Skip to main content

Two-dimensional almost area minimizing currents

Abstract

This note is a survey on the optimal regularity theory for 2-dimensional area minimizing surfaces in codimension higher than 1 and some perturbative cases, following recent joint works with Emanuele Spadaro and Luca Spolaor.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. 1.

    Adams, D., Simon, L.: Rates of asymptotic convergence near isolated singularities of geometric extrema. Indiana Univ. Math. J. 37(2), 225–254 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  2. 2.

    Allard, W.K.: On the first variation of a varifold. Ann. Math. 2(95), 417–491 (1972)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Almgren Jr., F.J.: Existence and regularity almost everywhere of solutions to elliptic variational problems among surfaces of varying topological type and singularity structure. Ann. Math. 2(87), 321–391 (1968)

    MathSciNet  Article  MATH  Google Scholar 

  4. 4.

    Almgren Jr., F.J.: Almgren’s big regularity paper, World Scientific Monograph Series in Mathematics, vol. 1. World Scientific Publishing Co. Inc. (2000)

  5. 5.

    Ambrosio, L.: Metric space valued functions of bounded variation. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 17(3), 439–478 (1990)

  6. 6.

    Ambrosio, L., De Lellis, C., Schmidt, T.: Partial regularity for area minimizing currents in hilbert spaces. J. Reine. Angew Math. (2013). doi:10.1515/crelle-2015-0011

  7. 7.

    Bellettini, C., Rivière, T.: The regularity of special Legendrian integral cycles. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(1), 61–142 (2012)

  8. 8.

    Bellettini, C.: Almost complex structures and calibrated integral cycles in contact 5-manifolds. Adv. Calc. Var. 6(3), 339–374 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Bombieri, E.: Regularity theory for almost minimal currents. Arch. Rational Mech. Anal. 78(2), 99–130 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Caccioppoli, R.: Misura e integrazione sugli insiemi dimensionalmente orientati. Atti Accad. Naz. Lincei. Rend. Cl. Sci. Fis. Mat. Nat. (8) 12, 3–11 (1952)

  11. 11.

    Chang, S.X.: Two-dimensional area minimizing integral currents are classical minimal surfaces. J. Am. Math. Soc. 1(4), 699–778 (1988)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    De Giorgi, E.: Su una teoria generale della misura \((r-1)\)-dimensionale in uno spazio ad \(r\) dimensioni. Ann. Mat. Pura Appl. 4(36), 191–213 (1954)

    MathSciNet  Article  MATH  Google Scholar 

  13. 13.

    De Giorgi, E.: Nuovi teoremi relativi alle misure \((r-1)\)-dimensionali in uno spazio ad \(r\) dimensioni. Ricerche Mat. 4, 95–113 (1955)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    De Giorgi, E.: Frontiere orientate di misura minima. Seminario di Matematica della Scuola Normale Superiore di Pisa, 1960–1961. Editrice Tecnico Scientifica, Pisa (1961)

  15. 15.

    De Giorgi, E.: Selected papers. In: Ambrosio, L., Maso, G.D., Forti, M., Miranda, M., Spagnolo, S. (eds.) Springer Collected Works in Mathematics. Springer, Heidelberg (2013)

  16. 16.

    De Lellis, C.: Allard’s interior regularity theorem: an invitation to stationary varifolds. Lecture notes (2012). http://www.math.uzh.ch/fileadmin/user/delellis/publikation/allard_24.pdf

  17. 17.

    De Lellis, C.: The regularity of minimal surfaces in higher codimension (2015, preprint)

  18. 18.

    De Lellis, C.: The size of the singular set of area-minimizing currents (2015, preprint)

  19. 19.

    De Lellis, C., Grisanti, C.R., Tilli, P.: Regular selections for multiple-valued functions. Ann. Mat. Pura Appl. (4), 183(1), 79–95 (2004)

  20. 20.

    De Lellis, C., Spadaro, E.: \(Q\)-valued functions revisited. Mem. Am. Math. Soc. 211(991), vi+79 (2011)

  21. 21.

    De Lellis, C., Spadaro, E.: Multiple valued functions and integral currents. Ann. Sc. Norm. Super. Pisa Cl. Sci. 14(4),1239–1269 (2015)

  22. 22.

    De Lellis, C., Spadaro, E.: Regularity of area-minimizing currents II: center manifold. Ann. Math. 183(2), 499–575 (2016)

  23. 23.

    De Lellis, C., Spadaro, E.: Regularity of area-minimizing currents III: blow-up. Ann. Math. 183(2), 577–617 (2016)

  24. 24.

    De Lellis, C., Spadaro, E.: Regularity of area minimizing currents I: gradient \(L^p\) estimates. Geom. Funct. Anal. 24(6), 1831–1884 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    De Lellis, C., Spadaro, E., Spolaor, L.: Regularity theory for \(2\)-dimensional almost minimal currents II: branched center manifold (2015, preprint)

  26. 26.

    De Lellis, C., Spadaro, E., Spolaor, L.: Regularity theory for \(2\)-dimensional almost minimal currents III: blowup (2015, preprint)

  27. 27.

