Skip to main content

Advertisement

Log in

Epigenetics as a Biomarker for Early-Life Environmental Exposure

  • Early Life Environmental Health (H Volk and J Buckley, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

There is interest in evaluating the developmental origins of health and disease (DOHaD) which emphasizes the role of prenatal and early-life environments on non-communicable health outcomes throughout the life course. The ability to rigorously assess and identify early-life risk factors for later health outcomes, including those with childhood onset, in large population samples is often limited due to measurement challenges such as impractical costs associated with prospective studies with a long follow-up duration, short half-lives for some environmental toxicants, and lack of biomarkers that capture inter-individual differences in biologic response to external environments.

Recent Findings

Epigenomic patterns, and DNA methylation in particular, have emerged as a potential objective biomarker to address some of these study design and exposure measurement challenges. In this article, we summarize the literature to date on epigenetic changes associated with specific prenatal and early-life exposure domains as well as exposure mixtures in human observational studies and their biomarker potential. Additionally, we highlight evidence for other types of epigenetic patterns to serve as exposure biomarkers.

Summary

Evidence strongly supports epigenomic biomarkers of exposure that are detectable across the lifespan and across a range of exposure domains. Current and future areas of research in this field seek to expand these lines of evidence to other environmental exposures, to determine their specificity, and to develop predictive algorithms and methylation scores that can be used to evaluate early-life risk factors for health outcomes across the life span.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gillman MW. Developmental origins of health and disease. N Engl J Med. 2005;353(17):1848–50.

    Article  CAS  Google Scholar 

  2. Gluckman PD, Hanson MA, Cooper C, et al. Effect of in utero and early-life conditions on adult health and disease. N Engl J Med. 2008;359(1):61–73.

    Article  CAS  Google Scholar 

  3. Barker DJ. The origins of the developmental origins theory. J Intern Med. 2007;261(5):412–7.

    Article  CAS  Google Scholar 

  4. Ladd-Acosta C. Epigenetic signatures as biomarkers of exposure. Curr Environ Health Rep. 2015;2(2):117–25.

    Article  CAS  Google Scholar 

  5. Dolinoy DC, Jirtle RL. Environmental epigenomics in human health and disease. Environ Mol Mutagen. 2008;49(1):4–8.

    Article  CAS  Google Scholar 

  6. Greenberg MVC, Bourc’his D. The diverse roles of DNA methylation in mammalian development and disease. Nat Rev Mol Cell Biol. 2019;20(10):590–607.

    Article  CAS  Google Scholar 

  7. Zhou VW, Goren A, Bernstein BE. Charting histone modifications and the functional organization of mammalian genomes. Nat Rev Genet. 2011;12(1):7–18.

    Article  Google Scholar 

  8. Watson CN, Belli A, Di Pietro V. Small non-coding RNAs: new class of biomarkers and potential therapeutic targets in neurodegenerative disease. Front Genet. 2019;10:364.

    Article  CAS  Google Scholar 

  9. Dai HWZ. Histone modification patterns and their responses to environment. Curr Environ Health Rep. 2014;1:11–21.

    Article  CAS  Google Scholar 

  10. •• Cardenas A, Rifas-Shiman SL, Agha G, et al. Persistent DNA methylation changes associated with prenatal mercury exposure and cognitive performance during childhood. Sci Rep. 2017;7(1):288. (Study assessed the persistent effects of prenatal mercury exposure on DNA methylation across multiple life stages.)

    Article  Google Scholar 

  11. Bozack AK, Rifas-Shiman SL, Coull BA, et al. Prenatal metal exposure, cord blood DNA methylation and persistence in childhood: an epigenome-wide association study of 12 metals. Clin Epigenetics. 2021;13(1):208.

    Article  CAS  Google Scholar 

  12. Park J, Kim J, Kim E, et al. Prenatal lead exposure and cord blood DNA methylation in the Korean Exposome Study. Environ Res. 2021;195: 110767.

    Article  CAS  Google Scholar 

  13. Herrera-Moreno JF, Estrada-Gutierrez G, Wu H, et al. Prenatal lead exposure, telomere length in cord blood, and DNA methylation age in the PROGRESS prenatal cohort. Environ Res. 2022;1(205): 112577.

    Article  Google Scholar 

  14. Cardenas A, Rifas-Shiman SL, Godderis L, et al. Prenatal exposure to mercury: associations with global DNA Methylation and hydroxymethylation in cord blood and in childhood. Environ Health Perspect. 2017;125(8): 087022.

    Article  Google Scholar 

  15. Montes-Castro N, Alvarado-Cruz I, Torres-Sanchez L, et al. Prenatal exposure to metals modified DNA methylation and the expression of antioxidant- and DNA defense-related genes in newborns in an urban area. J Trace Elem Med Biol. 2019;55:110–20.

    Article  CAS  Google Scholar 

  16. Wu S, Hivert MF, Cardenas A, et al. Exposure to low levels of lead in utero and umbilical cord blood DNA methylation in project viva: an epigenome-wide association study. Environ Health Perspect. 2017;125(8): 087019.

    Article  Google Scholar 

  17. Lozano M, Yousefi P, Broberg K, et al. DNA methylation changes associated with prenatal mercury exposure: A meta-analysis of prospective cohort studies from PACE consortium. Environ Res. 2022;204(Pt B): 112093.

    Article  CAS  Google Scholar 

  18.  Koh EJ, Yu SY, Kim SH, Lee JS, Hwang SY. Prenatal exposure to heavy metals affects gestational age by altering DNA methylation patterns. Nanomaterials (Basel). 2021;11(11):2871. https://doi.org/10.3390/nano11112871.

  19. Heiss JA, Tellez-Rojo MM, Estrada-Gutierrez G, et al. Prenatal lead exposure and cord blood DNA methylation in PROGRESS: an epigenome-wide association study. Environ Epigenet. 2020;6(1):dvaa014.

    Article  Google Scholar 

  20. Rygiel CA, Dolinoy DC, Perng W, et al. Trimester-specific associations of prenatal lead exposure with infant cord blood DNA methylation at birth. Epigenet Insights. 2020;13:2516865720938669.

    Article  Google Scholar 

  21. Rygiel CA, Dolinoy DC, Bakulski KM, et al. DNA methylation at birth potentially mediates the association between prenatal lead (Pb) exposure and infant neurodevelopmental outcomes. Environ Epigenet. 2021;7(1):dvab005.

    Article  Google Scholar 

  22. Bozack AK, Cardenas A, Quamruzzaman Q, et al. DNA methylation in cord blood as mediator of the association between prenatal arsenic exposure and gestational age. Epigenetics. 2018;13(9):923–40.

    Article  Google Scholar 

  23. House JS, Hall J, Park SS, et al. Cadmium exposure and MEG3 methylation differences between Whites and African Americans in the NEST Cohort. Environ Epigenet. 2019;5(3):dvz014.

    Article  Google Scholar 

  24. Kaushal A, Zhang H, Karmaus WJJ, et al. Genome-wide DNA methylation at birth in relation to in utero arsenic exposure and the associated health in later life. Environ Health. 2017;16(1):50.

    Article  Google Scholar 

  25. Nishizawa-Jotaki S, Sakurai K, Eguchi A, et al. Association between mercury in cord serum and sex-specific DNA methylation in cord tissues. J Dev Orig Health Dis. 2021;12(1):124–31.

    Article  CAS  Google Scholar 

  26. Montrose L, Goodrich JM, Morishita M, Kochmanski J, Klaver Z, Cavalcante R, Lumeng JC, Peterson KE, Dolinoy DC. Neonatal Lead (Pb) Exposure and DNA methylation profiles in dried bloodspots. Int J Environ Res Public Health. 2020;17(18):6775. https://doi.org/10.3390/ijerph17186775.

  27. Appleton AA, Jackson BP, Karagas M, et al. Prenatal exposure to neurotoxic metals is associated with increased placental glucocorticoid receptor DNA methylation. Epigenetics. 2017;12(8):607–15.

    Article  Google Scholar 

  28. Tian FY, Everson TM, Lester B, et al. Selenium-associated DNA methylation modifications in placenta and neurobehavioral development of newborns: an epigenome-wide study of two U.S. birth cohorts. Environ Int. 2020;137:105508.

    Article  CAS  Google Scholar 

  29. Gliga AR, Engstrom K, Kippler M, et al. Prenatal arsenic exposure is associated with increased plasma IGFBP3 concentrations in 9-year-old children partly via changes in DNA methylation. Arch Toxicol. 2018;92(8):2487–500.

    Article  CAS  Google Scholar 

  30. Cediel Ulloa A, Gliga A, Love TM, et al. Prenatal methylmercury exposure and DNA methylation in seven-year-old children in the Seychelles Child Development Study. Environ Int. 2021;147: 106321.

