Skip to main content
Log in

Chemie verstehen – beobachtbare makroskopische Phänomene auf submikroskopischer Ebene modellbasiert interpretieren

Understanding Chemistry—Interpreting Observable Macroscopic Phenomena by Reference to the Submicroscopic Level

  • Original Paper
  • Published:
Zeitschrift für Didaktik der Naturwissenschaften Aims and scope Submit manuscript

Zusammenfassung

Das Verständnis chemischer Zusammenhänge basiert auf der Erkenntnis, dass beobachtbare makroskopische Phänomene mit Hilfe von Modellvorstellungen auf der submikroskopischen Ebene interpretiert werden. Zur Darstellung der Beziehungen zwischen und auf den unterschiedlichen Ebenen wird eine Reihe von (fachspezifischen) Symbolen benutzt. Dabei beziehen sich die Symbole auf der Phänomenebene auf beobachtbare Entitäten, auf der submikroskopischen Ebene auf nicht-beobachtbare, theoriegeleitete Modelle. Das direkte Beziehen von Inhalten der makroskopischen Ebene auf die submikroskopische Ebene führt zu fachlich falschen Aussagen.

In diesem Beitrag wird ein Testinstrument vorgestellt, das die Leistungen der Lernenden auf der submikroskopischen Ebene getrennt von denjenigen zur Verknüpfung der beiden Ebenen misst. Cross-Lagged-Panel-Analysen zeigen, dass die partielle Korrelation zwischen den Leistungen zur submikroskopischen Ebene zum ersten Messzeitpunkt und denen zu den Verknüpfungsitems zum zweiten Messzeitpunkt unter Kontrolle der Leistungen bei den Verknüpfungsitems zum ersten Messzeitpunkt signifikant ist. Dies gilt nicht für die umgekehrte partielle Korrelation.

Damit lässt sich belegen, dass das Wissen auf der submikroskopischen Ebene einen positiven Einfluss auf den Erwerb der Verknüpfungsfähigkeit hat und dass dies im umgekehrten Fall nicht gilt. Dieses Ergebnis unterstützt die Annahme, dass submikroskopisches Wissen verfügbar sein muss, bevor es mit anderem Wissen verknüpft werden kann.

Abstract

The understanding of chemical relations is based on the perception that observable macroscopic phenomena are interpreted at the submicroscopic level with support of models. For the representation of the relations between and upon the different levels a range of subject-specific symbols are being used. On the level of phenomena the symbols refer to observable entities, on the submicroscopic level to non-observable, theory-driven models. Referring contents of the macroscopic level directly to the submicroscopic level will lead to technically wrong conclusions.

This contribution introduces a test method which measures the accomplishments of the learners on the submicroscopic level separately from those connecting both levels. Cross-Lagged-Panel analyses reveal that the partial correlation between the accomplishments regarding the submicroscopic level at the first point of measurement and those regarding the connectivity items at the second point of measurement is significant, provided that the accomplishments regarding the connectivity items at the first point of measurement are monitored. This is not true for the reversed partial correlation.

This shows that the knowledge concerning the submicroscopic level exerts a positive effect on acquiring the capability to connect both levels and that this is not true in the reverse case. This result supports the assumption that knowledge about the submicroscopic level must be available in order to be connectable with other knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  • Ausubel, D. P. (1968). Educational Psychologie; A cognitive view. New York: Holt, Rinehart und Winston.

  • Barke, H.-D. (2006). Chemiedidaktik. Diagnose und Korrektur von Schülervorstellungen. Berlin Heidelberg: Springer.

    Google Scholar 

  • Barke, H.-D., Harsch, G., Krees, S., & Marohn, A. (Hrsg.). (2015). Chemiedidaktik kompakt. Lernprozesse in Theorie und Praxis (2. Aufl.). Berlin: Springer Spektrum.

    Google Scholar 

  • Beerenwinkel, A., Parchmann, I., & Gräsel, C. (2007). Chemieschulbücher in der Unterrichtsplanung – Welche Bedeutung haben Schülervorstellungen? CHEMKON, 14(1), 7–14.

    Google Scholar 

  • Ben-Zvi, R., Eylon, B.-S., & Silberstein, J. (1986). Is an atom of copper malleable? Journal of Chemical Education, 63(1), 64.

    Google Scholar 

  • Ben-Zvi, R., Eylon, B.-S., & Silberstein, J. (1988). Theories, principles and laws. Education in Chemistry, 25(3), 89–92.

    Google Scholar 

  • Bernholt, S., Fischer, I., Heuer, S., Taskin, V., Martens, J., & Parchmann, I. (2012). Die chemische Formelsprache – (un-)vermeidbare Hürden auf dem Weg zu einer Verständnisentwicklung? CHEMKON, 19(4), 171–178.