    De Lellis, C., Spadaro, E., Spolaor, L.: Regularity theory for \(2\)-dimensional almost minimizing currents I: Lipschitz approximation (2015, preprint)

  28. 28.

    De Lellis, C., Spadaro, E., Spolaor, L.: Uniqueness of tangent cones for \(2\)-dimensional almost minimizing currents (2015, preprint)

  29. 29.

    de Rham, G.: Variétés différentiables. Formes, courants, formes harmoniques. Actualités Sci. Ind. 1222 = Publ. Inst. Math. Univ. Nancago III. Hermann et Cie, Paris (1955)

  30. 30.

    Federer, H.: Geometric measure theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969)

  31. 31.

    Federer, H., Fleming, W.H.: Normal and integral currents. Ann. Math. 2(72), 458–520 (1960)

    MathSciNet  Article  MATH  Google Scholar 

  32. 32.

    Fleming, W.H.: On the oriented Plateau problem. Rend. Circ. Mat. Palermo 2(11), 69–90 (1962)

    MathSciNet  Article  MATH  Google Scholar 

  33. 33.

    Garofalo, N., Lin, F.: Monotonicity properties of variational integrals, \(A_p\) weights and unique continuation. Indiana Univ. Math. J. 35(2), 245–268 (1986)

    MathSciNet  Article  MATH  Google Scholar 

  34. 34.

    Garofalo, N., Lin, F.: Unique continuation for elliptic operators: a geometric-variational approach. Commun. Pure Appl. Math. 40(3), 347–366 (1987)

    MathSciNet  Article  MATH  Google Scholar 

  35. 35.

    Giusti, E.: Minimal surfaces and functions of bounded variation. Monographs in Mathematics, vol. 80. Birkhäuser, Basel (1984)

  36. 36.

    Harvey Jr., H.B., Lawson, R.: Calibrated geometries. Acta Math. 148, 47–157 (1982)

  37. 37.

    Hirsch, J.: Boundary regularity of Dirichlet minimizing Q-valued functions. ArXiv e-prints (2014)

  38. 38.

    Pumberger, D., Rivière, T.: Uniqueness of tangent cones for semicalibrated integral 2-cycles. Duke Math. J. 152(3), 441–480 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  39. 39.

    Reifenberg, E.R.: An epiperimetric inequality related to the analyticity of minimal surfaces. Ann. Math. 2(80), 1–14 (1964)

    MathSciNet  Article  MATH  Google Scholar 

  40. 40.

    Reshetnyak, Yu.G.: Sobolev classes of functions with values in a metric space. Sibirsk. Mat. Zh. 38(3), 657–675, iii–iv (1997)

  41. 41.

    Reshetnyak, Y.G.: Sobolev classes of functions with values in a metric space. II. Sibirsk. Mat. Zh. 45(4), 855–870 (2004)

    MathSciNet  MATH  Google Scholar 

  42. 42.

    Rivière, T., Tian, G.: The singular set of 1-1 integral currents. Ann. Math. (2) 169(3), 741–794 (2009)

  43. 43.

    Schoen, R., Simon, L.: A new proof of the regularity theorem for rectifiable currents which minimize parametric elliptic functionals. Indiana Univ. Math. J. 31(3), 415–434 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  44. 44.

    Simon, L.: Lectures on geometric measure theory. In: Proceedings of the Centre for Mathematical Analysis, Australian National University, vol. 3. Australian National University Centre for Mathematical Analysis (1983)

  45. 45.

    Spadaro, E.: Regularity of higher codimension area minimizing integral currents. In: Ambrosio, L. (ed.) Geometric Measure Theory and Real Analysis, Proceedings of the ERC school in Pisa, pp. 131–192. Edizioni SNS (2014)

  46. 46.

    Tamanini, I.: Boundaries of Caccioppoli sets with Hölder-continuous normal vector. J. Reine Angew. Math. 334, 27–39 (1982)

    MathSciNet  MATH  Google Scholar 

  47. 47.

    Villani, C.: Topics in optimal transportation. Graduate Studies in Mathematics, vol. 58. American Mathematical Society, Providence (2003)

  48. 48.

    White, B.: Tangent cones to two-dimensional area-minimizing integral currents are unique. Duke Math. J. 50(1), 143–160 (1983)

    MathSciNet  Article  MATH  Google Scholar 

  49. 49.

    Wirtinger, W.: Eine Determinantenidentität und ihre Anwendung auf analytische Gebilde in euklidischer und Hermitescher Maßbestimmung. Monatsh. Math. Phys. 44(1), 343–365 (1936)

    MathSciNet  Article  MATH  Google Scholar 

  50. 50.

    Zorich, A.: Flat Surfaces. Frontiers in Number Theory, Physics, and Geometry. I, pp. 437–583. Springer, Berlin (2006)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Camillo De Lellis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Lellis, C. Two-dimensional almost area minimizing currents. Boll Unione Mat Ital 9, 3–67 (2016). https://doi.org/10.1007/s40574-016-0057-1

Download citation

Keywords

  • Minimum Area
  • Dirichlet Energy
  • Dyadic Square
  • Holomorphic Subvariety
  • Center Manifold