    Article  CAS  Google Scholar 

  31. Rygiel CA, Goodrich JM, Solano-Gonzalez M, et al. Prenatal lead (Pb) exposure and peripheral blood DNA methylation (5mC) and hydroxymethylation (5hmC) in Mexican Adolescents from the ELEMENT Birth Cohort. Environ Health Perspect. 2021;129(6):67002.

    Article  CAS  Google Scholar 

  32. Bozack AK, Boileau P, Wei L, et al. Exposure to arsenic at different life-stages and DNA methylation meta-analysis in buccal cells and leukocytes. Environ Health. 2021;20(1):79.

    Article  CAS  Google Scholar 

  33. Montrose L, Padmanabhan V, Goodrich JM, et al. Maternal levels of endocrine disrupting chemicals in the first trimester of pregnancy are associated with infant cord blood DNA methylation. Epigenetics. 2018;13(3):301–9.

    Article  Google Scholar 

  34. Solomon O, Yousefi P, Huen K, et al. Prenatal phthalate exposure and altered patterns of DNA methylation in cord blood. Environ Mol Mutagen. 2017;58(6):398–410.

    Article  CAS  Google Scholar 

  35. Miura R, Ikeda-Araki A, Ishihara T, et al. Effect of prenatal exposure to phthalates on epigenome-wide DNA methylations in cord blood and implications for fetal growth: The Hokkaido Study on Environment and Children’s Health. Sci Total Environ. 2021;20(783): 147035.

    Article  Google Scholar 

  36. Huang LL, Zhou B, Ai SH, et al. Prenatal phthalate exposure, birth outcomes and DNA methylation of Alu and LINE-1 repetitive elements: A pilot study in China. Chemosphere. 2018;206:759–65.

    Article  CAS  Google Scholar 

  37. Chen CH, Jiang SS, Chang IS, et al. Association between fetal exposure to phthalate endocrine disruptor and genome-wide DNA methylation at birth. Environ Res. 2018;162:261–70.

    Article  CAS  Google Scholar 

  38. Tindula G, Murphy SK, Grenier C, et al. DNA methylation of imprinted genes in Mexican-American newborn children with prenatal phthalate exposure. Epigenomics. 2018;10(7):1011–26.

    Article  CAS  Google Scholar 

  39. Junge KM, Leppert B, Jahreis S, et al. MEST mediates the impact of prenatal bisphenol A exposure on long-term body weight development. Clin Epigenetics. 2018;10:58.

    Article  Google Scholar 

  40. McCabe CF, Padmanabhan V, Dolinoy DC, et al. Maternal environmental exposure to bisphenols and epigenome-wide DNA methylation in infant cord blood. Environ Epigenet. 2020;6(1):dvaa021.

    Article  Google Scholar 

  41. Huang YF, Chang CH, Chen PJ, Lin IH, Tsai YA, Chen CF, Wang YC, Huang WY, Tsai MS, Chen ML. Prenatal bisphenol a exposure, DNA methylation, and low birth weight: A pilot study in Taiwan. Int J Environ Res Public Health. 2021;18(11):6144. https://doi.org/10.3390/ijerph18116144.

  42. Miura R, Araki A, Minatoya M, et al. An epigenome-wide analysis of cord blood DNA methylation reveals sex-specific effect of exposure to bisphenol A. Sci Rep. 2019;9(1):12369.

    Article  Google Scholar 

  43. Song X, Zhou X, Yang F, et al. Association between prenatal bisphenol a exposure and promoter hypermethylation of CAPS2, TNFRSF25, and HKR1 genes in cord blood. Environ Res. 2020;190: 109996.

    Article  CAS  Google Scholar 

  44. Mattonet K, Nowack-Weyers N, Vogel V, et al. Prenatal exposure to endocrine disrupting chemicals is associated with altered DNA methylation in cord blood. Epigenetics. 2021;16:1–18.

    Google Scholar 

  45. Jedynak P, Tost J, Calafat AM, et al. Pregnancy exposure to phthalates and DNA methylation in male placenta - an epigenome-wide association study. Environ Int. 2022;160: 107054.

    Article  CAS  Google Scholar 

  46. Grindler NM, Vanderlinden L, Karthikraj R, et al. Exposure to phthalate, an endocrine disrupting chemical, alters the first trimester placental methylome and transcriptome in women. Sci Rep. 2018;8(1):6086.

    Article  CAS  Google Scholar 

  47. Song X, Wang Z, Zhang Z, et al. Differential methylation of genes in the human placenta associated with bisphenol A exposure. Environ Res. 2021;200: 111389.

    Article  CAS  Google Scholar 

  48. Zhao Y, Song Q, Ge W, et al. Associations between in utero exposure to polybrominated diphenyl ethers, pathophysiological state of fetal growth and placental DNA methylation changes. Environ Int. 2019;133(Pt B): 105255.

    Article  CAS  Google Scholar 

  49. Engdahl E, Svensson K, Lin PD, et al. DNA methylation at GRIN2B partially mediates the association between prenatal bisphenol F exposure and cognitive functions in 7-year-old children in the SELMA study. Environ Int. 2021;156: 106617.

    Article  CAS  Google Scholar 

  50. Choi YJ, Lee YA, Hong YC, et al. Effect of prenatal bisphenol A exposure on early childhood body mass index through epigenetic influence on the insulin-like growth factor 2 receptor (IGF2R) gene. Environ Int. 2020;143: 105929.

    Article  CAS  Google Scholar 

  51. • Gruzieva O, Xu CJ, Yousefi P, et al. Prenatal particulate air pollution and DNA Methylation in newborns: an epigenome-wide meta-analysis. Environ Health Perspect. 2019;127(5):57012. (A recent epigenome-wide meta-analysis that was among the first to identify several differentially methylated CpG sites in newborns that are significantly associated with prenatal particulate air pollution exposure.)

    Article  Google Scholar 

  52. Wang C, Plusquin M, Ghantous A, et al. DNA methylation of insulin-like growth factor 2 and H19 cluster in cord blood and prenatal air pollution exposure to fine particulate matter. Environ Health. 2020;19(1):129.

    Article  CAS  Google Scholar 

  53. Zhou G, He T, Huang H, et al. Prenatal ambient air pollution exposure and SOD2 promoter methylation in maternal and cord blood. Ecotoxicol Environ Saf. 2019;15(181):428–34.

    Article  Google Scholar 

  54. Isaevska E, Fiano V, Asta F, et al. Prenatal exposure to PM10 and changes in DNA methylation and telomere length in cord blood. Environ Res. 2022;19(209): 112717.

    Article  Google Scholar 

  55. Feng F, Huang L, Zhou G, et al. GPR61 methylation in cord blood: a potential target of prenatal exposure to air pollutants. Int J Environ Health Res. 2022;32(2):463–72.

    Article  CAS  Google Scholar 

  56. Liu X, Ye Y, Chen Y, et al. Effects of prenatal exposure to air particulate matter on the risk of preterm birth and roles of maternal and cord blood LINE-1 methylation: A birth cohort study in Guangzhou, China. Environ Int. 2019;133(Pt A): 105177.

    Article  CAS  Google Scholar 

  57. Gruzieva O, Xu CJ, Breton CV, et al. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure. Environ Health Perspect. 2017;125(1):104–10.

    Article  CAS  Google Scholar 

  58. Ladd-Acosta C, Feinberg JI, Brown SC, et al. Epigenetic marks of prenatal air pollution exposure found in multiple tissues relevant for child health. Environ Int. 2019;126:363–76.

    Article  CAS  Google Scholar 

  59. Cho HJ, Lee SH, Lee SY, et al. Mid-pregnancy PM2.5 exposure affects sex-specific growth trajectories via ARRDC3 methylation. Environ Res. 2021;200:111640.

    Article  CAS  Google Scholar 

  60. Li Z, Yang M, Duan L, et al. The neonatal PROC gene rs1799809 polymorphism modifies the association between prenatal air pollutants exposure and PROC promoter methylation. Environ Sci Pollut Res Int. 2022;29(10):14575–83.

    Article  CAS  Google Scholar 

  61. Isaevska E, Moccia C, Asta F, et al. Exposure to ambient air pollution in the first 1000 days of life and alterations in the DNA methylome and telomere length in children: A systematic review. Environ Res. 2021;193: 110504.

    Article  CAS  Google Scholar 

  62. Wang Y, Perera F, Guo J, et al. A methodological pipeline to generate an epigenetic marker of prenatal exposure to air pollution indicators. Epigenetics. 2022;17(1):32–40.

    Article  Google Scholar 

  63. Yang SI, Lee SH, Lee SY, et al. Prenatal PM2.5 exposure and vitamin D-associated early persistent atopic dermatitis via placental methylation. Ann Allergy Asthma Immunol. 2020;125(6):665-673 e1.

    Article  CAS  Google Scholar 

  64. Maghbooli Z, Hossein-Nezhad A, Adabi E, et al. Air pollution during pregnancy and placental adaptation in the levels of global DNA methylation. PLoS ONE. 2018;13(7): e0199772.