    Google Scholar 

  • Bindernagel, J. A., & Eilks, I. (2008). Modelle und Modelldenken im Chemieunterricht und ein Einblick in das Verständnis von erfahrenen Chemielehrkräften. CHEMKON, 15(4), 181–186.

    Google Scholar 

  • Bortz, J., Bortz-Döring, & Döring, N. (2009). Forschungsmethoden und Evaluation. Für Human- und Sozialwissenschaftler; mit 87 Tabellen. Heidelberg: Springer.

    Google Scholar 

  • Bucat, B., & Mocerino, M. (2009). Learning at the Sub-micro Level: Structural Representations. In J. Gilbert & D. F. Treagust (Hrsg.), Multiple Representations in Chemical Education. Models and Modeling in Science Education (S. 11–29). Dordrecht: Springer.

    Google Scholar 

  • Busker, M. (2010). Entwicklung einer adressatenorientierten Übungskonzeption im Übergang Schule-Universität auf Basis empirischer Analysen von Studieneingangsvoraussetzungen. Der Andere Verlag: Tönning.

    Google Scholar 

  • Chandrasegaran, A. L., Treagust, D. F., & Mocerino, M. (2008). An evaluation of a teaching intervention to promote students’ ability to use multiple levels of representation when describing and explaining chemical reactions. Research in Science Education, 38(2), 237–248.

    Google Scholar 

  • Dori, Y. J., & Hameiri, M. (2003). Multidimensional analysis system for quantitative chemistry problems: symbol, macro, micro, and process aspects. Journal of Research in Science Teaching, 40(3), 278–302.

    Google Scholar 

  • Dori, Y. J., & Kaberman, Z. (2012). Assessing high school chemistry students’ modeling sub-skills in a computerized molecular modeling learning environment. Instructional Science, 40(1), 69–91.

    Google Scholar 

  • Eilks, I., & Möllering, J. (2001). Neue Wege zum Teilchenkonzept 2001. Der mathematische und naturwissenschaftliche Unterricht, 54(4), 240–246.

    Google Scholar 

  • Gilbert, J. K., & Treagust, D. F. (2009). Introduction: macro, submicro and symbolic representations and the relationship between them: key models in chemical education. In J. Gilbert & D. F. Treagust (Hrsg.), Multiple representations in chemical education. Models and modeling in science education (S. 1–8). Dordrecht: Springer.

    Google Scholar 

  • Grosslight, L., Unger, C., Jay, E., & Smith, C. L. (1991). Understanding models and their use in science: conceptions of middle and high school students and experts. Journal of Research in Science Teaching, 28(9), 799–822.

    Google Scholar 

  • Harrison, A. G., & Treagust, D. F. (1996). Secondary students’ mental models of atoms and molecules. Implications for teaching chemistry. Science Education, 80(5), 509–534.

    Google Scholar 

  • Ingham, A. M., & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 13(2), 193–202.

    Google Scholar 

  • Jaber, L. Z., & BouJaoude, S. (2012). A macro-micro-symbolic teaching to promote relational understanding of chemical reactions. International Journal of Science Education, 34(7), 973–998.

    Google Scholar 

  • Jensen, W. B. (1998a). Logic, history, and the chemistry textbook: II. Can we unmuddle the chemistry textbook? Journal of Chemical Education, 75(7), 817.

    Google Scholar 

  • Jensen, W. B. (1998b). Logic, history, and the chemistry textbook: I. Does chemistry have a logical structure? Journal of Chemical Education, 75(6), 679.

    Google Scholar 

  • Johnstone, A. H. (1982). Macro-and microchemistry. School Science Review, 64, 377–379.

    Google Scholar 

  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7, 75–83.

    Google Scholar 

  • Johnstone, A. H. (1993). The development of chemistry teaching. A changing response to changing demand. Journal of Chemical Education, 70(9), 701–705.

    Google Scholar 

  • Johnstone, A. H. (2000). Teaching of chemistry—logical or psychological? Chemistry Education Research and Practice, 1(1), 9.

    Google Scholar 

  • Justi, R. S., & Gilbert, J. K. (2002). Modelling, teachers’ views on the nature of modelling, and implications for the education of modellers. International Journal of Science Education, 24(4), 369–387.

    Google Scholar 

  • Kozma, R. B., & Russell, J. (1997). Multimedia and understanding: expert and novice responses to different representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968.

    Google Scholar 

  • Kozma, R. B., Russell, J. W., Jones, T., Wykoff, J., Marx, N., & Davis, J. (1997). Use of simultaneous-synchronized macroscopic, microscopic, and symbolic representations to enhance the teaching and learning of chemical concepts. Journal of Chemical Education, 74(3), 330.

    Google Scholar 

  • Mahaffy, P. (2004). The future shape of chemistry education. Chemical Education Research and Practice, 5(3), 229–245.

    Google Scholar 

  • Meisert, A. (2008). Vom Modellwissen zum Modellverständnis. Elemente einer umfassenden Modellkompetenz und deren Fundierung durch lernerseitige Kriterien zur Klassifikation von Modellen. Zeitschrift für Didaktik der Naturwissenschaften, 14, 243–261.

    Google Scholar 

  • Mikelskis-Seifert, S., & Leisner, A. (2003). Das Denken in Modellen fördern. Ein Unterrichtsbeispiel zur Entwicklung von Teilchenvorstellungen. Naturwissenschaften im Unterricht Physik, 14(74), 32–34.

    Google Scholar 

  • Nakhleh, M. B., & Krajcik, J. S. (1994). Influence of levels of information as presented by different technologies on students’ understanding of acid, base, and pH concepts. Journal of Research in Science Teaching, 31(10), 1077–1096.

    Google Scholar 

  • Nakoinz, S. (2015). Untersuchung zur Verknüpfung submikroskopischer und makroskopischer Konzepte im Fach Chemie. Berlin: Logos.

    Google Scholar 

  • Onwu, G. O. M., & Randall, E. (2006). Some aspects of students’ understanding of a representational model of the particulate nature of matter in chemistry in three different countries. Chemistry Education Research and Practice, 7(4), 226.

    Google Scholar 

  • Parchmann, I., & Bernholt, S. (2012). In, mit und über Chemie kommunizieren – Chancen und Herausforderungen von Kommunikationsprozessen im Chemieunterricht. In M. Becker-Mrotzek (Hrsg.), Sprache im Fach. Sprachlichkeit und fachliches Lernen. Fachdidaktische Forschungen, (Bd. 3, S. 241–253). Münster: Waxmann.

    Google Scholar 

  • Reinders, H. (2006). Kausalanalysen in der Längsschnittforschung. Das Crossed-Lagged-Panel Design. Diskurs Kindheits- und Jugendforschung, 1(4), 477–478.

    Google Scholar 

  • Robinson, W. R. (2003). Chemistry problem-solving: symbol, macro, micro, and process aspects. Journal of Chemical Education, 80(9), 978.

    Google Scholar 

  • Sieve, B. (2012). Wirrwarr um die chemische Formelsprache. Praxis der Naturwissenschaft-Chemie in der Schule, 61(2), 41–45.

    Google Scholar 

  • Steffensky, M., Parchmann, I., & Schmidt, S. (2005). Alltagsvorstellungen und chemische Erklärungskonzepte: „Die Teilchen saugen das Aroma aus dem Tee“. Chemie in unserer Zeit, 39(4), 274–278.

    Google Scholar 

  • Steinbuch, K. (1977). Denken in Modellen. In G. Schaefer (Hrsg.), Denken in Modellen. Leitthemen, (Bd. 77, S. 10–17). Braunschweig: Westermann.

    Google Scholar 

  • Sumfleth, E., Ploschke, B., & Geisler, A. (1999). Schülervorstellungen und Unterrichtsgespräche zum Thema Säure-Base. In E. Sumfleth (Hrsg.), Chemiedidaktik im Wandel: Gedanken zu einem neuen Chemieunterricht (S. 91–115). Münster: Lit-Verlag.

    Google Scholar 

  • Taber, K. S. (2009). Learning at the symbolic level. In J. Gilbert & D. F. Treagust (Hrsg.), Multiple representations in chemical education. Models and modeling in science education (S. 75–105). Dordrecht: Springer.

    Google Scholar 

  • Talanquer, V. (2011). Macro, submicro, and symbolic: the many faces of the chemistry “triplet”. International Journal of Science Education, 33(2), 179–195.

    Google Scholar 

  • Terzer, E., & Upmeier zu Belzen, A. (2008). Naturwissenschaftliche Erkenntnisgewinnung durch Modelle. Modellverständnis als Grundlage für Modellkompetenz. Berichte des Institutes für Didaktik der Biologie, 16, 33–56.

    Google Scholar 

  • Treagust, D., Chittleborough, G., & Mamiala, T. (2003). The role of submicroscopic and symbolic representations in chemical explanations. International Journal of Science Education, 25(11), 1353–1368.

    Google Scholar 

  • Wu, M. L. (2007). ACER ConQUest version 2.0. Generalised item response modelling software. Camberwell: ACER Pres.

    Google Scholar 

Download references

Danksagung

Unser Dank gilt vor allem den Studierenden, die an der Datenerhebung teilgenommen.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elke Sumfleth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sumfleth, E., Nakoinz, S. Chemie verstehen – beobachtbare makroskopische Phänomene auf submikroskopischer Ebene modellbasiert interpretieren. ZfDN 25, 231–243 (2019). https://doi.org/10.1007/s40573-019-00101-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40573-019-00101-x

Schlüsselwörter

Keywords

Navigation