Skip to main content
Log in

Airborne Exposure to Pollutants and Mental Health: A Review with Implications for United States Veterans

  • REVIEW
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Inhalation of airborne pollutants in the natural and built environment is ubiquitous; yet, exposures are different across a lifespan and unique to individuals. Here, we reviewed the connections between mental health outcomes from airborne pollutant exposures, the biological inflammatory mechanisms, and provide future directions for researchers and policy makers. The current state of knowledge is discussed on associations between mental health outcomes and Clean Air Act criteria pollutants, traffic-related air pollutants, pesticides, heavy metals, jet fuel, and burn pits.

Recent Findings

Although associations between airborne pollutants and negative physical health outcomes have been a topic of previous investigations, work highlighting associations between exposures and psychological health is only starting to emerge. Research on criteria pollutants and mental health outcomes has the most robust results to date, followed by traffic-related air pollutants, and then pesticides. In contrast, scarce mental health research has been conducted on exposure to heavy metals, jet fuel, and burn pits. Specific cohorts of individuals, such as United States military members and in-turn, Veterans, often have unique histories of exposures, including service-related exposures to aircraft (e.g. jet fuels) and burn pits. Research focused on Veterans and other individuals with an increased likelihood of exposure and higher vulnerability to negative mental health outcomes is needed.

Summary

Future research will facilitate knowledge aimed at both prevention and intervention to improve physical and mental health among military personnel, Veterans, and other at-risk individuals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Abbreviations

CO:

Carbon monoxide

DNA:

Deoxyribonucleic acid

GAD:

Generalized anxiety disorder

mm:

Millimeter

Mn:

Manganese

NH3 :

Ammonia

nm:

Nanometer

NO2 :

Nitrogen dioxide

O3 :

Ozone

PACT:

Promise to Address Comprehensive Toxins

PHQ:

Patient Health Questionnaire

PM:

Particulate matter

PM10 :

Particles with nominal diameter less than 10 µm

PM2.5 :

Particles with nominal diameter less than 2.5 µm

PTSD:

Posttraumatic stress disorder

Rfc:

Reference dose for inhalation exposure

ROS:

Reactive oxygen species

SO2 :

Sulfur dioxide

Th2 T:

Helper lymphocyte type 2

Th17 T:

Helper lymphocyte type 17

TNF:

Tumor necrosis factor

US:

United States

VA:

Department of Veterans Affairs

µm:

Micrometer

References

  1. Mayer H. Air pollution in cities. Atmos Environ. 1999;33(24–25):4029–37.

    Article  ADS  CAS  Google Scholar 

  2. Nazaroff WW. Indoor particle dynamics. Indoor Air. 2004;14:175–83.

    Article  PubMed  Google Scholar 

  3. Sundell J. On the history of indoor air quality and health. Indoor Air. 2004;14:51–8.

    Article  PubMed  Google Scholar 

  4. Shen R, Suuberg EM. Impacts of changes of indoor air pressure and air exchange rate in vapor intrusion scenarios. Build Environ. 2016;96:178–87.

    Article  PubMed  Google Scholar 

  5. Lakey PSJ, Won Y, Shaw D, Østerstrøm FF, Mattila J, Reidy E, Bottorff B, Rosales C, Wang C, Ampollini L, et al. Spatial and temporal scales of variability for indoor air constituents. Commun Chem. 2021;4(1):110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Shen H, Hou W, Zhu Y, Zheng S, Ainiwaer S, Shen G, Chen Y, Cheng H, Hu J, Wan Y, et al. Temporal and spatial variation of PM(2.5) in indoor air monitored by low-cost sensors. Sci Total Environ. 2021;770:145304.

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Nair AN, Anand P, George A, Mondal N. A review of strategies and their effectiveness in reducing indoor airborne transmission and improving indoor air quality. Environ Res. 2022;213: 113579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tiotiu AI, Novakova P, Nedeva D, Chong-Neto HJ, Novakova S, Steiropoulos P, Kowal K. Impact of air pollution on asthma outcomes. Int J Environ Res Public Health. 2020;17(17):6212.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yang BY, Fan S, Thiering E, Seissler J, Nowak D, Dong GH, Heinrich J. Ambient air pollution and diabetes: a systematic review and meta-analysis. Environ Res. 2020;180: 108817.

    Article  CAS  PubMed  Google Scholar 

  10. Delgado-Saborit JM, Guercio V, Gowers AM, Shaddick G, Fox NC, Love S. A critical review of the epidemiological evidence of effects of air pollution on dementia, cognitive function and cognitive decline in adult population. Sci Total Environ. 2021;757: 143734.

    Article  ADS  CAS  PubMed  Google Scholar 

  11. Huang Y, Zhu M, Ji M, Fan J, Xie J, Wei X, Jiang X, Xu J, Chen L, Yin R, et al. Air pollution, genetic factors, and the risk of lung cancer: a prospective study in the UK Biobank. Am J Respir Crit Care Med. 2021;204(7):817–25.

    Article  CAS  PubMed  Google Scholar 

  12. Zare Sakhvidi MJ, Lequy E, Goldberg M, Jacquemin B. Air pollution exposure and bladder, kidney and urinary tract cancer risk: a systematic review. Environ Pollut. 2020;267: 115328.

    Article  CAS  PubMed  Google Scholar 

  13. Chen J, Hoek G. Long-term exposure to PM and all-cause and cause-specific mortality: a systematic review and meta-analysis. Environ Int. 2020;143: 105974.

    Article  CAS  PubMed  Google Scholar 

  14. GBD 2019 Mental Disorders Collaborators. Global, regional, and national burden of 12 mental disorders in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet Psychiatry. 2022;9(2):137–50.

  15. Roehrig C. Mental disorders top the list of the most costly conditions in the United States: $201 billion. Health Aff (Millwood). 2016;35(6):1130–5.

    Article  PubMed  Google Scholar 

  16. Hudson CG. Socioeconomic status and mental illness: tests of the social causation and selection hypotheses. Am J Orthopsychiatry. 2005;75(1):3–18.

    Article  PubMed  Google Scholar 

  17. Williams DR, Harris-Reid M. Race and mental health: emerging patterns and promising approaches. In: A handbook for the study of mental health: Social contexts, theories, and systems. New York, NY, US: Cambridge University Press; 1999. p. 295–314.

  18. Vega WA, Rumbaut RG. Ethnic minorities and mental health. Annu Rev Sociol. 1991:351–83.

  19. Brenner LA, Ignacio RV, Blow FC. Suicide and traumatic brain injury among individuals seeking Veterans Health Administration services. J Head Trauma Rehabil. 2011;26(4):257–64.