    Article  Google Scholar 

  65. Abraham E, Rousseaux S, Agier L, et al. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. Environ Int. 2018;118:334–47.

    Article  CAS  Google Scholar 

  66. Cai J, Zhao Y, Liu P, et al. Exposure to particulate air pollution during early pregnancy is associated with placental DNA methylation. Sci Total Environ. 2017;31(607–608):1103–8.

    Article  Google Scholar 

  67. Saenen ND, Vrijens K, Janssen BG, et al. Lower placental leptin promoter methylation in association with fine particulate matter air pollution during pregnancy and placental nitrosative stress at birth in the ENVIRONAGE Cohort. Environ Health Perspect. 2017;125(2):262–8.

    Article  CAS  Google Scholar 

  68. Nawrot TS, Saenen ND, Schenk J, et al. Placental circadian pathway methylation and in utero exposure to fine particle air pollution. Environ Int. 2018;114:231–41.

    Article  CAS  Google Scholar 

  69. Engstrom K, Mandakh Y, Garmire L, et al. Early pregnancy exposure to ambient air pollution among late-onset preeclamptic cases is associated with placental DNA hypomethylation of specific genes and slower placental maturation. Toxics. 2021;9(12):338. https://doi.org/10.3390/toxics9120338.

  70. Neven KY, Saenen ND, Tarantini L, et al. Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study. Lancet Planet Health. 2018;2(4):e174–83.

    Article  Google Scholar 

  71. Deyssenroth MA, Rosa MJ, Eliot MN, et al. Placental gene networks at the interface between maternal PM2.5 exposure early in gestation and reduced infant birthweight. Environ Res. 2021;199:111342.

    Article  CAS  Google Scholar 

  72. Merid SK, Bustamante M, Standl M, et al. Integration of gene expression and DNA methylation identifies epigenetically controlled modules related to PM2.5 exposure. Environ Int. 2021;146:106248.

    Article  CAS  Google Scholar 

  73. Bakulski KM, Fisher JD, Dou JF, et al. Prenatal Particulate matter exposure is associated with saliva DNA methylation at age 15: applying cumulative DNA methylation scores as an exposure biomarker. Toxics. 2021;9(10):262. https://doi.org/10.3390/toxics9100262.

  74. Kobayashi S, Sata F, Miyashita C, et al. Gender-specific association of exposure to non-dioxin-like polychlorinated biphenyls during pregnancy with methylation levels of H19 and long interspersed nuclear element-1 in cord blood in the Hokkaido study. Toxicology. 2017;1(390):135–45.

    Article  Google Scholar 

  75. Starling AP, Liu C, Shen G, et al. Prenatal exposure to per- and polyfluoroalkyl substances, umbilical cord blood DNA methylation, and cardio-metabolic indicators in newborns: The Healthy Start Study. Environ Health Perspect. 2020;128(12): 127014.

    Article  CAS  Google Scholar 

  76. Miura R, Araki A, Miyashita C, et al. An epigenome-wide study of cord blood DNA methylations in relation to prenatal perfluoroalkyl substance exposure: The Hokkaido study. Environ Int. 2018;115:21–8.

    Article  CAS  Google Scholar 

  77. Yang P, Gong YJ, Cao WC, et al. Prenatal urinary polycyclic aromatic hydrocarbon metabolites, global DNA methylation in cord blood, and birth outcomes: A cohort study in China. Environ Pollut. 2018;234:396–405.

    Article  CAS  Google Scholar 

  78. Cao C, Jia Z, Shao M, et al. Prenatal exposure to polycyclic aromatic hydrocarbons could increase the risk of low birth weight by affecting the DNA methylation states in a Chinese cohort. Reprod Biol. 2021;21(4): 100574.

    Article  CAS  Google Scholar 

  79. Leung YK, Ouyang B, Niu L, et al. Identification of sex-specific DNA methylation changes driven by specific chemicals in cord blood in a Faroese birth cohort. Epigenetics. 2018;13(3):290–300.

    Article  Google Scholar 

  80. Lee J, Kalia V, Perera F, et al. Prenatal airborne polycyclic aromatic hydrocarbon exposure, LINE1 methylation and child development in a Chinese cohort. Environ Int. 2017;99:315–20.

    Article  CAS  Google Scholar 

  81. Liu CY, Chen PC, Lien PC, Liao YP. Prenatal perfluorooctyl sulfonate exposure and alu DNA hypomethylation in cord blood. Int J Environ Res Public Health. 2018;15(6):1066. https://doi.org/10.3390/ijerph15061066.

  82. Kingsley SL, Kelsey KT, Butler R, et al. Maternal serum PFOA concentration and DNA methylation in cord blood: A pilot study. Environ Res. 2017;158:174–8.

    Article  CAS  Google Scholar 

  83. Kobayashi S, Azumi K, Goudarzi H, et al. Effects of prenatal perfluoroalkyl acid exposure on cord blood IGF2/H19 methylation and ponderal index: The Hokkaido Study. J Expo Sci Environ Epidemiol. 2017;27(3):251–9.

    Article  CAS  Google Scholar 

  84. Eguchi A, Nishizawa-Jotaki S, Tanabe H, Rahmutulla B, Watanabe M, Miyaso H, Todaka E, Sakurai K, Kaneda A, Mori C. An altered DNA methylation status in the human umbilical cord is correlated with maternal exposure to polychlorinated biphenyls. Int J Environ Res Public Health. 2019;16(15):2786. https://doi.org/10.3390/ijerph16152786.

  85. Kim S, Cho YH, Lee I, et al. Prenatal exposure to persistent organic pollutants and methylation of LINE-1 and imprinted genes in placenta: A CHECK cohort study. Environ Int. 2018;119:398–406.

    Article  CAS  Google Scholar 

  86. Kim S, Cho YH, Won S, et al. Maternal exposures to persistent organic pollutants are associated with DNA methylation of thyroid hormone-related genes in placenta differently by infant sex. Environ Int. 2019;130: 104956.

    Article  CAS  Google Scholar 

  87. Ouidir M, Mendola P, Buck Louis GM, et al. Concentrations of persistent organic pollutants in maternal plasma and epigenome-wide placental DNA methylation. Clin Epigenetics. 2020;12(1):103.

    Article  CAS  Google Scholar 

  88. • Su KY, Li MC, Lee NW, et al. Perinatal polychlorinated biphenyls and polychlorinated dibenzofurans exposure are associated with DNA methylation changes lasting to early adulthood: Findings from Yucheng second generation. Environ Res. 2019;170:481–6. (Prenatal PCB/PCDF exposure associated with DNA methlyaiton in adulthood - demonstrates ability to measure methylation changes in adults from an early-life exposure.)

    Article  CAS  Google Scholar 

  89. Chiu KC, Sisca F, Ying JH, et al. Prenatal chlorpyrifos exposure in association with PPARgamma H3K4me3 and DNA methylation levels and child development. Environ Pollut. 2021;1(274): 116511.

    Article  Google Scholar 

  90. Yu X, Zhao B, Su Y, et al. Association of prenatal organochlorine pesticide-dichlorodiphenyltrichloroethane exposure with fetal genome-wide DNA methylation. Life Sci. 2018;1(200):81–6.

    Article  Google Scholar 

  91. Huen K, Solomon O, Kogut K, et al. PON1 DNA methylation and neurobehavior in Mexican-American children with prenatal organophosphate exposure. Environ Int. 2018;121(Pt 1):31–40.

    Article  CAS  Google Scholar 

  92. Legoff L, D'Cruz SC, Bouchekhchoukha K, et al. In utero exposure to chlordecone affects histone modifications and activates LINE-1 in cord blood. Life Sci Alliance. 2021;4(6):e202000944. https://doi.org/10.26508/lsa.202000944.

  93. Declerck K, Remy S, Wohlfahrt-Veje C, et al. Interaction between prenatal pesticide exposure and a common polymorphism in the PON1 gene on DNA methylation in genes associated with cardio-metabolic disease risk-an exploratory study. Clin Epigenetics. 2017;9:35.

    Article  Google Scholar 

  94. • Wu HC, Cohn BA, Cirillo PM, et al. DDT exposure during pregnancy and DNA methylation alterations in female offspring in the Child Health and Development Study. Reprod Toxicol. 2020;92:138–47. (A study of prenatal pesticide exposure and DNA methylation changes in adulthood, demonstrating the ability for methylation changes assocaited with early-life exposures to be detected later in life.)

    Article  Google Scholar 

  95. Gonzalez-Cortes T, Recio-Vega R, Lantz RC, et al. DNA methylation of extracellular matrix remodeling genes in children exposed to arsenic. Toxicol Appl Pharmacol. 2017;15(329):140–7.

