Skip to main content
Log in

Phenols, Parabens, Phthalates and Puberty: a Systematic Review of Synthetic Chemicals Commonly Found in Personal Care Products and Girls’ Pubertal Development

  • Synthetic Chemicals and Health (ME Romano and T James-Todd, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Exposure to endocrine disrupting chemicals through personal care products (PCPs) is widespread and may disrupt hormone-sensitive endpoints, such as timing of puberty. Given the well-documented (and ongoing) decline in age at menarche in many populations, we conducted a systematic review of the epidemiological literature on exposure to chemicals commonly found in PCPs (including certain phthalates, phenols, and parabens) in relation to girls’ pubertal development.

Recent Findings

The preponderance of research on this topic has examined phthalate exposures with the strongest evidence indicating that prenatal monoethyl phthalate (MEP) concentrations may be associated with slightly earlier timing of puberty, including age at menarche. Findings examining peri-pubertal phthalate exposures and pubertal outcomes were less consistent as were studies of prenatal and peri-pubertal phenol exposures. Very few studies had examined parabens in relation to girls’ pubertal development. Common study limitations included potential exposure misclassification related to use of spot samples and/or mistimed biomarker assessment with respect to the outcomes. The role of body size as a mediator in these relationships remains unresolved.

Summary

Overall, evidence of associations between chemical exposures in PCPs and girls’ pubertal development was conflicting. When associations were observed, effect sizes were small. Nevertheless, given the many environmental, social, and behavioral factors in the modern environment that may act synergistically to accelerate timing of puberty, even marginal changes may be cause for concern, with implications for cancer risk, mental health, and cardiometabolic disease in later life.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Dahl G, Sunesson S, Isacsson SO, Janzon L. How are local health data used? Lakartidningen. 1990;87(13):1031–2.

    CAS  Google Scholar 

  2. Karlberg J. Secular trends in pubertal development. Horm Res. 2002;57(Suppl 2):19–30.

    CAS  Google Scholar 

  3. Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 2012;13(11):1141–51.

  4. Gong TT, Wu QJ, Vogtmann E, Lin B, Wang YL. Age at menarche and risk of ovarian cancer: a meta-analysis of epidemiological studies. Int J Cancer. 2013;132(12):2894–900.

    Article  CAS  Google Scholar 

  5. Hu C, Zhang Y, Zhang J, Huo Y, Wan Q, Li M, et al. Age at menarche, ideal cardiovascular health metrics, and risk of diabetes in adulthood: Findings from the REACTION study. J Diabetes. 2021;13(6):458–68.

    Article  CAS  Google Scholar 

  6. Mendle J, Ryan RM, McKone KMP. Age at menarche, depression, and antisocial behavior in adulthood. Pediatrics 2018;141(1).

  7. Joinson C, Heron J, Lewis G, Croudace T, Araya R. Timing of menarche and depressive symptoms in adolescent girls from a UK cohort. Br J Psychiatry. 2011;198(1):17–23.

    Article  Google Scholar 

  8. Euling SY, Herman-Giddens ME, Lee PA, Selevan SG, Juul A, Sørensen TI, et al. Examination of US puberty-timing data from 1940 to 1994 for secular trends: panel findings. Pediatrics. 2008;121(Suppl 3):S172–91.

    Article  Google Scholar 

  9. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: the Endocrine Society’s second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1-e150.

    Article  CAS  Google Scholar 

  10. Berger KP, Kogut KR, Bradman A, She J, Gavin Q, Zahedi R, et al. Personal care product use as a predictor of urinary concentrations of certain phthalates, parabens, and phenols in the HERMOSA study. J Expo Sci Environ Epidemiol. 2019;29(1):21–32.

    Article  CAS  Google Scholar 

  11. Guo Y, Kannan K. A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environ Sci Technol. 2013;47(24):14442–9.

    Article  CAS  Google Scholar 

  12. Garcia-Hidalgo E, von Goetz N, Siegrist M, Hungerbühler K. Use-patterns of personal care and household cleaning products in Switzerland. Food Chem Toxicol. 2017;99:24–39.

    Article  CAS  Google Scholar 

  13. Ferguson KK, Colacino JA, Lewis RC, Meeker JD. Personal care product use among adults in NHANES: associations between urinary phthalate metabolites and phenols and use of mouthwash and sunscreen. J Expo Sci Environ Epidemiol. 2017;27(3):326–32.

    Article  CAS  Google Scholar 

  14. Taylor KW, Troester MA, Herring AH, Engel LS, Nichols HB, Sandler DP, et al. Associations between personal care product use patterns and breast cancer risk among white and black women in the sister study. Environ Health Perspect. 2018;126(2):027011.

    Article  Google Scholar 

  15. ACOG Committee Opinion. Exposure to toxic environmental agents. Fertil Steril. 2013;100(4):931–4.

  16. Watkins DJ, Sánchez BN, Téllez-Rojo MM, Lee JM, Mercado-García A, Blank-Goldenberg C, et al. Phthalate and bisphenol A exposure during in utero windows of susceptibility in relation to reproductive hormones and pubertal development in girls. Environ Res. 2017;159:143–51. Although this study is not within the past 3 years, it represents a series of studies collecting prenatal exposures. Strong study design, long follow up.