    Article  PubMed  Google Scholar 

  20. Eibner C, Krull H, Brown KM, Cefalu M, Mulcahy AW, Pollard M, Shetty K, Adamson DM, Amaral EF, Armour P, et al. Current and projected characteristics and unique health care needs of the patient population served by the Department of Veterans Affairs. Rand Health Q. 2016;5(4):13.

    PubMed  PubMed Central  Google Scholar 

  21. Feng S, Gao D, Liao F, Zhou F, Wang X. The health effects of ambient PM2.5 and potential mechanisms. Ecotoxicol Environ Saf. 2016;128:67–74.

    Article  CAS  PubMed  Google Scholar 

  22. Arias-Pérez RD, Taborda NA, Gómez DM, Narvaez JF, Porras J, Hernandez JC. Inflammatory effects of particulate matter air pollution. Environ Sci Pollut Res Int. 2020;27(34):42390–404.

    Article  PubMed  Google Scholar 

  23. Hoffmann B, Moebus S, Dragano N, Stang A, Möhlenkamp S, Schmermund A, Memmesheimer M, Bröcker-Preuss M, Mann K, Erbel R. Chronic residential exposure to particulate matter air pollution and systemic inflammatory markers. Environ Health Perspect. 2009;117(8):1302–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Zhou YM, Fan YN, Yao CY, Xu C, Liu XL, Li X, Xie WJ, Chen Z, Jia XY, Xia TT, et al. Association between short-term ambient air pollution and outpatient visits of anxiety: a hospital-based study in northwestern China. Environ Res. 2021;197: 111071.

    Article  CAS  PubMed  Google Scholar 

  25. Lamichhane DK, Jung DY, Shin YJ, Lee KS, Lee SY, Ahn K, Kim KW, Shin YH, Suh DI, Hong SJ, et al. Association of ambient air pollution with depressive and anxiety symptoms in pregnant women: a prospective cohort study. Int J Hyg Environ Health. 2021;237: 113823.

    Article  CAS  PubMed  Google Scholar 

  26. Pun VC, Manjourides J, Suh H. Association of ambient air pollution with depressive and anxiety symptoms in older adults: results from the NSHAP study. Environ Health Perspect. 2017;125(3):342–8.

    Article  CAS  PubMed  Google Scholar 

  27. Carugno M, Palpella D, Ceresa A, Pesatori AC, Buoli M. Short-term air pollution exposure is associated with lower severity and mixed features of manic episodes in hospitalized bipolar patients: a cross-sectional study in Milan. Italy Environ Res. 2021;196: 110943.

    Article  CAS  PubMed  Google Scholar 

  28. Trushna T, Dhiman V, Raj D, Tiwari RR. Effects of ambient air pollution on psychological stress and anxiety disorder: a systematic review and meta-analysis of epidemiological evidence. Rev Environ Health. 2021;36(4):501–21.

    Article  CAS  PubMed  Google Scholar 

  29. Zeng Y, Lin R, Liu L, Liu Y, Li Y. Ambient air pollution exposure and risk of depression: a systematic review and meta-analysis of observational studies. Psychiatry Res. 2019;276:69–78.

    Article  CAS  PubMed  Google Scholar 

  30. Braithwaite I, Zhang S, Kirkbride JB, Osborn DP, Hayes JF. Air pollution (particulate matter) exposure and associations with depression, anxiety, bipolar, psychosis and suicide risk: a systematic review and meta-analysis. Environ Health Perspect. 2019;127(12): 126002.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Fan S-J, Heinrich J, Bloom MS, Zhao T-Y, Shi T-X, Feng W-R, Sun Y, Shen J-C, Yang Z-C, Yang B-Y. Ambient air pollution and depression: a systematic review with meta-analysis up to 2019. Sci Total Environ. 2020;701:134721.

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Liu Q, Wang W, Gu X, Deng F, Wang X, Lin H, Guo X, Wu S. Association between particulate matter air pollution and risk of depression and suicide: a systematic review and meta-analysis. Environ Sci Pollut Res Int. 2021;28(8):9029–49.

    Article  CAS  PubMed  Google Scholar 

  33. Borroni E, Pesatori AC, Bollati V, Buoli M, Carugno M. Air pollution exposure and depression: a comprehensive updated systematic review and meta-analysis. Environ Pollut. 2022;292:118245.

    Article  CAS  PubMed  Google Scholar 

  34. Newbury JB, Stewart R, Fisher HL, Beevers S, Dajnak D, Broadbent M, Pritchard M, Shiode N, Heslin M, Hammoud R, et al. Association between air pollution exposure and mental health service use among individuals with first presentations of psychotic and mood disorders: retrospective cohort study. Br J Psychiatry. 2021;219(6):678–85.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Nguyen AM, Malig BJ, Basu R. The association between ozone and fine particles and mental health-related emergency department visits in California, 2005–2013. PLoS ONE. 2021;16(4): e0249675.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Qiu X, Danesh-Yazdi M, Wei Y, Di Q, Just A, Zanobetti A, Weisskopf M, Dominici F, Schwartz J. Associations of short-term exposure to air pollution and increased ambient temperature with psychiatric hospital admissions in older adults in the USA: a case-crossover study. Lancet Planet Health. 2022;6(4):e331–41.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Brugge D, Durant JL, Rioux C. Near-highway pollutants in motor vehicle exhaust: a review of epidemiologic evidence of cardiac and pulmonary health risks. Environ Health. 2007;6(1):23.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Taylor WL, Schuldt SJ, Delorit JD, Chini CM, Postolache TT, Lowry CA, Brenner LA, Hoisington AJ. A framework for estimating the United States depression burden attributable to indoor fine particulate matter exposure. Sci Total Environ. 2021;756: 143858.

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Pratt GC, Vadali ML, Kvale DL, Ellickson KM. Traffic, air pollution, minority and socio-economic status: addressing inequities in exposure and risk. Int J Environ Res Public Health. 2015;12(5):5355–72.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hegewald J, Schubert M, Freiberg A, Romero Starke K, Augustin F, Riedel-Heller SG, Zeeb H, Seidler A. Traffic noise and mental health: a systematic review and meta-analysis. Int J Environ Res Public Health. 2020;17(17):6175.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Dzhambov AM, Lercher P. Road traffic noise exposure and depression/anxiety: an updated systematic review and meta-analysis. Int J Environ Res Public Health. 2019;16(21):4134.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Gong X, Fenech B, Blackmore C, Chen Y, Rodgers G, Gulliver J, Hansell AL. Association between noise annoyance and mental health outcomes: a systematic review and meta-analysis. Int J Environ Res Public Health. 2022;19(5):2696.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zell-Baran LM, Meehan R, Wolff J, Strand M, Krefft SD, Gottschall E, Macedonia TV, Gross JE, Sanders OL, Pepper GC. Military occupational specialty codes: utility in predicting inhalation exposures in post-9/11 deployers. J Occup Environ Med. 2019;61(12):1036–40.