    Article  Google Scholar 

  96. Xu L, Huo X, Liu Y, et al. Hearing loss risk and DNA methylation signatures in preschool children following lead and cadmium exposure from an electronic waste recycling area. Chemosphere. 2020;246: 125829.

    Article  CAS  Google Scholar 

  97. Wang WR, Chen NT, Hsu NY, et al. Associations among phthalate exposure, DNA methylation of TSLP, and childhood allergy. Clin Epigenetics. 2021;13(1):76.

    Article  CAS  Google Scholar 

  98. Bowman A, Peterson KE, Dolinoy DC, et al. Phthalate Exposures, DNA methylation and adiposity in Mexican children through adolescence. Front Public Health. 2019;7:162.

    Article  Google Scholar 

  99. Yang CF, Karmaus WJJ, Yang CC, et al. Bisphenol a exposure, DNA methylation, and asthma in children. Int J Environ Res Public Health. 2020;17(1):298. https://doi.org/10.3390/ijerph17010298.

  100. • Mustieles V, Rodriguez-Carrillo A, Vela-Soria F, et al. BDNF as a potential mediator between childhood BPA exposure and behavioral function in adolescent boys from the INMA-Granada cohort. Sci Total Environ. 2022;10(803): 150014. (Identified DNA methylation changes in adolescents that were associated with childhood BPA exposure.)

    Article  Google Scholar 

  101. Ji N, Fang M, Baptista A, et al. Exposure to traffic-related air pollution and changes in exhaled nitric oxide and DNA methylation in arginase and nitric oxide synthase in children with asthma. Environ Health. 2021;20(1):12.

    Article  CAS  Google Scholar 

  102. Prunicki M, Cauwenberghs N, Lee J, et al. Air pollution exposure is linked with methylation of immunoregulatory genes, altered immune cell profiles, and increased blood pressure in children. Sci Rep. 2021;11(1):4067.

    Article  CAS  Google Scholar 

  103. Prunicki M, Stell L, Dinakarpandian D, et al. Exposure to NO2, CO, and PM2.5 is linked to regional DNA methylation differences in asthma. Clin Epigenetics. 2018;10:2. https://doi.org/10.1186/s13148-017-0433-4.

  104. Alvarado-Cruz I, Sanchez-Guerra M, Hernandez-Cadena L, et al. Increased methylation of repetitive elements and DNA repair genes is associated with higher DNA oxidation in children in an urbanized, industrial environment. Mutat Res Genet Toxicol Environ Mutagen. 2017;813:27–36.

    Article  CAS  Google Scholar 

  105. Sordillo JE, Cardenas A, Qi C, et al. Residential PM2.5 exposure and the nasal methylome in children. Environ Int. 2021;153:106505.

    Article  CAS  Google Scholar 

  106. Zhang X, Biagini Myers JM, Burleson JD, et al. Nasal DNA methylation is associated with childhood asthma. Epigenomics. 2018;10(5):629–41.

    Article  CAS  Google Scholar 

  107. Xu Y, Lindh CH, Fletcher T, Jakobsson K, Engström K. Perfluoroalkyl substances influence DNA methylation in school-age children highly exposed through drinking water contaminated from firefighting foam: a cohort study in Ronneby, Sweden. Environ Epigenet. 2022;8(1):dvac004. https://doi.org/10.1093/eep/dvac004.

  108. Howe CG, Zhou M, Wang X, et al. Associations between maternal tobacco smoke exposure and the cord blood [Formula: see text] DNA Methylome. Environ Health Perspect. 2019;127(4):47009.

    Article  Google Scholar 

  109. Fuemmeler BF, Dozmorov MG, Do EK, et al. DNA methylation in babies born to nonsmoking mothers exposed to secondhand smoke during pregnancy: an epigenome-wide association study. Environ Health Perspect. 2021;129(5):57010.

    Article  CAS  Google Scholar 

  110. Bergens MA, Pittman GS, Thompson IJB, et al. Smoking-associated AHRR demethylation in cord blood DNA: impact of CD235a+ nucleated red blood cells. Clin Epigenetics. 2019;11(1):87.

    Article  Google Scholar 

  111. Miyake K, Kawaguchi A, Miura R, et al. Association between DNA methylation in cord blood and maternal smoking: The Hokkaido Study on Environment and Children’s Health. Sci Rep. 2018;8(1):5654.

    Article  Google Scholar 

  112. Zhang B, Hong X, Ji H, et al. Maternal smoking during pregnancy and cord blood DNA methylation: new insight on sex differences and effect modification by maternal folate levels. Epigenetics. 2018;13(5):505–18.

    Article  Google Scholar 

  113. Xu R, Hong X, Zhang B, et al. DNA methylation mediates the effect of maternal smoking on offspring birthweight: a birth cohort study of multi-ethnic US mother-newborn pairs. Clin Epigenetics. 2021;13(1):47.

    Article  Google Scholar 

  114. •• Reese SE, Zhao S, Wu MC, et al. DNA methylation score as a biomarker in newborns for sustained maternal smoking during pregnancy. Environ Health Perspect. 2017;125(4):760–6. (Provides an example of the development and implementation of a DNA methylation score to predict prenatal smoke exposure.)

    Article  CAS  Google Scholar 

  115. Witt SH, Frank J, Gilles M, et al. Impact on birth weight of maternal smoking throughout pregnancy mediated by DNA methylation. BMC Genomics. 2018;19(1):290.

    Article  Google Scholar 

  116. Miyake K, Miyashita C, Ikeda-Araki A, et al. DNA methylation of GFI1 as a mediator of the association between prenatal smoking exposure and ADHD symptoms at 6 years: the Hokkaido Study on Environment and Children’s Health. Clin Epigenetics. 2021;13(1):74.

    Article  CAS  Google Scholar 

  117. Monasso GS, Jaddoe VWV, de Jongste JC, et al. Timing- and dose-specific associations of prenatal smoke exposure with newborn DNA methylation. Nicotine Tob Res. 2020;22(10):1917–22.

    Article  CAS  Google Scholar 

  118. Sikdar S, Joehanes R, Joubert BR, et al. Comparison of smoking-related DNA methylation between newborns from prenatal exposure and adults from personal smoking. Epigenomics. 2019;11(13):1487–500.

    Article  CAS  Google Scholar 

  119. Gao L, Liu X, Millstein J, et al. Self-reported prenatal tobacco smoke exposure, AXL gene-body methylation, and childhood asthma phenotypes. Clin Epigenetics. 2018 Jul 20;10(1):98.

    Article  Google Scholar 

  120. Cardenas A, Lutz SM, Everson TM, et al. Mediation by Placental DNA Methylation of the Association of Prenatal Maternal Smoking and Birth Weight. Am J Epidemiol. 2019;188(11):1878–86.

    Article  Google Scholar 

  121. Everson TM, Vives-Usano M, Seyve E, et al. Placental DNA methylation signatures of maternal smoking during pregnancy and potential impacts on fetal growth. Nat Commun. 2021;12(1):5095.

    Article  CAS  Google Scholar 

  122. Fa S, Larsen TV, Bilde K, et al. Changes in first trimester fetal CYP1A1 and AHRR DNA methylation and mRNA expression in response to exposure to maternal cigarette smoking. Environ Toxicol Pharmacol. 2018;57:19–27.

    Article  CAS  Google Scholar 

  123. Rousseaux S, Seyve E, Chuffart F, et al. Immediate and durable effects of maternal tobacco consumption alter placental DNA methylation in enhancer and imprinted gene-containing regions. BMC Med. 2020;18(1):306.

    Article  CAS  Google Scholar 

  124. van Otterdijk SD, Binder AM, Michels KB. Locus-specific DNA methylation in the placenta is associated with levels of pro-inflammatory proteins in cord blood and they are both independently affected by maternal smoking during pregnancy. Epigenetics. 2017;12(10):875–85.

    Article  Google Scholar 

  125. Hannon E, Schendel D, Ladd-Acosta C, et al. Variable DNA methylation in neonates mediates the association between prenatal smoking and birth weight. Philos Trans R Soc Lond B Biol Sci. 2019;374(1770):20180120.

    Article  CAS  Google Scholar 

  126. Neophytou AM, Oh SS, Hu D, et al. In utero tobacco smoke exposure, DNA methylation, and asthma in Latino children. Environ Epidemiol. 2019;3(3): e048.

    Article  Google Scholar 

  127. Sengupta SM, Smith AK, Grizenko N, et al. Locus-specific DNA methylation changes and phenotypic variability in children with attention-deficit hyperactivity disorder. Psychiatry Res. 2017;256:298–304.

    Article  CAS  Google Scholar 

  128. Vives-Usano M, Hernandez-Ferrer C, Maitre L, et al. In utero and childhood exposure to tobacco smoke and multi-layer molecular signatures in children. BMC Med. 2020;18(1):243.

