Skip to main content
Log in

Existing Challenges and Opportunities for Advancing Drought and Health Research

  • REVIEW
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Drought is one of the most far-reaching natural disasters, yet drought and health research is sparse. This may be attributed to the challenge of quantifying drought exposure, something complicated by multiple drought indices without any designed for health research. The purpose of this general review is to evaluate current drought and health literature and highlight challenges or scientific considerations when performing drought exposure and health assessments.

Recent Findings

The literature revealed a small, but growing, number of drought and health studies primarily emphasizing Australian, western European, and US populations. The selection of drought indices and definitions of drought are inconsistent. Rural and agricultural populations have been identified as vulnerable cohorts, particularly for mental health outcomes.

Summary

Using relevant examples, we discuss the importance of characterizing drought and explore why health outcomes, populations of interest, and compound environmental hazards are crucial considerations for drought and health assessments. As climate and health research is prioritized, we propose guidance for investigators performing drought-focused analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Reidmiller D, Avery C, Easterling D, Kunkel K, Lewis K, Maycock T, et al. Impacts, risks, and adaptation in the United States: fourth national climate assessment. U.S. Global Change Research Program, Washington, DC. 2017;2:1515. https://doi.org/10.7930/NCA4.2018.

  2. Intergovernmental Panel on Climate Change. Climate change 2022: impacts, adaptation and vulnerability. Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change. Cambridge University Press. 2023. https://doi.org/10.1017/9781009325844.

  3. Anderson BG, Bell ML. Weather-related mortality. Epidemiology. 2009;20:205–13.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Schwarz L, Hansen K, Alari A, Ilango SD, Bernal N, Basu R, et al. Spatial variation in the joint effect of extreme heat events and ozone on respiratory hospitalizations in California. Proc Natl Acad Sci. 2021;118:e2023078118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Guo Y, Gasparrini A, Armstrong BG, Tawatsupa B, Tobias A, Lavigne E, et al. Heat wave and mortality: a multicountry, multicommunity study. Environ Health Perspect. 2017;125:087006.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Parks RM, Benavides J, Anderson GB, Nethery RC, Navas-Acien A, Dominici F, et al. Association of tropical cyclones with county-level mortality in the US. JAMA. 2022;327:946–55.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Raker EJ, Arcaya MC, Lowe SR, Zacher M, Rhodes J, Waters MC. Mitigating health disparities after natural disasters: lessons from the RISK project. Health Aff. 2020;39:2128–35.

    Article  Google Scholar 

  8. Kishore N, Marqués D, Mahmud A, Kiang MV, Rodriguez I, Fuller A, et al. Mortality in Puerto Rico after Hurricane Maria. N Engl J Med. 2018;379:162–70.

    Article  PubMed  Google Scholar 

  9. Aguilera R, Corringham T, Gershunov A, Leibel S, Benmarhnia T. Fine particles in wildfire smoke and pediatric respiratory health in California. Pediatrics. 2021;147:e2020027128.

    Article  PubMed  Google Scholar 

  10. Reid CE, Maestas MM. Wildfire smoke exposure under climate change: impact on respiratory health of affected communities. Curr Opin Pulm Med. 2019;25:179–87.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Fann N, Alman B, Broome RA, Morgan GG, Johnston FH, Pouliot G, et al. The health impacts and economic value of wildland fire episodes in the U.S.: 2008–2012. Sci Total Environ. 2018;610–611:802–9.

    Article  PubMed  Google Scholar 

  12. Paterson DL, Wright H, Harris PNA. Health risks of flood disasters. Clin Infect Dis. 2018;67:1450–4.

    Article  PubMed  Google Scholar 

  13. United Nations Convention to Combat Desertification. Land and Life, Drought. 2023. http://www.unccd.int/land-and-life/drought/overview. Accessed 18 Sept 2023.

  14. Luber G, Lemery J. Global climate change and human health: from science to practice. 1st ed. John Wiley & Sons; 2015.