    Article  PubMed  Google Scholar 

  44. Thomsen N, Wagner T, Hoisington A, Schuldt S. A sustainable prototype for renewable energy: optimized prime-power generator solar array replacement. Int J Energy Prod Manag. 2019;4(1):28–39.

    Google Scholar 

  45. United States Environmental Protection Agency. Report to congress on black carbon. Washington: DC; 2012. pp. 1–388.

  46. Jones MW, Abatzoglou JT, Veraverbeke S, Andela N, Lasslop G, Forkel M, Smith AJ, Burton C, Betts RA, van der Werf GR. Global and regional trends and drivers of fire under climate change. Rev Geophys. 2022;60(3):e2020RG000726.

    Article  ADS  Google Scholar 

  47. Wotton BM, Flannigan MD, Marshall GA. Potential climate change impacts on fire intensity and key wildfire suppression thresholds in Canada. Environ Res Lett. 2017;12(9):095003.

    Article  ADS  Google Scholar 

  48. Bruyneel L, Kestens W, Alberty M, Karakaya G, Van Woensel R, Horemans C, Trimpeneers E, Vanpoucke C, Fierens F, Nawrot TS, et al. Short-term exposure to ambient air pollution and onset of work incapacity related to mental health conditions. Environ Int. 2022;164:107245.

    Article  CAS  PubMed  Google Scholar 

  49. Shen M, Gu X, Li S, Yu Y, Zou B, Chen X. Exposure to black carbon is associated with symptoms of depression: a retrospective cohort study in college students. Environ Int. 2021;157:106870.

    Article  CAS  PubMed  Google Scholar 

  50. Hautekiet P, Saenen ND, Demarest S, Keune H, Pelgrims I, Van der Heyden J, De Clercq EM, Nawrot TS. Air pollution in association with mental and self-rated health and the mediating effect of physical activity. Environ Health. 2022;21(1):29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Y, Eliot MN, Koutrakis P, Gryparis A, Schwartz JD, Coull BA, Mittleman MA, Milberg WP, Lipsitz LA, Wellenius GA. Ambient air pollution and depressive symptoms in older adults: results from the MOBILIZE Boston study. Environ Health Perspect. 2014;122(6):553–8.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ehsanifar M, Karimian M, Behdarvandi M. Anxiety and depression following diesel exhaust nano-particles exposure in male and female mice. J Neurophysiol Neurol Disord. 2020;8:1–8.

    Google Scholar 

  53. Jeong S, Lee J-H, Ha J-H, Kim J, Kim I, Bae S. An exploratory study of the relationships between diesel engine exhaust particle inhalation, pulmonary inflammation and anxious behavior. Int J Environ Res Public Health. 2021;18(3):1166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Shehab M, Pope FD, Delgado-Saborit JM. The contribution of cooking appliances and residential traffic proximity to aerosol personal exposure. J Environ Health Sci Eng. 2021;19(1):307–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. LaRosa LE, Buckley TJ, Wallace LA. Real-time indoor and outdoor measurements of black carbon in an occupied house: an examination of sources. J Air Waste Manag Assoc. 2002;52(1):41–9.

    Article  CAS  PubMed  Google Scholar 

  56. Isiugo K, Jandarov R, Cox J, Chillrud S, Grinshpun SA, Hyttinen M, Yermakov M, Wang J, Ross J, Reponen T. Predicting indoor concentrations of black carbon in residential environments. Atmos Environ. 1994;2019(201):223–30.

    Google Scholar 

  57. Apte JS, Messier KP, Gani S, Brauer M, Kirchstetter TW, Lunden MM, Marshall JD, Portier CJ, Vermeulen RCH, Hamburg SP. High-resolution air pollution mapping with google street view cars: exploiting big data. Environ Sci Technol. 2017;51(12):6999–7008.

    Article  ADS  CAS  PubMed  Google Scholar 

  58. Sharma A, Kumar V, Shahzad B, Tanveer M, Sidhu GPS, Handa N, Kohli SK, Yadav P, Bali AS, Parihar RD, et al. Worldwide pesticide usage and its impacts on ecosystem. SN Appl Sci. 2019;1(11):1446.

    Article  CAS  Google Scholar 

  59. Nicolopoulou-Stamati P, Maipas S, Kotampasi C, Stamatis P, Hens L. Chemical pesticides and human health: the urgent need for a new concept in agriculture. Front Public Health. 2016;4:148.

  60. Alavanja MCR, Hoppin JA, Kamel F. Health effects of chronic pesticide exposure: cancer and neurotoxicity. Annu Rev Public Health. 2004;25:155–97.

    Article  PubMed  Google Scholar 

  61. Weisenburger DD. Human health effects of agrichemical use. Hum Pathol. 1993;24(6):571–6.

    Article  CAS  PubMed  Google Scholar 

  62. Kirkhorn SR, Schenker MB. Current health effects of agricultural work: respiratory disease, cancer, reproductive effects, musculoskeletal injuries, and pesticide–related illnesses. J Agric Saf Health. 2002;8(2):199.

    Article  CAS  PubMed  Google Scholar 

  63. Bassil KL, Vakil C, Sanborn M, Cole DC, Kaur JS, Kerr KJ. Cancer health effects of pesticides: systematic review. Can Fam Physician. 2007;53(10):1704–11.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Garcia AM. Pesticide exposure and women’s health. Am J Ind Med. 2003;44(6):584–94.

    Article  PubMed  Google Scholar 

  65. Ntzani EE, Ntritsos GCM, Evangelou E, Tzoulaki I. Literature review on epidemiological studies linking exposure to pesticides and health effects. EFSA Supporting Publications. 2013;10(10):497E.

    Article  Google Scholar 

  66. Tudi M, Li H, Li H, Wang L, Lyu J, Yang L, Tong S, Yu QJ, Ruan HD, Atabila A. Exposure routes and health risks associated with pesticide application. Toxics. 2022;10(6):335.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Fraser CE, Smith KB, Judd F, Humphreys JS, Fragar LJ, Henderson A. Farming and mental health problems and mental illness. Int J Soc Psychiatry. 2005;51(4):340–9.

    Article  CAS  PubMed  Google Scholar 

  68. Berry HL, Hogan A, Owen J, Rickwood D, Fragar L. Climate change and farmers’ mental health: risks and responses. Asia Pac J Public Health. 2011;23(2_suppl):119S-132S.

    Article  PubMed  Google Scholar 

  69. Santos EGO, Queiroz PR, Nunes A, Vedana KGG, Barbosa IR. Factors associated with suicidal behavior in farmers: a systematic review. Int J Environ Res Public Health. 2021;18(12):6522.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Onwuameze OE, Paradiso S, Peek-Asa C, Donham KJ, Rautiainen RH. Modifiable risk factors for depressed mood among farmers. Ann Clin Psychiatry. 2013;25(2):83–90.