    Article  CAS  Google Scholar 

  129. Rauschert S, Melton PE, Burdge G, et al. Maternal smoking during pregnancy induces persistent epigenetic changes into adolescence, independent of postnatal smoke exposure and is associated with cardiometabolic risk. Front Genet. 2019;10:770.

    Article  CAS  Google Scholar 

  130. Rauschert S, Melton PE, Heiskala A, et al. Machine learning-based DNA methylation score for fetal exposure to maternal smoking: development and validation in samples collected from adolescents and adults. Environ Health Perspect. 2020;128(9):97003.

    Article  Google Scholar 

  131. Wiklund P, Karhunen V, Richmond RC, et al. DNA methylation links prenatal smoking exposure to later life health outcomes in offspring. Clin Epigenetics. 2019;11(1):97.

    Article  Google Scholar 

  132. Parmar P, Lowry E, Cugliari G, et al. Association of maternal prenatal smoking GFI1-locus and cardio-metabolic phenotypes in 18,212 adults. EBioMedicine. 2018;38:206–16.

    Article  CAS  Google Scholar 

  133. •• Richmond RC, Suderman M, Langdon R, et al. DNA methylation as a marker for prenatal smoke exposure in adults. Int J Epidemiol. 2018;47(4):1120–30. (Development of a DNA methylation score in adults for prenatal smoke exposure, as well as the development of a methylation score in children associated with prenatal smoke exposure.)

    Article  Google Scholar 

  134. Tehranifar P, Wu HC, McDonald JA, et al. Maternal cigarette smoking during pregnancy and offspring DNA methylation in midlife. Epigenetics. 2018;13(2):129–34.

    Article  Google Scholar 

  135. Dugue PA, Hodge AM, Wong EM, et al. Methylation marks of prenatal exposure to maternal smoking and risk of cancer in adulthood. Int J Epidemiol. 2021;50(1):105–15.

    Article  Google Scholar 

  136. Sharp GC, Arathimos R, Reese SE, et al. Maternal alcohol consumption and offspring DNA methylation: findings from six general population-based birth cohorts. Epigenomics. 2018;10(1):27–42.

    Article  CAS  Google Scholar 

  137. Loke YJ, Muggli E, Saffery R, et al. Sex- and tissue-specific effects of binge-level prenatal alcohol consumption on DNA methylation at birth. Epigenomics. 2021;13(24):1921–38.

    Article  CAS  Google Scholar 

  138. Loke YJ, Muggli E, Nguyen L, et al. Time- and sex-dependent associations between prenatal alcohol exposure and placental global DNA methylation. Epigenomics. 2018;10(7):981–91.

    Article  CAS  Google Scholar 

  139. Marjonen H, Kahila H, Kaminen-Ahola N. rs10732516 polymorphism at the IGF2/H19 locus associates with a genotype-specific trend in placental DNA methylation and head circumference of prenatally alcohol-exposed newborns. Hum Reprod Open. 2017;2017(3):hox014.

    Article  Google Scholar 

  140. Steane SE, Young SL, Clifton VL, et al. Prenatal alcohol consumption and placental outcomes: a systematic review and meta-analysis of clinical studies. Am J Obstet Gynecol. 2021;225(6):607 e1-607 e22.

    Article  Google Scholar 

  141. Sarkar DK, Gangisetty O, Wozniak JR, et al. Persistent changes in stress-regulatory genes in pregnant women or children exposed prenatally to alcohol. Alcohol Clin Exp Res. 2019;43(9):1887–97.

    Article  CAS  Google Scholar 

  142. •• Lussier AA, Morin AM, MacIsaac JL, et al. DNA methylation as a predictor of fetal alcohol spectrum disorder. Clin Epigenetics. 2018;10:5. (Demonstrates use of machine learning approaches to predicting fetal alcohol spectrum disorder in children prenatally exposed to alcohol.)

    Article  Google Scholar 

  143. Frey S, Eichler A, Stonawski V, et al. Prenatal alcohol exposure is associated with adverse cognitive effects and distinct whole-genome DNA methylation patterns in primary school children. Front Behav Neurosci. 2018;12:125.

    Article  Google Scholar 

  144. Radhakrishna U, Vishweswaraiah S, Uppala LV, et al. Placental DNA methylation profiles in opioid-exposed pregnancies and associations with the neonatal opioid withdrawal syndrome. Genomics. 2021;113(3):1127–35.

    Article  CAS  Google Scholar 

  145. Baptista T, de Azeredo LA, Zaparte A, et al. Oxytocin receptor exon III methylation in the umbilical cord blood of newborns with prenatal exposure to crack cocaine. Front Cell Dev Biol. 2021;9: 639287.

    Article  Google Scholar 

  146. McLaughlin P, Mactier H, Gillis C, et al. Increased DNA methylation of ABCB1, CYP2D6, and OPRM1 genes in newborn infants of methadone-maintained opioid-dependent mothers. J Pediatr. 2017;190(180–184): e1.

    Google Scholar 

  147. Fransquet PD, Hutchinson D, Olsson CA, et al. Cannabis use by women during pregnancy does not influence infant DNA methylation of the dopamine receptor DRD4. Am J Drug Alcohol Abuse. 2017;43(6):671–7.

    Article  Google Scholar 

  148. Wachman EM, Hayes MJ, Shrestha H, et al. Epigenetic variation in OPRM1 gene in opioid-exposed mother-infant dyads. Genes Brain Behav. 2018;17(7): e12476.

    Article  CAS  Google Scholar 

  149. Oni-Orisan OO, Dansereau LM, Marsit CJ, et al. DNA methylation in children with prenatal methamphetamine exposure and environmental adversity. Pediatr Res. 2021;89(5):1152–6.

    Article  CAS  Google Scholar 

  150. Pauwels S, Ghosh M, Duca RC, et al. Dietary and supplemental maternal methyl-group donor intake and cord blood DNA methylation. Epigenetics. 2017;12(1):1–10.

    Article  Google Scholar 

  151. Chiu YH, Fadadu RP, Gaskins AJ, et al. Dietary fat intake during early pregnancy is associated with cord blood DNA methylation at IGF2 and H19 genes in newborns. Environ Mol Mutagen. 2021;62(7):388–98.

    Article  CAS  Google Scholar 

  152. Geraghty AA, Sexton-Oates A, O'Brien EC, et al. A low glycaemic index diet in pregnancy induces DNA methylation variation in blood of newborns: results from the ROLO randomised controlled trial. nutrients. 2018;10(4):455. https://doi.org/10.3390/nu10040455.

  153. Bianchi M, Alisi A, Fabrizi M, et al. Maternal intake of n-3 polyunsaturated fatty acids during pregnancy is associated with differential methylation profiles in cord blood white cells. Front Genet. 2019;10:1050.

    Article  CAS  Google Scholar 

  154. Caffrey A, Irwin RE, McNulty H, et al. Gene-specific DNA methylation in newborns in response to folic acid supplementation during the second and third trimesters of pregnancy: epigenetic analysis from a randomized controlled trial. Am J Clin Nutr. 2018;107(4):566–75.

    Article  Google Scholar 

  155. Irwin RE, Thursby SJ, Ondicova M, et al. A randomized controlled trial of folic acid intervention in pregnancy highlights a putative methylation-regulated control element at ZFP57. Clin Epigenetics. 2019;11(1):31.

    Article  Google Scholar 

  156. Bakulski KM, Dou JF, Feinberg JI, et al. Prenatal multivitamin use and MTHFR genotype are associated with newborn cord blood DNA methylation. Int J Environ Res Public Health. 2020;17(24):9190. https://doi.org/10.3390/ijerph17249190.

  157. Huoman J, Martinez-Enguita D, Olsson E, et al. Combined prenatal Lactobacillus reuteri and omega-3 supplementation synergistically modulates DNA methylation in neonatal T helper cells. Clin Epigenetics. 2021;13(1):135.

    Article  CAS  Google Scholar 

  158. Murray R, Kitaba N, Antoun E, et al. Influence of maternal lifestyle and diet on perinatal DNA methylation signatures associated with childhood arterial stiffness at 8 to 9 Years. Hypertension. 2021;78(3):787–800.

    Article  CAS  Google Scholar 

  159. Polinski KJ, Purdue-Smithe A, Robinson SL, et al. Maternal caffeine intake and DNA methylation in newborn cord blood. Am J Clin Nutr. 2022;115(2):482–91.

    Article  Google Scholar 

  160. Kazmi N, Gaunt TR, Relton C, et al. Maternal eating disorders affect offspring cord blood DNA methylation: a prospective study. Clin Epigenetics. 2017;9:120.

    Article  Google Scholar 

  161. Antoun E, Kitaba NT, Titcombe P, et al. Maternal dysglycaemia, changes in the infant’s epigenome modified with a diet and physical activity intervention in pregnancy: Secondary analysis of a randomised control trial. PLoS Med. 2020;17(11): e1003229.

    Article  CAS  Google Scholar 

  162. van Weelden W, Seed PT, Antoun E, et al. Folate and vitamin B12 status: associations with maternal glucose and neonatal DNA methylation sites related to dysglycaemia, in pregnant women with obesity. J Dev Orig Health Dis. 2021;11:1–9.

    Google Scholar 

  163. Caramaschi D, Sharp GC, Nohr EA, et al. Exploring a causal role of DNA methylation in the relationship between maternal vitamin B12 during pregnancy and child’s IQ at age 8, cognitive performance and educational attainment: a two-step Mendelian randomization study. Hum Mol Genet. 2017;26(15):3001–13.

    Article  CAS  Google Scholar 

  164. Walker-Short E, Buckner T, Vigers T, et al. Epigenome-wide association study of infant feeding and DNA methylation in infancy and childhood in a population at increased risk for type 1 diabetes. Nutrients. 2021;13(11):4057. https://doi.org/10.3390/nu13114057.

  165. Daniels TE, Sadovnikoff AI, Ridout KK, et al. Associations of maternal diet and placenta leptin methylation. Mol Cell Endocrinol. 2020;5(505): 110739.

    Article  Google Scholar 

  166. Boyle KE, Patinkin ZW, Shapiro ALB, et al. Maternal obesity alters fatty acid oxidation, AMPK activity, and associated DNA methylation in mesenchymal stem cells from human infants. Mol Metab. 2017;6(11):1503–16.

    Article  CAS  Google Scholar 

  167. Anderson CM, Gillespie SL, Thiele DK, et al. Effects of maternal vitamin D supplementation on the maternal and infant epigenome. Breastfeed Med. 2018;13(5):371–80.

    Article  Google Scholar 

  168. Geraghty AA, Sexton-Oates A, O'Brien EC, et al. Epigenetic patterns in five-year-old children exposed to a low glycemic index dietary intervention during pregnancy: results from the ROLO Kids Study. Nutrients. 2020;12(12):3602. https://doi.org/10.3390/nu12123602.

  169. •• Richmond RC, Sharp GC, Herbert G, et al. The long-term impact of folic acid in pregnancy on offspring DNA methylation: follow-up of the Aberdeen Folic Acid Supplementation Trial (AFAST). Int J Epidemiol. 2018;47(3):928–37. (Maternal diet during pregnancy was assocaited with saliva DNA methylation later in life, deonstrating persistence of effects.)

    Article  Google Scholar 

  170. Taylor RM, Smith R, Collins CE, et al. Methyl-donor and cofactor nutrient intakes in the first 2–3 years and global DNA methylation at age 4: a prospective cohort study. Nutrients. 2018;10(3):273. https://doi.org/10.3390/nu10030273.

  171. Gallardo-Escribano C, Buonaiuto V, Ruiz-Moreno MI, et al. Epigenetic approach in obesity: DNA methylation in a prepubertal population which underwent a lifestyle modification. Clin Epigenetics. 2020;12(1):144.

    Article  CAS  Google Scholar 

  172. Kallak TK, Brann E, Fransson E, et al. DNA methylation in cord blood in association with prenatal depressive symptoms. Clin Epigenetics. 2021;13(1):78.

    Article  CAS  Google Scholar 

  173. Montoya-Williams D, Quinlan J, Clukay C, et al. Associations between maternal prenatal stress, methylation changes in IGF1 and IGF2, and birth weight. J Dev Orig Health Dis. 2018;9(2):215–22.

    Article  CAS  Google Scholar 

  174. Duis J, Cox OH, Ji Y, et al. Effect of Genotype and maternal affective disorder on intronic methylation of FK506 binding protein 5 in cord blood DNA. Front Genet. 2018;9:648.

    Article  CAS  Google Scholar 

  175. Clukay CJ, Hughes DA, Kertes DA, et al. Associations between maternal psychosocial stress, DNA methylation, and newborn birth weight identified by investigating methylation at individual, regional, and genome levels. Hum Biol. 2019;91(2):117–31.

    Article  Google Scholar 

  176. Wu S, Gennings C, Wright RJ, et al. Prenatal stress, methylation in inflammation-related genes, and adiposity measures in early childhood: the programming research in obesity, growth environment and social stress cohort study. Psychosom Med. 2018;80(1):34–41.

    Article  CAS  Google Scholar 

  177. Vangeel EB, Pishva E, Hompes T, et al. Newborn genome-wide DNA methylation in association with pregnancy anxiety reveals a potential role for GABBR1. Clin Epigenetics. 2017;9:107.

    Article  Google Scholar 

  178. Milaniak I, Cecil CAM, Barker ED, et al. Variation in DNA methylation of the oxytocin receptor gene predicts children’s resilience to prenatal stress. Dev Psychopathol. 2017;29(5):1663–74.

    Article  Google Scholar 

  179. Lund RJ, Kylaniemi M, Pettersson N, et al. Placental DNA methylation marks are associated with maternal depressive symptoms during early pregnancy. Neurobiol Stress. 2021;15: 100374.

    Article  CAS  Google Scholar 

  180. Brunst KJ, Tignor N, Just A, et al. Cumulative lifetime maternal stress and epigenome-wide placental DNA methylation in the PRISM cohort. Epigenetics. 2018;13(6):665–81.

    Article  Google Scholar 

  181. Jahnke JR, Teran E, Murgueitio F, et al. Maternal stress, placental 11beta-hydroxysteroid dehydrogenase type 2, and infant HPA axis development in humans: Psychosocial and physiological pathways. Placenta. 2021;15(104):179–87.

    Article  Google Scholar 

  182. Letourneau N, Ntanda H, Jong VL, et al. Prenatal maternal distress and immune cell epigenetic profiles at 3-months of age. Dev Psychobiol. 2021;63(5):973–84.

    Article  CAS  Google Scholar 

  183. •• Laubach ZM, Perng W, Cardenas A, et al. Socioeconomic status and DNA methylation from birth through mid-childhood: a prospective study in Project Viva. Epigenomics. 2019;11(12):1413–27. (Maternal education was assocaited with DNA methylation in cord blood, as well as early and mid-childhood, demonstrating persistence of effects and biomarker utility.)

    Article  CAS  Google Scholar 

  184. • Alfano R, Guida F, Galobardes B, et al. Socioeconomic position during pregnancy and DNA methylation signatures at three stages across early life: epigenome-wide association studies in the ALSPAC birth cohort. Int J Epidemiol. 2019;48(1):30–44. (Maternal education was associated with cord blood DNA methylation at birth, and methylation at adolecents, though the changes occurred at different loci across the two timepoints.)

    Article  Google Scholar 

  185. Coker ES, Gunier R, Huen K, et al. DNA methylation and socioeconomic status in a Mexican-American birth cohort. Clin Epigenetics. 2018;10:61.

    Article  Google Scholar 

  186. Ong ML, Tuan TA, Poh J, et al. Neonatal amygdalae and hippocampi are influenced by genotype and prenatal environment, and reflected in the neonatal DNA methylome. Genes Brain Behav. 2019;18(7): e12576.

    Article  Google Scholar 

  187. Provenzi L, Fumagalli M, Giorda R, et al. Maternal sensitivity buffers the association between SLC6A4 methylation and socio-emotional stress response in 3-month-old full term, but not very preterm infants. Front Psychiatry. 2017;8:171.

    Article  Google Scholar 

  188. Santos HP Jr, Bhattacharya A, Martin EM, et al. Epigenome-wide DNA methylation in placentas from preterm infants: association with maternal socioeconomic status. Epigenetics. 2019;14(8):751–65.

    Article  Google Scholar 

  189. Bush NR, Edgar RD, Park M, et al. The biological embedding of early-life socioeconomic status and family adversity in children’s genome-wide DNA methylation. Epigenomics. 2018;10(11):1445–61.

    Article  CAS  Google Scholar 

  190. Gouin JP, Zhou QQ, Booij L, et al. Associations among oxytocin receptor gene (OXTR) DNA methylation in adulthood, exposure to early life adversity, and childhood trajectories of anxiousness. Sci Rep. 2017;7(1):7446.

    Article  CAS  Google Scholar 

  191. McDade TW, Ryan CP, Jones MJ, et al. Genome-wide analysis of DNA methylation in relation to socioeconomic status during development and early adulthood. Am J Phys Anthropol. 2019;169(1):3–11.

    Article  Google Scholar 

  192. Martins J, Czamara D, Sauer S, et al. Childhood adversity correlates with stable changes in DNA methylation trajectories in children and converges with epigenetic signatures of prenatal stress. Neurobiol Stress. 2021;15: 100336.

    Article  CAS  Google Scholar 

  193. Czamara D, Tissink E, Tuhkanen J, et al. Combined effects of genotype and childhood adversity shape variability of DNA methylation across age. Transl Psychiatry. 2021;11(1):88.

    Article  CAS  Google Scholar 

  194. Kaufman J, Montalvo-Ortiz JL, Holbrook H, et al. Adverse childhood experiences, epigenetic measures, and obesity in youth. J Pediatr. 2018;202(150–156): e3.

    Google Scholar 

  195. Dunn EC, Soare TW, Zhu Y, et al. Sensitive periods for the effect of childhood adversity on DNA methylation: results from a prospective, longitudinal study. Biol Psychiatry. 2019;85(10):838–49.

    Article  CAS  Google Scholar 

  196. Lewis CR, Breitenstein RS, Henderson A, et al. Harsh parenting predicts novel HPA receptor gene methylation and NR3C1 methylation predicts cortisol daily slope in middle childhood. Cell Mol Neurobiol. 2021;41(4):783–93.

    Article  CAS  Google Scholar 

  197. Takahashi Y, Kubo R, Sano R, et al. DNA methylation of the NR3C1 promoter region in brains of pediatric victims of physical abuse. Neurocase. 2018;24(5–6):269–75.

    Article  Google Scholar 

  198. Marzi SJ, Sugden K, Arseneault L, et al. Analysis of DNA methylation in young people: limited evidence for an association between victimization stress and epigenetic variation in blood. Am J Psychiatry. 2018;175(6):517–29.

    Article  Google Scholar 

  199. Farrell C, Doolin K, Leary NO, et al. DNA methylation differences at the glucocorticoid receptor gene in depression are related to functional alterations in hypothalamic-pituitary-adrenal axis activity and to early life emotional abuse. Psychiatry Res. 2018;265:341–8.

    Article  CAS  Google Scholar 

  200. •• Houtepen LC, Hardy R, Maddock J, et al. Childhood adversity and DNA methylation in two population-based cohorts. Transl Psychiatry. 2018;8(1):266. (Demonstrate DNA methylation changes assocaited with early-life adversity present across two independent cohorts and tissue types.)

    Article  CAS  Google Scholar 

  201. Wiegand A, Kreifelts B, Munk MHJ, et al. DNA methylation differences associated with social anxiety disorder and early life adversity. Transl Psychiatry. 2021;11(1):104.

    Article  CAS  Google Scholar 

  202. Vangeel EB, Kempke S, Bakusic J, et al. Glucocorticoid receptor DNA methylation and childhood trauma in chronic fatigue syndrome patients. J Psychosom Res. 2018;104:55–60.

    Article  Google Scholar 

  203. Zou Z, Huang Y, Wang J, et al. DNA methylation of IL-4 gene and the association with childhood trauma in panic disorder. Psychiatry Res. 2020;293: 113385.

    Article  CAS  Google Scholar 

  204. Mihaljevic M, Franic D, Soldatovic I, et al. The FKBP5 genotype and childhood trauma effects on FKBP5 DNA methylation in patients with psychosis, their unaffected siblings, and healthy controls. Psychoneuroendocrinology. 2021;128: 105205.

    Article  CAS  Google Scholar 

  205. Janusek LW, Tell D, Gaylord-Harden N, et al. Relationship of childhood adversity and neighborhood violence to a proinflammatory phenotype in emerging adult African American men: an epigenetic link. Brain Behav Immun. 2017;60:126–35.

    Article  Google Scholar 

  206. He Y, Vinkers CH, Houtepen LC, et al. Childhood adversity is associated with increased KITLG methylation in healthy individuals but not in bipolar disorder patients. Front Psychiatry. 2018;9:743.

    Article  Google Scholar 

  207. Engdahl E, Alavian-Ghavanini A, Forsell Y, et al. Childhood adversity increases methylation in the GRIN2B gene. J Psychiatr Res. 2021;132:38–43.

    Article  Google Scholar 

  208. Parianen Lesemann FH, Spencer H, Montoya ER, et al. Methylation of oxytocin related genes and early life trauma together shape the N170 response to human faces. Eur Neuropsychopharmacol. 2020;39:19–28.

    Article  CAS  Google Scholar 

  209. Carleial S, Natt D, Unternahrer E, et al. DNA methylation changes following narrative exposure therapy in a randomized controlled trial with female former child soldiers. Sci Rep. 2021;11(1):18493.

    Article  CAS  Google Scholar 

  210. Peng H, Zhu Y, Strachan E, et al. Childhood trauma, DNA methylation of stress-related genes, and depression: findings from two monozygotic twin studies. Psychosom Med. 2018;80(7):599–608.

    Article  CAS  Google Scholar 

  211. Marinova Z, Maercker A, Kuffer A, et al. DNA methylation profiles of elderly individuals subjected to indentured childhood labor and trauma. BMC Med Genet. 2017;18(1):21.

    Article  Google Scholar 

  212. Fiacco S, Gardini ES, Mernone L, et al. DNA methylation in healthy older adults with a history of childhood adversity-findings from the women 40+ healthy aging study. Front Psychiatry. 2019;10:777.

    Article  Google Scholar 

  213. •• Zhang M, Liu C, Li WD, et al. Individual and mixtures of metal exposures in associations with biomarkers of oxidative stress and global DNA methylation among pregnant women. Chemosphere. 2022;293: 133662. (Demosntrates implelemtation of novel statistical approaches to examining the effect of exposure to metal mixtures on DNA methylation.)

    Article  CAS  Google Scholar 

  214. Weyde KVF, Olsen AK, Duale N, et al. Gestational blood levels of toxic metal and essential element mixtures and associations with global DNA methylation in pregnant women and their infants. Sci Total Environ. 2021;15(787): 147621.

    Article  Google Scholar 

  215. Vilahur N, Bustamante M, Byun HM, et al. Prenatal exposure to mixtures of xenoestrogens and repetitive element DNA methylation changes in human placenta. Environ Int. 2014;71:81–7.

    Article  CAS  Google Scholar 

  216. LaRocca J, Binder AM, McElrath TF, et al. The impact of first trimester phthalate and phenol exposure on IGF2/H19 genomic imprinting and birth outcomes. Environ Res. 2014;133:396–406.

    Article  CAS  Google Scholar 

  217. Vilahur N, Bustamante M, Morales E, et al. Prenatal exposure to mixtures of xenoestrogens and genome-wide DNA methylation in human placenta. Epigenomics. 2016;8(1):43–54.

    Article  CAS  Google Scholar 

  218. King KE, Kane JB, Scarbrough P, et al. Neighborhood and family environment of expectant mothers may influence prenatal programming of adult cancer risk: discussion and an illustrative DNA methylation example. Biodemography Soc Biol. 2016;62(1):87–104.

    Article  Google Scholar 

  219. Borghol N, Suderman M, McArdle W, et al. Associations with early-life socio-economic position in adult DNA methylation. Int J Epidemiol. 2012;41(1):62–74.

    Article  Google Scholar 

  220. Loucks EB, Huang YT, Agha G, et al. Epigenetic mediators between childhood socioeconomic disadvantage and mid-life body mass index: The New England Family Study. Psychosom Med. 2016;78(9):1053–65.

    Article  Google Scholar 

  221. • Hussey MR, Burt A, Deyssenroth MA, et al. Placental lncRNA expression associated with placental cadmium concentrations and birth weight. Environ Epigenet. 2020;6(1):dvaa003. (Prenatal cadmium exposure was associated with lncRNA expression in the placenta.)

  222. Paquette AG, MacDonald J, Lapehn S, et al. A comprehensive assessment of associations between prenatal phthalate exposure and the placental transcriptomic landscape. Environ Health Perspect. 2021;129(9):97003.

    Article  CAS  Google Scholar 

  223. Machtinger R, Zhong J, Mansur A, et al. Placental lncRNA expression is associated with prenatal phthalate exposure. Toxicol Sci. 2018;163(1):116–22.

    Article  CAS  Google Scholar 

  224. Zhong J, Baccarelli AA, Mansur A, et al. Maternal phthalate and personal care products exposure alters extracellular placental miRNA profile in twin pregnancies. Reprod Sci. 2019;26(2):289–94.

    Article  CAS  Google Scholar 

  225. LaRocca J, Binder AM, McElrath TF, et al. First-trimester urine concentrations of phthalate metabolites and phenols and placenta miRNA expression in a cohort of U.S. women. Environ Health Perspect. 2016;124(3):380–7.

    Article  CAS  Google Scholar 

  226. Tsamou M, Nawrot TS, Carollo RM, et al. Prenatal particulate air pollution exposure and expression of the miR-17/92 cluster in cord blood: Findings from the ENVIRONAGE birth cohort. Environ Int. 2020;142: 105860.

    Article  CAS  Google Scholar 

  227. Vrijens K, Trippas AJ, Lefebvre W, et al. Association of prenatal exposure to ambient air pollution with circulating histone levels in maternal cord blood. JAMA Netw Open. 2020;3(5): e205156.

