Bollettino dell'Unione Matematica Italiana

, Volume 11, Issue 1, pp 93–105 | Cite as

Curves on surfaces with trivial canonical bundle

  • Margherita Lelli-Chiesa


We survey some results concerning Severi varieties and variation in moduli of curves lying on K3 surfaces or on abelian surfaces. A number of open problems is listed and some work in progress is mentioned.


  1. 1.
    Aprodu, M.: Lazarsfeld–Mukai bundles and applications. In: Commutative algebra. Expository papers dedicated to David Eisenbud on the occasion of his 65th birthday, pp 1–23. Springer, New York (2013)Google Scholar
  2. 2.
    Arbarello, E., Bruno, A.: Rank two vector bundles on polarized Halphen surfaces and the Gauss–Wahl map for Du Val curves. arXiv:1609.09256
  3. 3.
    Arbarello, E., Bruno, A., Farkas, G., Saccà, G.: Explicit Brill–Noether–Petri general curves. Comment. Math. Helv. 91, 477–491 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Arbarello, E., Bruno, A., Sernesi, E.: Mukai’s program for curves on a \(K3\) surface. Alg. Geom. 1, 532–557 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Arbarello, E., Bruno, A., Sernesi, E.: On two conjectures by J.Wahl. arXiv:1507.05002v2
  6. 6.
    Bryan, J., Leung, N.C.: The enumerative geometry of \(K3\) surfaces and modular forms. J. Am. Math. Soc. 13, 371–410 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Chen, X.: Rational curves on \(K3\) surfaces. J. Alg. Geom. 8, 245–278 (1999)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Chen, X.: A simple proof that rational curves on \(K3\) are nodal. Math. Ann. 324, 71–104 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Chen, X.: Nodal curves on \(K3\) surfaces. arXiv:1611.07423
  10. 10.
    Ciliberto, C., Flamini, F., Galati, C., Knutsen, A.L.: Moduli of nodal curves on K3 surfaces. Adv. Math. 309, 624–654 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ciliberto, C., Harris, J., Miranda, R.: On the surjectivity of the Wahl map. Duke Math. J. 57, 829–858 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ciliberto, C., Knutsen, A.L.: On \(k\)-gonal loci in Severi varieties on general \(K3\) surfaces. J. Math. Pures Appl. 101, 473–494 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Ciliberto, C., Lopez, A.F., Miranda, R.: Projective degenerations of \(K3\) surfaces, Gaussian maps and Fano threefolds. Invent. Math. 114, 641–667 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ciliberto, C., Lopez, A.F., Miranda, R.: Classification of varieties with canonical curve section via Gaussian maps on canonical curves. Am. J. Math. 120, 1–21 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Ciliberto, C., Pareschi, G.: Pencils of minimal degree on curves on a \(K3\) surface. J. Reine Angew. Math. 460, 15–36 (1995)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Cukierman, F., Ulmer, D.: Curves of genus \(10\) on \(K3\) surfaces. Comput. Math. 89, 81–90 (1993)zbMATHGoogle Scholar
  17. 17.
    Dedieu, T., Sernesi, E.: Equigeneric and equisingular families of curves on surfaces. Publ. Mat. 61, 175–212 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Farkas, G., Ortega, A.: Higher rank Brill–Noether theory on sections of \(K3\) surfaces. Internat. J. Math 23, 227–244 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Farkas, G., Popa, M.: Effective divisors on \(M_g\), curves on \(K3\) surfaces, and the slope conjecture. J. Alg. Geom. 14, 241–267 (2005)CrossRefzbMATHGoogle Scholar
  20. 20.
    Farkas, G., Verra, S.: Moduli of theta characteristics via Nikulin surfaces. Math. Ann. 354, 465–496 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Green, M.L.: Koszul cohomology and the geometry of projective varieties. J. Differ. Geom. 19, 125–171 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Green, M.L., Lazarsfeld, R.: Special divisors on curves on a \(K3\) surface. Invent. Math. 89, 357–370 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hulek, K., Weintraub, S.H.: The principal degenerations of abelian surfaces and their polarisations. Math. Ann. 286, 281–307 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Kemeny, M.: The moduli of singular curves on \(K3\) surfaces. J. Math. Pures Appl. 104, 882–920 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Knutsen, A.L.: On two conjectures for curves on \(K3\) surfaces. Int. J. Math. 20, 1547–1560 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Knutsen, A.L., Lelli-Chiesa, M., Mongardi, G.: Severi varieties and Brill–Noether theory of curves on abelian surfaces. J. Reine Angew. Math. doi: 10.1515/crelle-2016-0029
  27. 27.
    Knutsen, A.L., Lelli-Chiesa, M., Mongardi, G.: Wall divisors and algebraically coisotropic subvarieties of irreducible holomorphic symplectic manifolds. arXiv:1507.06891
  28. 28.
    Knutsen, A.L., Lelli-Chiesa, M., Verra, S.: Half Nikulin surfaces and moduli of Prym curves (in preparation) Google Scholar
  29. 29.
    Lelli-Chiesa, M.: Stability of rank-\(3\) Lazarsfeld–Mukai bundles on K3 surfaces. Proc. London Math. Soc. 107, 451–479 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Lange, H., Sernesi, E.: Severi varieties and branch curves of abelian surfaces of type \((1,3)\). Internat. J. Math. 13, 227–244 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Lazarsfeld, R.: Brill–Noether–Petri without degenerations. J. Differ. Geom. 23, 299–307 (1986)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Mori, S., Mukai, S.: The uniruledness of the moduli space of curves of genus 11. Algebraic Geometry Proc. Tokyo/Kyoto, 334–353. Lecture Notes in Mathematics, vol. 1016. Springer, Berlin (1983)Google Scholar
  33. 33.
    Mukai, S.: Curves and symmetric spaces I. Am. J. Math. 117, 1627–1644 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Mukai, S.: Curves and \(K3\) surfaces of genus eleven. Moduli of vector bundles. Lecture Notes in Pure and Applied Mathematics, vol. 179, pp. 189–197. Dekker, London (1996)Google Scholar
  35. 35.
    Mukai, S.: Non-abelian Brill–Noether theory and Fano 3-folds. Sugaku Exposit. 14, 125–153 (2001)Google Scholar
  36. 36.
    Pinkham, H.: Deformations of algebraic varieties with \(\mathbb{G}_m\)-action. Astérisque 20, 1–131 (1974)zbMATHGoogle Scholar
  37. 37.
    Voisin, C.: Green’s generic syzygy conjecture for curves of even genus lying on a K3 surface. J. Eur. Math. Soc. 4, 363–404 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Voisin, C.: Green’s canonical syzygy conjecture for generic curves of odd genus. Compos. Math. 141, 1163–1190 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    Wahl, J.: The Jacobian algebra of a graded Gorenstein singularity. Duke Math. J. 55, 843–871 (1987)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Wahl, J.: Gaussian maps on algebraic curves. J. Differ. Geom. 3, 77–98 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  41. 41.
    Wahl, J.: On the cohomology of the square of an ideal sheaf. J. Alg. Geom. 6, 481–511 (1997)MathSciNetzbMATHGoogle Scholar

Copyright information

© Unione Matematica Italiana 2017

Authors and Affiliations

  1. 1.Department of MathematicsUniversità di PisaPisaItaly

Personalised recommendations