    PubMed  Google Scholar 

  71. Khan N, Kennedy A, Cotton J, Brumby S. A pest to mental health? Exploring the link between exposure to agrichemicals in farmers and mental health. Int J Environ Res Public Health. 2019;16(8):1327.

    Article  PubMed  PubMed Central  Google Scholar 

  72. DeBeer BB, Davidson D, Meyer EC, Kimbrel NA, Gulliver SB, Morissette SB. The association between toxic exposures and chronic multisymptom illness in veterans of the wars of Iraq and Afghanistan. J Occup Environ Med. 2017;59(1):54–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Stellman JM, Stellman SD, Christian R, Weber T, Tomasallo C. The extent and patterns of usage of Agent Orange and other herbicides in Vietnam. Nature. 2003;422(6933):681–7.

    Article  ADS  CAS  PubMed  Google Scholar 

  74. Martinez S, Yaffe K, Li Y, Byers AL, Peltz CB, Barnes DE. Agent Orange exposure and dementia diagnosis in US Veterans of the Vietnam Era. JAMA Neurol. 2021;78(4):473–7.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Srivastava A, Siddiqui N, Koshe RK, Singh VK. Human health effects emanating from airborne heavy metals due to natural and anthropogenic activities: a review. Adv Health Environ Saf. 2018:279–96.

  76. Skalny AV, Aschner M, Bobrovnitsky IP, Chen P, Tsatsakis A, Paoliello MMB, Buha Djordevic A, Tinkov AA. Environmental and health hazards of military metal pollution. Environ Res. 2021;201: 111568.

    Article  CAS  PubMed  Google Scholar 

  77. Orru H, Pindus M, Harro H-R, Maasikmets M, Herodes K. Metallic fumes at indoor military shooting ranges: lead, copper, nickel, and zinc in different fractions of airborne particulate matter. Propellants Explos Pyrotech. 2018;43(3):228–33.

    Article  CAS  Google Scholar 

  78. Chen LC, Lippmann M. Effects of metals within ambient air particulate matter (PM) on human health. Inhalation Toxicol. 2009;21(1):1–31.

    Article  Google Scholar 

  79. Hovatta I, Juhila J, Donner J. Oxidative stress in anxiety and comorbid disorders. Neurosci Res. 2010;68(4):261–75.

    Article  CAS  PubMed  Google Scholar 

  80. Yasunari K, Matsui T, Maeda K, Nakamura M, Watanabe T, Kiriike N. Anxiety-induced plasma norepinephrine augmentation increases reactive oxygen species formation by monocytes in essential hypertension. Am J Hypertens. 2006;19(6):573–8.

    Article  CAS  PubMed  Google Scholar 

  81. Malkov A. lvanov AI, Popova I, Mukhtarov M, Gubkina O, Waseem T, Bregestovski P, Zilberter Y: Reactive oxygen species initiate a metabolic collapse in hippocampal slices: potential trigger of cortical spreading depression. J Cereb Blood Flow Metab. 2014;34(9):1540–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Madireddy S, Madireddy S. Regulation of reactive oxygen species-mediated damage in the pathogenesis of schizophrenia. Brain Sci. 2020;10(10):742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zhao X, Li Z, Wang D, Li J, Zou B, Tao Y, Lei L, Qiao F, Huang J. Assessment of residents’ total environmental exposure to heavy metals in China. Sci Rep. 2019;9(1):16386.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  84. Roels HA, Bowler RM, Kim Y, Claus Henn B, Mergler D, Hoet P, Gocheva VV, Bellinger DC, Wright RO, Harris MG, et al. Manganese exposure and cognitive deficits: a growing concern for manganese neurotoxicity. Neurotoxicology. 2012;33(4):872–80.

    Article  CAS  PubMed  Google Scholar 

  85. Bowler RM, Gysens S, Diamond E, Nakagawa S, Drezgic M, Roels HA. Manganese exposure: neuropsychological and neurological symptoms and effects in welders. Neurotoxicology. 2006;27(3):315–26.

    Article  CAS  PubMed  Google Scholar 

  86. Bast-Pettersen R, Ellingsen DG, Hetland SM, Thomassen Y. Neuropsychological function in manganese alloy plant workers. Int Arch Occup Environ Health. 2004;77(4):277–87.

    Article  CAS  PubMed  Google Scholar 

  87. Mental Health and Substance Use Team. Neurological disorders: public health challenges. World Health Organization. 2006. pp. 1–232.

  88. Colledge MA, Julian JR, Gocheva VV, Beseler CL, Roels HA, Lobdell DT, Bowler RM. Characterization of air manganese exposure estimates for residents in two Ohio towns. J Air Waste Manag Assoc. 2015;65(8):948–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Bowler RM, Kornblith ES, Gocheva VV, Colledge MA, Bollweg G, Kim Y, Beseler CL, Wright CW, Adams SW, Lobdell DT. Environmental exposure to manganese in air: associations with cognitive functions. Neurotoxicology. 2015;49:139–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Racette BA, Nelson G, Dlamini WW, Hershey T, Prathibha P, Turner JR, Checkoway H, Sheppard L, Searles Nielsen S. Depression and anxiety in a manganese-exposed community. Neurotoxicology. 2021;85:222–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. European Environment Agency. National emissions reported to the Convention on Long-range Transboundary Air Pollution (LRTAP Convention). European Union; 2021.

  92. Anyanwu BO, Ezejiofor AN, Igweze ZN, Orisakwe OE. Heavy metal mixture exposure and effects in developing nations: an update. Toxics. 2018;6(4):65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yu R, He L, Cai R, Li B, Li Z, Yang K. Heavy metal pollution and health risk in China. Glob Health J. 2017;1(1):47–55.

    Article  Google Scholar 

  94. National Research Council (US) Subcommittee on Jet-Propulsion Fuel 8. Toxicologic Assessment of Jet-Propulsion Fuel 8. Washington (DC): National Academies Press (US); 2003. Appendix A, Permissible Exposure Levels for Selected Military Fuel Vapors: Contents and Executive Summary (NRC); 1996.

  95. Bendtsen KM, Bengtsen E, Saber AT, Vogel U. A review of health effects associated with exposure to jet engine emissions in and around airports. Environ Health. 2021;20(1):10.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Pleil JD, Smith LB, Zelnick SD. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases. Environ Health Perspect. 2000;108(3):183–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Dallmann TR, DeMartini SJ, Kirchstetter TW, Herndon SC, Onasch TB, Wood EC, Harley RA. On-Road Measurement of Gas and Particle Phase Pollutant Emission Factors for Individual Heavy-Duty Diesel Trucks. Environ Sci Technol. 2012;46(15):8511–8.