  15. Stanke C, Kerac M, Prudhomme C, Medlock J, Murray V. Health effects of drought: a systematic review of the evidence. PLoS Curr. 2013. https://doi.org/10.1371/currents.dis.7a2cee9e980f91ad7697b570bcc4b004

  16. United Nations Food and Agriculture Organization. In: Land and water drouth and agriculture. 2017. http://www.unccd.int/issues/land-and-drouth. Accessed 23 June 2019.

  17. United Nations Convention to Combat Desertification. Land and drouth initative. 2023. https://www.unccd.int/land-and-life/drought/drougth-initiative. Accessed 18 Sept 2023.

  18. Rippey BR. The U.S. drought of 2012. Weather Clim Extrem. 2015;10:57–64. https://doi.org/10.1016/j.wace.2015.10.004.

  19. Cook BI, Smerdon JE, Seager R, Cook ER. Pan-continental droughts in North America over the last millennium. J Climate. 2013;27:383–97.

    Article  Google Scholar 

  20. Griffin D, Anchukaitis KJ. How unusual is the 2012–2014 California drought? Geophys Res Lett. 2014;41:2014GL062433.

    Article  Google Scholar 

  21. Geirinhas JL, Russo AC, Libonati R, Miralles DG, Ramos AM, Gimeno L, et al. Combined large-scale tropical and subtropical forcing on the severe 2019–2022 drought in South America. npj Clim Atmos Sci. 2023;6:1–13.

    Article  Google Scholar 

  22. Moravec V, Markonis Y, Rakovec O, Svoboda M, Trnka M, Kumar R, et al. Europe under multi-year droughts: how severe was the 2014–2018 drought period? Environ Res Lett. 2021;16:034062.

    Article  Google Scholar 

  23. American Meteorological Society. Meteorological drought-policy statement. Bull Amer Meteorol Soc. 1997;78:847–52. https://doi.org/10.1175/1520-0477-78.5.847.

  24. Vins H, Bell J, Saha S, Hess JJ. The mental health outcomes of drought: a systematic review and causal process diagram. Int J Environ Res Public Health. 2015;12:13251–75.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Mishra AK, Singh VP. A review of drought concepts. J Hydrol. 2010;391:202–16.

    Article  Google Scholar 

  26. Below R, Grover-Kopec E, Dilley M. Documenting drought-related disasters a global reassessment. J Environ Dev. 2007;16:328–44.

    Article  Google Scholar 

  27. Wang Y, Wang J, Wang Y, Li W. Drought impacts on PM2.5 composition and amount over the US during 1988–2018. J Geophys Res: Atmos. 2022;127:2022JD037677 (An examination of direct impacts of drought on fine particulate matter and the components of PM2.5, which have implications for relationships with health).

    Article  Google Scholar 

  28. Achakulwisut P, Mickley LJ, Anenberg SC. Drought-sensitivity of fine dust in the US Southwest: implications for air quality and public health under future climate change. Environ Res Lett. 2018;13:054025.

    Article  Google Scholar 

  29. Wang Y, Xie Y, Dong W, Ming Y, Wang J, Shen L. Adverse effects of increasing drought on air quality via natural processes. Atmos Chem Phys. 2017;17:12827–43.

    Article  CAS  Google Scholar 

  30. Libonati R, Geirinhas JL, Silva PS, Monteiro dos Santos D, Rodrigues JA, Russo A, et al. Drought–heatwave nexus in Brazil and related impacts on health and fires: a comprehensive review. Ann N Y Acad Sci. 2022;1517:44–62 (An important review of compound environmental exposures between drought, heat, and wildfires in South America, and their increased impact on health).

    Article  PubMed  Google Scholar 

  31. Sutanto SJ, Vitolo C, Di Napoli C, D’Andrea M, Van Lanen HAJ. Heatwaves, droughts, and fires: exploring compound and cascading dry hazards at the pan-European scale. Environ Int. 2020;134:105276 (An important investigation of compound and cascading environmental exposures between drought, heat, and wildfires in Europe, and their increased impact on health and geographic areas of high concern).

    Article  PubMed  Google Scholar 

  32. Bell JE, Brown CL, Conlon K, Herring S, Kunkel KE, Lawrimore J, et al. Changes in extreme events and the potential impacts on human health. J Air Waste Manag Assoc. 2017;68:265-287. https://doi.org/10.1080/10962247.2017.1401017.

  33. Hadley MB, Henderson SB, Brauer M, Vedanthan R. Protecting cardiovascular health from wildfire smoke. Circulation. 2022;146:788–801.

    Article  PubMed  Google Scholar 

  34. Ruffault J, Curt T, Martin-StPaul NK, Moron V, Trigo RM. Extreme wildfire events are linked to global-change-type droughts in the northern Mediterranean. Nat Hazard. 2018;18:847–56.

    Article  Google Scholar 

  35. Littell JS, Peterson DL, Riley KL, Liu Y, Luce CH. A review of the relationships between drought and forest fire in the United States. Glob Change Biol. 2016;22:2353–69.

    Article  Google Scholar 

  36. Schiavoni G, D’Amato G, Afferni C. The dangerous liaison between pollens and pollution in respiratory allergy. Ann Allergy Asthma Immunol. 2017;118:269–75.

    Article  PubMed  Google Scholar 

  37. Jung S, Estrella N, Pfaffl MW, Hartmann S, Ewald F, Menzel A. Impact of elevated air temperature and drought on pollen characteristics of major agricultural grass species. PLoS ONE. 2021;16:e0248759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Albrecht G, Sartore G-M, Connor L, Higginbotham N, Freeman S, Kelly B, et al. Solastalgia: the distress caused by environmental change. Australas Psychiatry. 2007;15:S95–8.

    Article  PubMed  Google Scholar 

  39. Hanigan IC, Schirmer J, Niyonsenga T. Drought and distress in southeastern Australia. EcoHealth. 2018;15:642–55.

    Article  PubMed  Google Scholar 

  40. Berman JD, Ramirez MR, Bell JE, Bilotta R, Gerr F, Fethke NB. The association between drought conditions and increased occupational psychosocial stress among U.S. farmers: an occupational cohort study. Sci Total Environ. 2021;798:149245 (A unique US study that evaluates drought risk for an occupational subgroup (e.g., farmers) and occupational stress related to drought exposure).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Varshney K, Makleff S, Krishna RN, Romero L, Willems J, Wickes R, et al. Mental health of vulnerable groups experiencing a drought or bushfire: a systematic review. Cambridge Prisms: Global Ment Health. 2023;10:e24.

    Google Scholar 

  42. Hanigan IC, Butler CD, Kokic PN, Hutchinson MF. Suicide and drought in New South Wales, Australia, 1970–2007. PNAS. 2012;109:13950–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Viswanathan DJ, Veerakumar AM, Kumarasamy H. Depression, suicidal ideation, and resilience among rural farmers in a drought-affected area of Trichy District, Tamil Nadu. J Neurosci Rural Pract. 2019;10:238–44.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Xu Y, Wheeler SA, Zuo A. Drought and hotter temperature impacts on suicide: evidence from the Murray–Darling basin, Australia. Climate Change Econ. 2023;2350024. https://doi.org/10.1142/s2010007823500240

  45. Hanigan IC, Chaston TB. Climate change, drought and rural suicide in New South Wales, Australia: future impact scenario projections to 2099. Int J Environ Res Public Health. 2022;19:7855 (An estimated projection of future climate impacts on drought in Australia and the impacts on suicide with young rural populations identified at greatest risk).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Petkova EP, Celovsky AS, Tsai W-Y, Eisenman DP. Mental health impacts of droughts: lessons for the U.S. from Australia. Clim Manag.  2017;289–304. https://doi.org/10.1007/978-3-319-53742-9_10.

  47. Couper LI, MacDonald AJ, Mordecai EA. Impact of prior and projected climate change on US Lyme disease incidence. Glob Change Biol. 2021;27:738–54.

    Article  CAS  Google Scholar 

  48. Charnley GEC, Kelman I, Murray KA. Drought-related cholera outbreaks in Africa and the implications for climate change: a narrative review. Pathog Glob Health. 2022;116:3–12.

    Article  PubMed  Google Scholar 

  49. Froelich B, Gonzalez R, Blackwood D, Lauer K, Noble R. Decadal monitoring reveals an increase in Vibrio spp. concentrations in the Neuse River Estuary, North Carolina, USA. Plos One. 2019;14:e0215254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Head JR, Sondermeyer-Cooksey G, Heaney AK, Yu AT, Jones I, Bhattachan A, et al. Effects of precipitation, heat, and drought on incidence and expansion of coccidioidomycosis in western USA: a longitudinal surveillance study. The Lancet Planetary Health. 2022;6:e793-803 (An analysis of drought impacts on the transmission of coccidioidomycosis in the Western United States).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tong DQ, Wang JXL, Gill TE, Lei H, Wang B. Intensified dust storm activity and Valley fever infection in the Southwestern United States. Geophys Res Lett. 2017;44:2017GL073524.

    Article  Google Scholar 

  52. Balbus J. Understanding drought’s impacts on human health. Lancet Planet Health. 2017;1:e12.

    Article  PubMed  Google Scholar 

  53. Salvador C, Nieto R, Vicente-Serrano SM, García-Herrera R, Gimeno L, Vicedo-Cabrera AM. Public health implications of drought in a climate change context: a critical review. Annu Rev Public Health. 2023;44:213–32 (A review of global drought impacts and mitigation strategies through the lens of climate change).

    Article  PubMed  Google Scholar 

  54. Salvador C, Nieto R, Linares C, Díaz J, Gimeno L. Effects of droughts on health: diagnosis, repercussion, and adaptation in vulnerable regions under climate change. Challenges for Future Research. Sci Total Environ. 2020;703:134912 (A perspective on drought and health research, future areas of priority, the complexity of performing drought, and health research).

    Article  CAS  PubMed  Google Scholar 

  55. Sugg M, Runkle J, Leeper R, Bagli H, Golden A, Handwerger LH, et al. A scoping review of drought impacts on health and society in North America. Climatic Change. 2020;162:1177–95 (A scoping review of drought impacts on health in North America with a lens on identifying research gaps and future priorities).

    Article  Google Scholar 

  56. Xu Z, FitzGerald G, Guo Y, Jalaludin B, Tong S. Impact of heatwave on mortality under different heatwave definitions: a systematic review and meta-analysis. Environ Int. 2016;89–90:193–203.

    Article  PubMed  Google Scholar 

  57. Heim RR. A review of twentieth-century drought indices used in the United States. Bull Amer Meteor Soc. 2002;83:1149–65.

    Article  Google Scholar 

  58. Shah D, Shah HL, Dave HM, Mishra V. Contrasting influence of human activities on agricultural and hydrological droughts in India. Sci Total Environ. 2021;774:144959.

    Article  CAS  Google Scholar 

  59. Yang X, Zhang M, He X, Ren L, Pan M, Yu X, et al. Contrasting influences of human activities on hydrological drought regimes over China based on high-resolution simulations. Water Resour Res. 2020;56:e2019WR025843.

    Article  Google Scholar 

  60. Wilhite DA, Glantz MH. Understanding: the drought phenomenon: the role of definitions. Water Int. 1985;10:111–20.

    Article  Google Scholar 

  61. Berman JD, Ebisu K, Peng RD, Dominici F, Bell ML. Drought and the risk of hospital admissions and mortality in older adults in Western USA from 2000 to 2013: a retrospective study. Lancet Planet Health. 2017;1:e17-25.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Salvador C, Nieto R, Linares C, Diaz J, Gimeno L. Effects on daily mortality of droughts in Galicia (NW Spain) from 1983 to 2013. Sci Total Environ. 2019;662:121–33.

    Article  CAS  PubMed  Google Scholar 

  63. Wang B, Wang S, Li L, Xu S, Li C, Li S, et al. The association between drought and outpatient visits for respiratory diseases in four northwest cities of China. Clim Change. 2021;167:2.

    Article  Google Scholar 

  64. Lynch KM, Lyles RH, Waller LA, Abadi AM, Bell JE, Gribble MO. Drought severity and all-cause mortality rates among adults in the United States: 1968–2014. Environ Health. 2020;19:52 (A national US study that evaluated associations between mortality and drought exposure for different age, sex, and race subgroups).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Abadi AM, Gwon Y, Gribble MO, Berman JD, Bilotta R, Hobbins M, et al. Drought and all-cause mortality in Nebraska from 1980 to 2014: time-series analyses by age, sex, race, urbanicity and drought severity. Sci Total Environ. 2022;840:156660.

    Article  CAS  PubMed  Google Scholar 

  66. Salvador C, Nieto R, Linares C, Díaz J, Alves CA, Gimeno L. Drought effects on specific-cause mortality in Lisbon from 1983 to 2016: risks assessment by gender and age groups. Sci Total Environ. 2021;751:142332.

    Article  CAS  PubMed  Google Scholar 

  67. Morgenstern H, Thomas D. Principles of study design in environmental epidemiology. 1993;101:16. https://doi.org/10.2307/3431657.

  68. Lee HJ, Bell ML, Koutrakis P. Drought and ozone air quality in California: identifying susceptible regions in the preparedness of future drought. Environ Res. 2023;216:114461.

    Article  CAS  PubMed  Google Scholar 

  69. Vicente-Serrano SM, Beguería S, López-Moreno JI. A multiscalar drought index sensitive to global warming: the Standardized Precipitation Evapotranspiration Index. J Climate. 2010;23:1696–718.

    Article  Google Scholar 

  70. Beguería S, Vicente-Serrano SM. SPEI: calculation of the standardised precipitation-evapotranspiration index. 2023. https://spei.csiceshttps://github.com/sbegueria/SPEI.

  71. Dracup JA, Lee KS, Paulson EG. On the definition of droughts. Water Resour Res. 1980;16:297–302.

    Article  Google Scholar 

  72. McEvoy DJ, Huntington JL, Hobbins MT, Wood A, Morton C, Anderson M, et al. The Evaporative Demand Drought Index. Part II: CONUS-wide assessment against common drought indicators. J Hydrometeorol. 2016;17:1763–79.

    Article  Google Scholar 

  73. Bell JE, Herring SC, Jantarasami L, Adrianopoli C, Benedict K, Conlon K, et al. Ch. 4: Impacts of extreme events on human health. U.S. Global Change Research Program, Washington, DC. 2016;99–128. https://doi.org/10.7930/j0bz63zv.

  74. Smith KH, Tyre AJ, Hamik J, Hayes MJ, Zhou Y, Dai L. Using climate to explain and predict West Nile virus risk in Nebraska. GeoHealth. 2020;4:e2020GH000244.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Paull SH, Horton DE, Ashfaq M, Rastogi D, Kramer LD, Diffenbaugh NS, et al. Drought and immunity determine the intensity of West Nile virus epidemics and climate change impacts. Proc Biol Sci. 2017;284. https://doi.org/10.1098/rspb.2016.2072.

  76. Shaman J, Day JF, Stieglitz M. Drought-induced amplification of Saint Louis encephalitis virus, Florida. Emerg Infect Dis. 2002;8:575–80.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Hagan RW, Didion EM, Rosselot AE, Holmes CJ, Siler SC, Rosendale AJ, et al. Dehydration prompts increased activity and blood feeding by mosquitoes. Sci Rep. 2018;8:1–12.

    Article  CAS  Google Scholar 

  78. Johnson BJ, Sukhdeo MVK. Drought-induced amplification of local and regional West Nile virus infection rates in New Jersey. J Med Entomol. 2013;50:195–204.

    Article  CAS  PubMed  Google Scholar 

  79. Heidecke J, Schettini AL, Rocklöv J. West Nile virus eco-epidemiology and climate change. PLOS Climate. 2023;2:e0000129.

    Article  Google Scholar 

  80. Watts MJ, Sarto i Monteys V, Mortyn PG, Kotsila P. The rise of West Nile virus in Southern and Southeastern Europe: a spatial–temporal analysis investigating the combined effects of climate, land use and economic changes. One Health. 2021;13:100315. https://doi.org/10.1016/j.onehlt.2021.100315.

  81. Janzén T, Hammer M, Petersson M, Dinnétz P. Factors responsible for Ixodes ricinus presence and abundance across a natural-urban gradient. PLoS ONE. 2023;18:e0285841.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Medlock JM, Vaux AGC, Hansford KM, Pietzsch ME, Gillingham EL. Ticks in the ecotone: the impact of agri-environment field margins on the presence and intensity of Ixodes ricinus ticks (Acari: Ixodidae) in farmland in southern England. Med Vet Entomol. 2020;34:175–83.

    Article  CAS  PubMed  Google Scholar 

  83. Brown L, Medlock J, Murray V. Impact of drought on vector-borne diseases – how does one manage the risk? Public Health. 2014;128:29–37.

    Article  CAS  PubMed  Google Scholar 

  84. Heo S, Bell ML, Lee J-T. Comparison of health risks by heat wave definition: applicability of wet-bulb globe temperature for heat wave criteria. Environ Res. 2019;168:158–70.

    Article  PubMed  Google Scholar 

  85. Center for Disease Control and Prevention, U.S. Environmental protection agency, and American water works association. When every drop counts: protecting public health during drought conditions— a guide for public health professionals. 2010. https://www.cdc.gov/nceh/ehs/DocsWhen_Every_Drop_Counts.pdf. Accessed 15 Oct 2023. 

  86. Friel S, Berry H, Dinh H, O’Brien L, Walls HL. The impact of drought on the association between food security and mental health in a nationally representative Australian sample. BMC Public Health. 2014;14:1102.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Peterson C, Stone DM, Marsh SM, Schumacher PK, Tiesman HM, McIntosh WL, et al. Suicide rates by major occupational group — 17 states, 2012 and 2015. MMWR Morb Mortal Wkly Rep. 2018;67:1253–60.

    Article  PubMed  PubMed Central  Google Scholar 

  88. OBrien LV, Berry HL, Coleman C, Hanigan IC. Drought as a mental health exposure. Environ Res. 2014;131:181–7.

    Article  CAS  PubMed  Google Scholar 

  89. Rigby CW, Rosen A, Berry HL, Hart CR. If the land’s sick, we’re sick:* the impact of prolonged drought on the social and emotional well-being of Aboriginal communities in rural New South Wales. Aust J Rural Health. 2011;19:249–54.

    Article  PubMed  Google Scholar 

  90. Austin EK, Handley T, Kiem AS, Rich JL, Lewin TJ, Askland HH, et al. Drought-related stress among farmers: findings from the Australian Rural Mental Health Study. Med J Aust. 2018;209:159–65.

    Article  PubMed  Google Scholar 

  91. Millington N, Scheba S. Day Zero and the infrastructures of climate change: water governance, inequality, and infrastructural politics in Cape Town’s water crisis. Int J Urban Reg Res. 2021;45:116–32.

    Article  Google Scholar 

  92. Enqvist JP, Ziervogel G. Water governance and justice in Cape Town: an overview. WIREs Water. 2019;6:e1354.

    Article  Google Scholar 

  93. Yusa A, Berry P, Cheng JJ, Ogden N, Bonsal B, Stewart R, et al. Climate change, drought and human health in Canada. Int J Environ Res Public Health. 2015;12:8359–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Gwon Y, Ji Y, Bell JE, Abadi AM, Berman JD, Rau A, et al. The association between drought exposure and respiratory-related mortality in the United States from 2000 to 2018. Int J Environ Res Public Health. 2023;20:6076 (A US-based study identifying geographic and individual risk differences in drought associated respiratory disease).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sena A, Barcellos C, Freitas C, Corvalan C. Managing the health impacts of drought in Brazil. Int J Environ Res Public Health. 2014;11:10737–51.

    Article  PubMed  PubMed Central  Google Scholar 

  96. LaKind JS, Overpeck J, Breysse PN, Backer L, Richardson SD, Sobus J, et al. Exposure science in an age of rapidly changing climate: challenges and opportunities. J Exposure Sci Environ Epidemiol. 2016;26:201635.

