Skip to main content
Log in

Some uniqueness results related to L-functions

  • Published:
Bollettino dell'Unione Matematica Italiana Aims and scope Submit manuscript


In this paper, we describe a family of meromorphic functions in \(\mathbf {C}\) from analyzing some properties of these L-functions in the extended Selberg class and show two uniqueness results of such a function, in terms of shared values with a general meromorphic function in \(\mathbf {C}\). In particular, we show the condition “\(\displaystyle {1\mathsf{CM}+3\mathsf{IM}}\) value-sharing” suffices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others


  1. When \(\rho (f)=0\), we do not need to consider \(\tau (f)\) in view of the transcendentality of f.

  2. Recall when f has finite order, then S(rf) is \(\displaystyle {O\left( \log r\right) }\) as a straightforward consequence of the logarithmic derivative lemma.

  3. The same observation of \(\tau (f)\) as mentioned in Theorem 2.1 applies here when \(\rho (f)=0\).

  4. The same convention about \(\tau (f)\) as settled in theorems 2.1 and 3.2 applies here, and hereafter, if \(\rho (f)=0\).


  1. Adams, W., Straus, E.: Non-archimedian analytic functions taking the same values at the same points. Illinois J. Math. 15, 418–424 (1971)

    MathSciNet  MATH  Google Scholar 

  2. Garunkštis, R., Grahl, J., Steuding, J.: Uniqueness theorems for \(L\)-functions. Comment. Math. Univ. St. Pauli 60, 15–35 (2011)

    MathSciNet  MATH  Google Scholar 

  3. Gonek, S., Haan, J., Ki, H.: A uniqueness theorem for functions in the extended Selberg class. Math. Z. 278, 995–1004 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Gundersen, G.G.: Meromorphic functions that share three values IM and a fourth value CM. Complex Variables Theory Appl. 20, 99–106 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  5. Hayman, W.K.: Meromorphic functions. Oxford University Press, Oxford (1964)

    MATH  Google Scholar 

  6. Hu, P., Li, B.Q.: A simple proof and strengthening of a uniqueness theorem for \(L\)-functions. Canad. Math. Bull. 59, 119–122 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  7. Li, B.Q.: A result on value distribution of \(L\)-functions. Proc. Amer. Math. Soc. 138, 2071–2077 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Li, X., Yi, H.: Results on value distribution of \(L\)-functions. Math. Nachr. 286, 1326–1336 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Mues, E.: Meromorphic functions sharing four values. Complex Variables Theory Appl. 12, 169–179 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  10. Nevanlinna, R.: Einige Eindeutigkeitssätze in der Theorie der Meromorphen Funktionen. Acta Math. 48, 367–391 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  11. Nevanlinna, R.: Analytic functions. Springer-Verlag, New York-Berlin (1970)

    Book  MATH  Google Scholar 

  12. Ozawa, M.: Unicity theorems for entire functions. J. Analyse Math. 30, 411–420 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  13. Selberg, A.: Old and new conjectures and results about a class of Dirichlet series. Proceedings of the Amalfi conference on analytic number theory (Maiori, 1989), 367–385. University of Salerno, Salerno, (1992)

  14. Steinmetz, N.: Reminiscence of an open problem: remarks on Nevanlinna’s four-value-theorem. Southeast Asian Bull. Math. 36, 399–417 (2012)

    MathSciNet  MATH  Google Scholar 

  15. Steuding, J.: Value-distribution of \(L\)-functions. Springer, Berlin (2007)

    MATH  Google Scholar 

  16. Ueda, H.: Some estimates for meromorphic functions sharing four values. Kodai Math. J. 17, 329–340 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Yang, C.C., Yi, H.: Uniqueness theory of meromorphic functions. Kluwer Academic Publishers, Dordrecht (2003)

    Book  MATH  Google Scholar 

  18. Yang, L.: Value distribution theory. Springer-Verlag, Berlin (1993)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Qi Han.

Additional information

Dedicated to Professor Seiki Mori on the occasion of his 72nd birthday.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Q. Some uniqueness results related to L-functions. Boll Unione Mat Ital 10, 503–515 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification