgements
We are grateful to the referee for useful comments.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest statement
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Partially supported by research funds from the Scuola Normale Superiore.
Rights and permissions
About this article
Cite this article
Talpo, M., Vistoli, A. A general formalism for logarithmic structures. Boll Unione Mat Ital 11, 489–502 (2018). https://doi.org/10.1007/s40574-017-0149-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40574-017-0149-6
Keywords
- Logarithmic Structure
- Root Stack
- Molcho
- Monoid Object
- Ringed Topos