    Article  Google Scholar 

  97. Pescaroli G, Alexander D. Understanding compound, interconnected, interacting, and cascading risks: a holistic framework. Risk Anal. 2018;38:2245–57.

    Article  PubMed  Google Scholar 

  98. AghaKouchak A, Cheng L, Mazdiyasni O, Farahmand A. Global warming and changes in risk of concurrent climate extremes: insights from the 2014 California drought. Geophys Res Lett. 2015;8847–52. https://doi.org/10.1002/2014gl062308.

  99. Yin D, Roderick ML, Leech G, Sun F, Huang Y. The contribution of reduction in evaporative cooling to higher surface air temperatures during drought. Geophys Res Lett. 2014;41:7891–7.

    Article  Google Scholar 

  100. Black E, Blackburn M, Harrison G, Hoskins B, Methven J. Factors contributing to the summer 2003 European heatwave. Weather. 2004;59:217–23.

    Article  Google Scholar 

  101. Peterson TC, Heim RR, Hirsch R, Kaiser DP, Brooks H, Diffenbaugh NS, et al. Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: state of knowledge. Bull Amer Meteor Soc. 2013;94:821–34.

    Article  Google Scholar 

  102. Wang L, Yuan X, Xie Z, Wu P, Li Y. Increasing flash droughts over China during the recent global warming hiatus. Sci Rep. 2016;6:30571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Otkin JA, Svoboda M, Hunt ED, Ford TW, Anderson MC, Hain C, et al. Flash droughts: a review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull Am Meteor Soc. 2018;99:911–9.

    Article  Google Scholar 

  104. NOAA NCEI. Billion-dollar weather and climate disasters: overview. 2022. https://www.ncdc.noaa.gov/billions/. Accessed 3 March 2022.

  105. Chen K, Bi J, Chen J, Chen X, Huang L, Zhou L. Influence of heat wave definitions to the added effect of heat waves on daily mortality in Nanjing, China. Sci Total Environ. 2015;506–507:18–25.

    Article  PubMed  Google Scholar 

  106. Zeighami A, Kern J, Yates AJ, Weber P, Bruno AA. U.S. West Coast droughts and heat waves exacerbate pollution inequality and can evade emission control policies. Nat Commun. 2023;14:1415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Spracklen DV, Mickley LJ, Logan JA, Hudman RC, Yevich R, Flannigan MD, et al. Impacts of climate change from 2000 to 2050 on wildfire activity and carbonaceous aerosol concentrations in the western United States. J Geophys Res: Atmos. 2009;114. https://doi.org/10.1029/2008JD010966.

  108. Ebi KL, Bowen K. Extreme events as sources of health vulnerability: drought as an example. Weather Clim Extrem. 2016;11:95–102.

    Article  Google Scholar 

  109. Dai A. Characteristics and trends in various forms of the Palmer Drought Severity Index during 1900–2008. J Geophys Res: Atmos. 2011;116. https://doi.org/10.1029/2010JD015541.

Download references

Funding

This work was partially supported by the National Oceanographic and Atmospheric Administration’s National Integrated Drought Information System (grant NA20 OAR4310368), the Centers for Disease Control and Prevention National Institute of Occupational Safety and Health (grant U54 OH007548-15) awarded to the Great Plains Center for Agricultural Health, and the National Aeronautics and Space Administration (ROSES grant 8ONSSC22K1050).

Author information

Authors and Affiliations

Authors

Contributions

JDB, AMA, and JEB conceptualized the topic. JDB drafted the manuscript text and prepared the figures. All authors reviewed and edited the manuscript.

Corresponding author

Correspondence to Jesse D. Berman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflict of Interest

The authors declare that they have no actual or competing financial interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

Its contents are solely the responsibility of the authors and do not necessarily represent the views of the CDC, NOAA, NASA, or the Great Plains Center for Agricultural Health.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Climate Change and Natural Disasters.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berman, J.D., Abadi, A.M. & Bell, J.E. Existing Challenges and Opportunities for Advancing Drought and Health Research. Curr Envir Health Rpt (2024). https://doi.org/10.1007/s40572-024-00440-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40572-024-00440-z

Keywords

Navigation