    Article  ADS  CAS  PubMed  Google Scholar 

  98. Shah SN, Fossa A, Steiner AS, Kane J, Levy JI, Adamkiewicz G, Bennett-Fripp WM, Reid M. Housing quality and mental health: the association between pest infestation and depressive symptoms among public housing residents. J Urban health. 2018;95(5):691–702.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Winther M, Kousgaard U, Ellermann T, Ketzel M, L.fstr.m P, Massling, Nøjgård AJ. Emissions from aircraft and handling equipment in Copenhagen Airport. In 19th International Transport and Air Pollution Conference: 2012.

  100. Knave B, Persson HE, Goldberg JM, Westerholm P: Long-term exposure to jet fuel: an investigation on occupationally exposed workers with special reference to the nervous system. Scand J Work Environ Health 1976:152–164.

  101. Knave B, Mindus P, Struwe G. Neurasthenic symptoms in workers occupationally exposed to jet fuel. Acta Psychiatr Scand. 1979;60(1):39–49.

    Article  CAS  PubMed  Google Scholar 

  102. Struwe G, Knave B, Mindus P. Neuropsychiatric symptoms in workers occupationally exposed to jet fuel–a combined epidemiological and casuistic study. Acta Psychiatr Scand Suppl. 1983;303:55–67.

    Article  CAS  PubMed  Google Scholar 

  103. Attia JR, D’Este C, Schofield PW, Brown AM, Gibson R, Tavener M, Horsley K, Harrex W, Ross J. Team obotS: Mental health in F-111 maintenance workers: the study of health outcomes in aircraft maintenance personnel (SHOAMP) general health and medical study. J Occup Environ Med. 2006;48(7):682–91.

    Article  PubMed  Google Scholar 

  104. National Academies of Sciences Engineering, Medicine. Assessment of the Department of Veterans Affairs airborne hazards and open burn pit registry. Washington, DC: The National Academies Press; 2017.

  105. Io M. Long-term health consequences of exposure to burn pits in Iraq and Afghanistan. Washington, DC: The National Academies Press; 2011.

    Google Scholar 

  106. Taylor, Gregory et al. Screening Health Risk Assessment Burn Pit Exposures, Balad Air Base, Iraq and Addendum Report; 2008.

  107. Blasch KW, Kolivosky JE, Heller JM. Environmental air sampling near burn pit and incinerator operations at Bagram Airfield Afghanistan. J Occup Environ Med. 2016;58(8 Suppl 1):S38-43.

    Article  CAS  PubMed  Google Scholar 

  108. McLean J, Anderson D, Capra G, Riley CA. The potential effects of burn pit exposure on the respiratory tract: a systematic review. Mil Med. 2021;186(7–8):672–81.

    PubMed  Google Scholar 

  109. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, et al. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Hensley K, Robinson KA, Gabbita SP, Salsman S, Floyd RA. Reactive oxygen species, cell signaling, and cell injury. Free Rad Biol Med. 2000;28(10):1456–62.

    Article  CAS  PubMed  Google Scholar 

  111. Lodovici M, Bigagli E. Oxidative stress and air pollution exposure. J Toxicol. 2011;2011: 487074.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Sule RO, Condon L, Gomes AV. A common feature of pesticides: oxidative stress—the role of oxidative stress in pesticide-induced toxicity. Oxid Med Cell Longev. 2022;2022:5563759.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Gurgueira SA, Lawrence J, Coull B, Murthy GGK, González-Flecha B. Rapid increases in the steady-state concentration of reactive oxygen species in the lungs and heart after particulate air pollution inhalation. Environ Health Perspect. 2002;110(8):749–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lakey PSJ, Berkemeier T, Tong H, Arangio AM, Lucas K, Pöschl U, Shiraiwa M. Chemical exposure-response relationship between air pollutants and reactive oxygen species in the human respiratory tract. Sci Rep. 2016;6(1):32916.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol. 2014;24(10):R453-462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Bitanihirwe BK. Woo T-UW: Oxidative stress in schizophrenia: an integrated approach. Neurosci Biobehav Rev. 2011;35(3):878–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Boskovic M, Vovk T, Kores Plesnicar B, Grabnar I. Oxidative stress in schizophrenia. Curr Neuropharmacol. 2011;9(2):301–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Emiliani FE, Sedlak TW, Sawa A. Oxidative stress and schizophrenia: recent breakthroughs from an old story. Curr Opin Psychiatry. 2014;27(3):185.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Fendri C, Mechri A, Khiari G, Othman A, Kerkeni A, Gaha L. Oxidative stress involvement in schizophrenia pathophysiology: a review. L’encephale. 2006;32(2 Pt 1):244–52.

    Article  CAS  PubMed  Google Scholar 

  120. Bhatt S, Nagappa AN, Patil CR. Role of oxidative stress in depression. Drug Discovery Today. 2020;25(7):1270–6.

    Article  CAS  PubMed  Google Scholar 

  121. Black CN, Bot M, Scheffer PG, Cuijpers P, Penninx BW. Is depression associated with increased oxidative stress? A systematic review and meta-analysis. Psychoneuroendocrinology. 2015;51:164–75.

    Article  CAS  PubMed  Google Scholar 

  122. Miller MW, Sadeh N. Traumatic stress, oxidative stress and post-traumatic stress disorder: neurodegeneration and the accelerated-aging hypothesis. Mol Psychiatry. 2014;19(11):1156–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Schiavone S, Jaquet V, Trabace L, Krause K-H. Severe life stress and oxidative stress in the brain: from animal models to human pathology. Antioxid Redox Signal. 2013;18(12):1475–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Bakunina N, Pariante CM, Zunszain PA. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology. 2015;144(3):365–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lang F, Abed M, Lang E, Foeller M. Oxidative stress and suicidal erythrocyte death. Antioxid Redox Signal. 2014;21(1):138–53.

    Article  CAS  PubMed  Google Scholar 

  126. Martindale JL, Holbrook NJ. Cellular response to oxidative stress: signaling for suicide and survival. J Cell Physiol. 2002;192(1):1–15.

    Article  CAS  PubMed  Google Scholar 

  127. Valavanidis A, Fiotakis K, Vlachogianni T. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. J Environ Sci Health C. 2008;26(4):339–62.

    Article  CAS  Google Scholar 

  128. Osimo EF, Baxter LJ, Lewis G, Jones PB, Khandaker GM. Prevalence of low-grade inflammation in depression: a systematic review and meta-analysis of CRP levels. Psychol Med. 2019;49(12):1958–70.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Rohleder N. Stimulation of systemic low-grade inflammation by psychosocial stress. Psychosom Med. 2014;76(3):181–9.

    Article  PubMed  Google Scholar 

  130. Speer K, Upton D, Semple S, McKune A. Systemic low-grade inflammation in post-traumatic stress disorder: a systematic review. J Inflamm Res. 2018;11:111–21.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Raison CL, Lowry CA, Rook GA. Inflammation, sanitation, and consternation: loss of contact with coevolved, tolerogenic microorganisms and the pathophysiology and treatment of major depression. Arch Gen Psychiatry. 2010;67(12):1211–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Rook GA, Raison CL, Lowry CA. Microbiota, immunoregulatory old friends and psychiatric disorders. Adv Exp Med Biol. 2014;817:319–56.

    Article  CAS  PubMed  Google Scholar 

  133. Nazmi A, Victora CG. Socioeconomic and racial/ethnic differentials of C-reactive protein levels: a systematic review of population-based studies. BMC Public Health. 2007;7:212.

    Article  PubMed  PubMed Central  Google Scholar 

  134. Friedman EM, Herd P. Income, education, and inflammation: differential associations in a national probability sample (The MIDUS Study). Psychosom Med. 2010;72(3):290–300.

    Article  PubMed  PubMed Central  Google Scholar 

  135. Glencross DA, Ho T-R, Camiña N, Hawrylowicz CM, Pfeffer PE. Air pollution and its effects on the immune system. Free Rad Biol Med. 2020;151:56–68.

    Article  CAS  PubMed  Google Scholar 

  136. Xu X, Jiang SY, Wang T-Y, Bai Y, Zhong M, Wang A, Lippmann M, Chen L-C, Rajagopalan S, Sun Q. Inflammatory response to fine particulate air pollution exposure: neutrophil versus monocyte. PLoS ONE. 2013;8(8): e71414.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wooding DJ, Ryu MH, Li H, Alexis NE, Pena O, Carlsten C. Acute air pollution exposure alters neutrophils in never-smokers and at-risk humans. Eur Respir J. 2020;55(4):1901495.

    Article  CAS  PubMed  Google Scholar 

  138. Kipen HM, Laskin DL. NETs: a new biomarker of traffic-related air pollution exposure: are they ready to catch fish? Eur Respir J. 2020;55(4):2000305.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Karavitis J, Kovacs EJ. Macrophage phagocytosis: effects of environmental pollutants, alcohol, cigarette smoke, and other external factors. J Leukoc Biol. 2011;90(6):1065–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Costa LG, Giordano G, Guizzetti M, Vitalone A. Neurotoxicity of pesticides: a brief review. Front Biosci. 2008;13(4):1240–9.

    Article  CAS  PubMed  Google Scholar 

  141. Sankhla MS, Sharma K, Kumar R. Heavy metal causing neurotoxicity in human health. Int J Innov Res Sci Eng Technol. 2017;6(5):7721–6.

    Google Scholar 

  142. Li B, Xia M, Zorec R, Parpura V, Verkhratsky A. Astrocytes in heavy metal neurotoxicity and neurodegeneration. Brain Res. 2021;1752: 147234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Guthrie OW, Wong BA, McInturf SM, Reboulet JE, Ortiz PA, Mattie DR. Inhalation of hydrocarbon jet fuel suppress central auditory nervous system function. J Toxicol Environ Health A. 2015;78(18):1154–69.

    Article  CAS  PubMed  Google Scholar 

  144. Haghani A, Morgan TE, Forman HJ, Finch CE. Air pollution neurotoxicity in the adult brain: emerging concepts from experimental findings. J Alzheimers Dis. 2020;76:773–97.

    Article  PubMed  Google Scholar 

  145. Baumeister D, Lightman SL, Pariante CM. The interface of stress and the HPA axis in behavioural phenotypes of mental illness. In: Pariante CM, Lapiz-Bluhm MD, editors. Behavioral neurobiology of stress-related disorders. Berlin, Heidelberg: Springer; 2014. pp. 13–24.

  146. Jackson JS, Knight KM. Race and self-regulatory health behaviors: the role of the stress response and the HPA axis in physical and mental health disparities. Social structures, aging, and self-regulation in the elderly; 2006. p. 189–239.

  147. Misiak B, Łoniewski I, Marlicz W, Frydecka D, Szulc A, Rudzki L, Samochowiec J. The HPA axis dysregulation in severe mental illness: can we shift the blame to gut microbiota? Prog Neuropsychopharmacol Biol Psychiatry. 2020;102: 109951.

    Article  CAS  PubMed  Google Scholar 

  148. Cohen JI. Stress and mental health: a biobehavioral perspective. Issues Ment Health Nurs. 2000;21(2):185–202.

    Article  PubMed  Google Scholar 

  149. Essex MJ, Shirtcliff EA, Burk LR, Ruttle PL, Klein MH, Slattery MJ, Kalin NH, Armstrong JM. Influence of early life stress on later hypothalamic–pituitary–adrenal axis functioning and its covariation with mental health symptoms: a study of the allostatic process from childhood into adolescence. Dev Psychopathol. 2011;23(4):1039–58.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Godoy LD, Rossignoli MT, Delfino-Pereira P, Garcia-Cairasco N, de Lima Umeoka EH. A comprehensive overview on stress neurobiology: basic concepts and clinical implications. Front Behav Neurosci. 2018;12:127.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Yousef MI, Abuzreda AA. Kamel MAELN: Neurotoxicity and inflammation induced by individual and combined exposure to iron oxide nanoparticles and silver nanoparticles. J Taibah Univ Sci. 2019;13(1):570–8.

    Article  Google Scholar 

  152. Costa LG, Cole TB, Coburn J, Chang Y-C, Dao K, Roque P. Neurotoxicants are in the air: convergence of human, animal, and in vitro studies on the effects of air pollution on the brain. Biomed Res Int. 2014.

  153. Costa LG, Cole TB, Coburn J, Chang Y-C, Dao K, Roqué PJ. Neurotoxicity of traffic-related air pollution. Neurotoxicology. 2017;59:133–9.

    Article  CAS  PubMed  Google Scholar 

  154. Allen JL, Oberdorster G, Morris-Schaffer K, Wong C, Klocke C, Sobolewski M, Conrad K, Mayer-Proschel M, Cory-Slechta D. Developmental neurotoxicity of inhaled ambient ultrafine particle air pollution: parallels with neuropathological and behavioral features of autism and other neurodevelopmental disorders. Neurotoxicology. 2017;59:140–54.

    Article  CAS  PubMed  Google Scholar 

  155. Adler NE, Boyce T, Chesney MA, Cohen S, Folkman S, Kahn RL, Syme SL. Socioeconomic status and health. the challenge of the gradient. Am Psychol. 1994;49(1):15–24.

    Article  CAS  PubMed  Google Scholar 

  156. Barrett AE, Turner RJ. Family structure and mental health: the mediating effects of socioeconomic status, family process, and social stress. J Health Soc Behav. 2005;46(2):156–69.

    Article  PubMed  Google Scholar 

  157. Logan AC. Dysbiotic drift: mental health, environmental grey space, and microbiota. J Physiol Anthropol. 2015;34(1):015–0061.

    Article  Google Scholar 

  158. Rollings KA, Wells NM, Evans GW, Bednarz A, Yang Y. Housing and neighborhood physical quality: children’s mental health and motivation. J Environ Psychol. 2017;50:17–23.

    Article  Google Scholar 

  159. Galea S, Ahern J, Rudenstine S, Wallace Z, Vlahov D. Urban built environment and depression: a multilevel analysis. J Epidemiol Community Health. 2005;59(10):822–7.

    Article  PubMed  PubMed Central  Google Scholar 

  160. Miller I. The gut-brain axis: historical reflections. Microb Ecol Health Dis. 2018;29(1):1542921.

    PubMed  PubMed Central  Google Scholar 

  161. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M, Codagnone MG, Cussotto S, Fulling C, Golubeva AV, et al. The microbiota-gut-brain axis. Physiol Rev. 2019;99(4):1877–2013.

    Article  CAS  PubMed  Google Scholar 

  162. Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Investig. 2015;125(3):926–38.

    Article  PubMed  PubMed Central  Google Scholar 

  163. Bajinka O, Simbilyabo L, Tan Y, Jabang J, Saleem SA. Lung-brain axis. Crit Rev Microbiol. 2022;48(3):257–69.

    Article  PubMed  Google Scholar 

  164. Stevens RD, Puybasset L. The brain–lung–brain axis. Intensive Care Med. 2011;37:1054–6.

    Article  PubMed  Google Scholar 

  165. Tomasi TB Jr. Mechanisms of immune regulation at mucosal surfaces. Rev Infect Dis. 1983;5(Suppl 4):S784-792.

    Article  PubMed  Google Scholar 

  166. Sencio V, Machado MG, Trottein F. The lung–gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunol. 2021;14(2):296–304.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Young RP, Hopkins RJ, Marsland B. The gut–liver–lung axis. Modulation of the innate immune response and its possible role in chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol. 2016;54(2):161–9.

    Article  CAS  PubMed  Google Scholar 

  168. de Oliveira GLV, Oliveira CNS, Pinzan CF, de Salis LVV, Cardoso CRDB. Microbiota modulation of the gut-lung axis in COVID-19. Front Immunol. 2021;12:214.

    Article  Google Scholar 

  169. Bassis CM, Erb-Downward JR, Dickson RP, Freeman CM, Schmidt TM, Young VB, Beck JM, Curtis JL, Huffnagle GB. Analysis of the upper respiratory tract microbiotas as the source of the lung and gastric microbiotas in healthy individuals. MBio. 2015;6(2):e00037-e15.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Pragman AA, Kim HB, Reilly CS, Wendt C, Isaacson RE. The lung microbiome in moderate and severe chronic obstructive pulmonary disease. PLoS ONE. 2012;7(10):e47305.

  171. Daghagh Yazd S, Wheeler SA, Zuo A. Key risk factors affecting farmers’ mental health: a systematic review. Int J Environ Res Public Health. 2019;16(23):4849.

    Article  PubMed  PubMed Central  Google Scholar 

  172. National Academies of Sciences E, Medicine: Reassessment of the Department of Veterans Affairs airborne hazards and open burn pit registry. Washington DC: That National Academies Press; 2022.

  173. McLaughlin KA, Costello EJ, Leblanc W, Sampson NA, Kessler RC. Socioeconomic status and adolescent mental disorders. Am J Public Health. 2012;102(9):1742–50.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Sen S. Socioeconomic status and mental health: what is the causal relationship? Acta Psychiatr Scand. 2012;125(3):187–8.

    Article  PubMed  Google Scholar 

  175. Hajat A, MacLehose RF, Rosofsky A, Walker KD, Clougherty JE. Confounding by socioeconomic status in epidemiological studies of air pollution and health: challenges and opportunities. Environ Health Perspect. 2021;129(6): 065001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Vrijheid M. The exposome: a new paradigm to study the impact of environment on health. Thorax. 2014;69(9):876–8.

    Article  PubMed  Google Scholar 

  177. Vineis P, Robinson O, Chadeau-Hyam M, Dehghan A, Mudway I, Dagnino S. What is new in the exposome? Environ Int. 2020;143: 105887.

    Article  PubMed  Google Scholar 

  178. Miller GW. Exposome: a new field, a new journal. Exposome 2021;1(1).

  179. Jiang C, Wang X, Li X, Inlora J, Wang T, Liu Q, Snyder M. Dynamic human environmental exposome revealed by longitudinal personal monitoring. Cell. 2018;175(1):277-291.e231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. DeBord DG, Carreón T, Lentz TJ, Middendorf PJ, Hoover MD, Schulte PA. Use of the “exposome” in the practice of epidemiology: a primer on -omic technologies. Am J Epidemiol. 2016;184(4):302–14.

    Article  PubMed  Google Scholar 

  181. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol-Biol Sci Med Sci. 2014;69(Suppl_1):S4–9.

    Article  Google Scholar 

  182. Walrath T, Dyamenahalli KU, Hulsebus HJ, McCullough RL, Idrovo JP, Boe DM, McMahan RH, Kovacs EJ. Age-related changes in intestinal immunity and the microbiome. J Leukoc Biol. 2021;109(6):1045–61.

    Article  CAS  PubMed  Google Scholar 

  183. McMahan RH, Hulsebus HJ, Najarro KM, Giesy LE, Frank DN, Orlicky DJ, Kovacs EJ. Age-related intestinal dysbiosis and enrichment of gut-specific bacteria in the lung are associated with increased susceptibility to Streptococcus pneumoniae infection in mice. Front Aging. 2022;3:1–12.

    Article  Google Scholar 

  184. Suhaimi NF, Jalaludin J. Biomarker as a research tool in linking exposure to air particles and respiratory health. Biomed Res Int. 2015;2015: 962853.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Faruque MO, Vonk JM, Bültmann U, Boezen HM. Airborne occupational exposures and inflammatory biomarkers in the Lifelines cohort study. Occup Environ Med. 2021;78(2):82–5.

    Article  PubMed  Google Scholar 

  186. Tonelli LH, Holmes A, Postolache TT. Intranasal immune challenge induces sex-dependent depressive-like behavior and cytokine expression in the brain. Neuropsychopharmacology. 2008;33(5):1038–48.