    Article  Google Scholar 

  228. • Liu Q, Wang W, Jing W. Indoor air pollution aggravates asthma in Chinese children and induces the changes in serum level of miR-155. Int J Environ Health Res. 2019;29(1):22–30. (Childhood air pollution was associated with miRNA expression hcanges in children, one of the few studies to assess this.)

    Article  CAS  Google Scholar 

  229. Vriens A, Nawrot TS, Saenen ND, et al. Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva. Environ Health. 2016;15(1):80.

    Article  Google Scholar 

  230. Herberth G, Bauer M, Gasch M, et al. Maternal and cord blood miR-223 expression associates with prenatal tobacco smoke exposure and low regulatory T-cell numbers. J Allergy Clin Immunol. 2014;133(2):543–50.

    Article  CAS  Google Scholar 

  231. Maccani MA, Avissar-Whiting M, Banister CE, et al. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics. 2010;5(7):583–9.

    Article  CAS  Google Scholar 

  232. •• Bauer T, Trump S, Ishaque N, et al. Environment-induced epigenetic reprogramming in genomic regulatory elements in smoking mothers and their children. Mol Syst Biol. 2016;12(3):861. (Example of prenatal smoke exposure associated with persistent changes in lncRNA expression in children.)

    Article  Google Scholar 

  233. Salem NA, Mahnke AH, Wells AB, et al. Association between fetal sex and maternal plasma microRNA responses to prenatal alcohol exposure: evidence from a birth outcome-stratified cohort. Biol Sex Differ. 2020;11(1):51.

    Article  CAS  Google Scholar 

  234. Mahnke AH, Sideridis GD, Salem NA, et al. Infant circulating MicroRNAs as biomarkers of effect in fetal alcohol spectrum disorders. Sci Rep. 2021;11(1):1429.

    Article  CAS  Google Scholar 

  235. Lutz PE, Chay MA, Pacis A, et al. Non-CG methylation and multiple histone profiles associate child abuse with immune and small GTPase dysregulation. Nat Commun. 2021;12(1):1132.

    Article  CAS  Google Scholar 

  236. Volk N, Pape JC, Engel M, et al. Amygdalar MicroRNA-15a Is Essential for Coping with Chronic Stress. Cell Rep. 2016;17(7):1882–91.

    Article  CAS  Google Scholar 

  237. Cattane N, Mora C, Lopizzo N, et al. Identification of a miRNAs signature associated with exposure to stress early in life and enhanced vulnerability for schizophrenia: New insights for the key role of miR-125b-1-3p in neurodevelopmental processes. Schizophr Res. 2019;205:63–75.

    Article  Google Scholar 

  238. Bahari-Javan S, Varbanov H, Halder R, et al. HDAC1 links early life stress to schizophrenia-like phenotypes. Proc Natl Acad Sci U S A. 2017;114(23):E4686–94.

    Article  CAS  Google Scholar 

  239. Nahar MS, Liao C, Kannan K, et al. In utero bisphenol A concentration, metabolism, and global DNA methylation across matched placenta, kidney, and liver in the human fetus. Chemosphere. 2015;124:54–60.

    Article  CAS  Google Scholar 

  240. Goodrich JM, Dolinoy DC, Sanchez BN, et al. Adolescent epigenetic profiles and environmental exposures from early life through peri-adolescence. Environ Epigenet. 2016;2(3):dvw018.

    Article  Google Scholar 

  241. Richmond RC, Simpkin AJ, Woodward G, et al. Prenatal exposure to maternal smoking and offspring DNA methylation across the lifecourse: findings from the Avon Longitudinal Study of Parents and Children (ALSPAC). Hum Mol Genet. 2015;24(8):2201–17.

    Article  CAS  Google Scholar 

  242. •• Lee KW, Richmond R, Hu P, et al. Prenatal exposure to maternal cigarette smoking and DNA methylation: epigenome-wide association in a discovery sample of adolescents and replication in an independent cohort at birth through 17 years of age. Environ Health Perspect. 2015;123(2):193–9. (Detected persistent DNA methylation changes associated with prenatal smoke exposure across the life course.)

    Article  Google Scholar 

  243. van der Knaap LJ, Riese H, Hudziak JJ, et al. Glucocorticoid receptor gene (NR3C1) methylation following stressful events between birth and adolescence. The TRAILS study Transl Psychiatry. 2014;8(4): e381.

    Article  Google Scholar 

  244. Wang J, Geng L. Effects of socioeconomic status on physical and psychological health: lifestyle as a mediator. int j environ res public health. 2019;16(2):281. https://doi.org/10.3390/ijerph16020281.

  245. Keil AP, Buckley JP, O’Brien KM, et al. A quantile-based g-computation approach to addressing the effects of exposure mixtures. Environ Health Perspect. 2020;128(4):47004.

    Article  Google Scholar 

  246. Bobb JF, Claus Henn B, Valeri L, et al. Statistical software for analyzing the health effects of multiple concurrent exposures via Bayesian kernel machine regression. Environ Health. 2018;17(1):67.

    Article  Google Scholar 

  247. Thumfart KM, Jawaid A, Bright K, et al. Epigenetics of childhood trauma: long term sequelae and potential for treatment. Neurosci Biobehav Rev. 2022;132:1049–66.

    Article  CAS  Google Scholar 

  248. Ladd-Acosta C, Fallin MD. DNA methylation signatures as biomarkers of prior environmental exposures. Curr Epidemiol Rep. 2019;6(1):1–13.

    Article  Google Scholar 

  249. Nwanaji-Enwerem JC, Colicino E. DNA methylation-based biomarkers of environmental exposures for human population studies. Curr Environ Health Rep. 2020;7(2):121–8.

    Article  CAS  Google Scholar 

  250. •• Ladd-Acosta C, Shu C, Lee BK, et al. Presence of an epigenetic signature of prenatal cigarette smoke exposure in childhood. Environ Res. 2016;144(Pt A):139–48. (This was the first study to implement machine learning techniques to predict prenatal smoke exposure in children.)

    Article  CAS  Google Scholar 

  251. Hompes T, Izzi B, Gellens E, et al. Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. J Psychiatr Res. 2013;47(7):880–91.

    Article  Google Scholar 

  252. Oberlander TF, Weinberg J, Papsdorf M, et al. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3(2):97–106.

    Article  Google Scholar 

  253. Mansell T, Vuillermin P, Ponsonby AL, et al. Maternal mental well-being during pregnancy and glucocorticoid receptor gene promoter methylation in the neonate. Dev Psychopathol. 2016;28(4pt2):1421–30.

    Article  Google Scholar 

  254. Monk C, Feng T, Lee S, et al. Distress during pregnancy: epigenetic regulation of placenta glucocorticoid-related genes and fetal neurobehavior. Am J Psychiatry. 2016;173(7):705–13.

    Article  Google Scholar 

  255. Stroud LR, Papandonatos GD, Parade SH, et al. Prenatal major depressive disorder, placenta glucocorticoid and serotonergic signaling, and infant cortisol response. Psychosom Med. 2016;78(9):979–90.

    Article  CAS  Google Scholar 

  256. Kundakovic M, Gudsnuk K, Herbstman JB, et al. DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci U S A. 2015;112(22):6807–13.

    Article  CAS  Google Scholar 

  257. Zhang Q, Wang W, Niu Y, et al. The effects of fine particulate matter constituents on exhaled nitric oxide and DNA methylation in the arginase-nitric oxide synthase pathway. Environ Int. 2019;131: 105019.

    Article  CAS  Google Scholar 

  258. Chen R, Qiao L, Li H, et al. Fine particulate matter constituents, nitric oxide synthase DNA methylation and exhaled nitric oxide. Environ Sci Technol. 2015;49(19):11859–65.

    Article  CAS  Google Scholar 

  259. Miguel V, Lamas S, Espinosa-Diez C. Role of non-coding-RNAs in response to environmental stressors and consequences on human health. Redox Biol. 2020;37: 101580.

    Article  CAS  Google Scholar 

  260. Dong E, Pandey SC. Prenatal stress induced chromatin remodeling and risk of psychopathology in adulthood. Int Rev Neurobiol. 2021;156:185–215.

    Article  Google Scholar 

Download references

Acknowledgements

Rose Schrott is supported by the NIMH Psychiatric Epidemiology Training Program (5T32MH014592-44; PI: Volk, Heather).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Ladd-Acosta.

Ethics declarations

Conflict of Interest

Dr. Ladd-Acosta reports receiving consulting fees from the University of Iowa for providing expertise on autism spectrum disorder epigenetics outside of this work. Drs. Schrott and Song declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Early Life Environmental Health

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 13 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schrott, R., Song, A. & Ladd-Acosta, C. Epigenetics as a Biomarker for Early-Life Environmental Exposure. Curr Envir Health Rpt 9, 604–624 (2022). https://doi.org/10.1007/s40572-022-00373-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-022-00373-5

Keywords

Navigation