    Article  CAS  PubMed  Google Scholar 

  187. Oh H, Koyanagi A, DeVylder JE, Stickley A. Seasonal allergies and psychiatric disorders in the United States. Int J Environ Res Public Health. 2018;15(9):1965.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Roxbury CR, Qiu M, Shargorodsky J, Woodard TD, Sindwani R, Lin SY. Association between rhinitis and depression in United States adults. J Allergy Clin Immunol: Pract. 2019;7(6):2013–20.

    PubMed  Google Scholar 

  189. Lu Y, Mak KK, van Bever HP, Ng TP, Mak A, Ho RC. Prevalence of anxiety and depressive symptoms in adolescents with asthma: a meta-analysis and meta-regression. Pediatr Allergy Immunol. 2012;23(8):707–15.

    Article  PubMed  Google Scholar 

  190. Rodrigues J, Franco-Pego F, Sousa-Pinto B, Bousquet J, Raemdonck K, Vaz R. Anxiety and depression risk in patients with allergic rhinitis: a systematic review and meta-analysis. Rhinology. 2021;59(4):360–73.

    CAS  PubMed  Google Scholar 

  191. Stickley A, Sheng Ng CF, Konishi S, Koyanagi A, Watanabe C. Airborne pollen and suicide mortality in Tokyo, 2001–2011. Environ Res. 2017;155:134–40.

    Article  CAS  PubMed  Google Scholar 

  192. Bergmans RS, Larson P, Bennion E, Mezuk B, Wozniak MC, Steiner AL, Gronlund CJ. Short-term exposures to atmospheric evergreen, deciduous, grass, and ragweed aeroallergens and the risk of suicide in Ohio, 2007–2015: exploring disparities by age, gender, and education level. Environ Res. 2021;200: 111450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Raheja UK, Fuchs D, Lowry CA, Stephens SH, Pavlovich MA, Mohyuddin H, Yousufi H, Ryan KA, O’Connell J, Brenner LA, et al. Heritability of plasma neopterin levels in the Old Order Amish. J Neuroimmunol. 2017;307:37–41.

    Article  CAS  PubMed  Google Scholar 

  194. Guzman A, Tonelli LH, Roberts D, Stiller JW, Jackson MA, Soriano JJ, Yousufi S, Rohan KJ, Komarow H, Postolache TT. Mood-worsening with high-pollen-counts and seasonality: a preliminary report. J Affect Disord. 2007;101(1–3):269–74.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Postolache TT, Stiller JW, Herrell R, Goldstein MA, Shreeram SS, Zebrak R, Thrower CM, Volkov J, No MJ, Volkov I, Rohan KJ, Redditt J, Parmar M, Mohyuddin F, Olsen C, Moca M, Tonelli LH, Merikangas K, Komarow HD. Tree pollen peaks are associated with increased nonviolent suicide in women. Mol Psychiatry. 2005;10:232–5. https://doi.org/10.1038/sj.mp.4001620.

    Article  CAS  PubMed  Google Scholar 

  196. Lin GZ, Li L, Song YF, Zhou YX, Shen SQ, Ou CQ. The impact of ambient air pollution on suicide mortality: a case-crossover study in Guangzhou, China. Environ Health. 2016;15(1):90.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Bakian AV, Huber RS, Coon H, Gray D, Wilson P, McMahon WM, Renshaw PF. Acute air pollution exposure and risk of suicide completion. Am J Epidemiol. 2015;181(5):295–303.

    Article  PubMed  PubMed Central  Google Scholar 

  198. Bascom R, Bromberg PA, Costa DL, Devlin R, Dockery DW, Frampton MW, Lambert W, Samet JM, Speizer FE, Utell M. Health effects of outdoor air pollution. Am J Respir Crit Care Med. 1996;153(2):477–98.

    Google Scholar 

  199. Bernstein JA, Alexis N, Bacchus H, Bernstein IL, Fritz P, Horner E, Li N, Mason S, Nel A, Oullette J. The health effects of nonindustrial indoor air pollution. J Allergy Clin Immunol. 2008;121(3):585–91.

    Article  CAS  PubMed  Google Scholar 

  200. Bernstein JA, Alexis N, Barnes C, Bernstein IL, Nel A, Peden D, Diaz-Sanchez D, Tarlo SM, Williams PB. Health effects of air pollution. J Allergy Clin Immunol. 2004;114(5):1116–23.

    Article  PubMed  Google Scholar 

  201. Brunekreef B, Holgate ST. Air pollution and health. Lancet. 2002;360(9341):1233–42.

    Article  CAS  PubMed  Google Scholar 

  202. Kampa M, Castanas E. Human health effects of air pollution. Environ Pollut. 2008;151(2):362–7.

    Article  CAS  PubMed  Google Scholar 

  203. Landrigan PJ. Air pollution and health. Lancet Public Health. 2017;2(1):e4–5.

    Article  PubMed  Google Scholar 

  204. Seaton A, Godden D, MacNee W, Donaldson K. Particulate air pollution and acute health effects. Lancet. 1995;345(8943):176–8.

    Article  CAS  PubMed  Google Scholar 

  205. Corsi RL. Connect or stagnate: the future of indoor air sciences. Indoor Air. 2015;25(3):231–4.

    Article  PubMed  Google Scholar 

Download references

Funding

Support was provided, in part, by the National Institutes of Health (NIH) under award numbers NIH R01 AG018859 (EJK), R35 GM131831 (EJK), R01 AT010005 (LAB), and 1R01MH074891-01A2 (TTP). The following authors were supported by grants from Veterans Affairs: I01 BX004335 (EJK), I21 RX002232 (LAB), and 5I01CX001310-05 (TTP). This work was also supported, in part, by the Rocky Mountain MIRECC.

Author information

Authors and Affiliations

Authors

Contributions

AJH and LAB conceptualized the manuscript. AJH, LAB, EJK, KAS, and TTP each wrote sections of the manuscript. All authors edited and reviewed the manuscript.

Corresponding author

Correspondence to Andrew J. Hoisington.

Ethics declarations

Competing Interests

Dr. Brenner reports grants from the VA, DOD, NIH, and the State of Colorado, editorial remuneration from Wolters Kluwer, and royalties from the American Psychological Association and Oxford University Press. In addition, she consults with sports leagues via her university affiliation. The other authors declare no competing interests in this work.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Disclaimer

The opinions and assertions herein are those of the authors and do not necessarily represent the official policy or position of the Department of Veterans Affairs and do not imply endorsement by the Federal Government. Funders had no role in the conduct of the study, data collection, management, analysis or interpretation, decision to publish, or preparation of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoisington, A.J., Stearns-Yoder, K.A., Kovacs, E.J. et al. Airborne Exposure to Pollutants and Mental Health: A Review with Implications for United States Veterans. Curr Envir Health Rpt (2024). https://doi.org/10.1007/s40572-024-00437-8

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40572-024-00437-8

Keywords

Navigation