    Article  CAS  Google Scholar 

  17. Kuiri-Hänninen T, Sankilampi U, Dunkel L. Activation of the hypothalamic-pituitary-gonadal axis in infancy: minipuberty. Horm Res Paediatr. 2014;82(2):73–80.

    Article  Google Scholar 

  18. Forest MG, De Peretti E, Bertrand J. Hypothalamic-pituitary-gonadal relationships in man from birth to puberty. Clin Endocrinol (Oxf). 1976;5(5):551–69.

    Article  CAS  Google Scholar 

  19. Loche S, Casini MR, Faedda A. The GH/IGF-I axis in puberty. Br J Clin Pract Suppl. 1996;85:1–4.

    CAS  Google Scholar 

  20. Livadas S, Chrousos GP. Control of the onset of puberty. Curr Opin Pediatr. 2016;28(4):551–8.

    Article  CAS  Google Scholar 

  21. Spaziani M, Tarantino C, Tahani N, Gianfrilli D, Sbardella E, Lenzi A, et al. Hypothalamo-pituitary axis and puberty. Mol Cell Endocrinol. 2021;520:111094.

    Article  CAS  Google Scholar 

  22. Kota AS, Ejaz S. Precocious Puberty. Treasure Island: StatPearls Publishing LLC; 2021.

    Google Scholar 

  23. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. J Clin Epidemiol. 2009;62(10):1006–12.

    Article  Google Scholar 

  24. Ouzzani M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan-a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210.

    Article  Google Scholar 

  25. National Toxicology Program, US Department of Health and Human Services. Handbook for conducting a literature-based health assessment using OHAT approach for systematic review and evidence integration. In: Services UDoHaH, editor. National Toxicology Program 2019.

  26. Cano-Sancho G, Ploteau S, Matta K, Adoamnei E, Louis GB, Mendiola J, et al. Human epidemiological evidence about the associations between exposure to organochlorine chemicals and endometriosis: systematic review and meta-analysis. Environ Int. 2019;123:209–23.

    Article  CAS  Google Scholar 

  27. Watkins DJ, Téllez-Rojo MM, Ferguson KK, Lee JM, Solano-Gonzalez M, Blank-Goldenberg C, et al. In utero and peripubertal exposure to phthalates and BPA in relation to female sexual maturation. Environ Res. 2014;134:233–41.

    Article  CAS  Google Scholar 

  28. Cathey A, Watkins DJ, Sánchez BN, Tamayo-Ortiz M, Solano-Gonzalez M, Torres-Olascoaga L, et al. Onset and tempo of sexual maturation is differentially associated with gestational phthalate exposure between boys and girls in a Mexico City birth cohort. Environ Int. 2020;136:105469.

    Article  CAS  Google Scholar 

  29. Harley KG, Berger KP, Kogut K, Parra K, Lustig RH, Greenspan LC, et al. Association of phthalates, parabens and phenols found in personal care products with pubertal timing in girls and boys. Hum Reprod. 2019;34(1):109–17. Strong study design, one of the few studies examining phenols and parabens exposure and pubertal outcomes.

    Article  CAS  Google Scholar 

  30. Hart R, Doherty DA, Frederiksen H, Keelan JA, Hickey M, Sloboda D, et al. The influence of antenatal exposure to phthalates on subsequent female reproductive development in adolescence: a pilot study. Reproduction. 2014;147(4):379–90.

    Article  CAS  Google Scholar 

  31. Sloboda DM, Hart R, Doherty DA, Pennell CE, Hickey M. Age at menarche: influences of prenatal and postnatal growth. J Clin Endocrinol Metab. 2007;92(1):46–50.

    Article  CAS  Google Scholar 

  32. Berman YE, Doherty DA, Main KM, Frederiksen H, Hickey M, Keelan JA et al. Associations between prenatal exposure to phthalates and timing of menarche and growth and adiposity into adulthood: a twenty-years birth cohort study. Int J Environ Res Public Health 2021;18(9). Long follow up.

  33. Wolff MS, Teitelbaum SL, Pinney SM, Windham G, Liao L, Biro F, et al. Investigation of relationships between urinary biomarkers of phytoestrogens, phthalates, and phenols and pubertal stages in girls. Environ Health Perspect. 2010;118(7):1039–46.

    Article  CAS  Google Scholar 

  34. Wolff MS, Teitelbaum SL, McGovern K, Windham GC, Pinney SM, Galvez M, et al. Phthalate exposure and pubertal development in a longitudinal study of US girls. Hum Reprod. 2014;29(7):1558–66.

    Article  CAS  Google Scholar 

  35. Binder AM, Corvalan C, Calafat AM, Ye X, Mericq V, Pereira A, et al. Childhood and adolescent phenol and phthalate exposure and the age of menarche in Latina girls. Environ Health. 2018;17(1):32.

    Article  Google Scholar 

  36. Mouritsen A, Frederiksen H, Sørensen K, Aksglaede L, Hagen C, Skakkebaek NE, et al. Urinary phthalates from 168 girls and boys measured twice a year during a 5-year period: associations with adrenal androgen levels and puberty. J Clin Endocrinol Metab. 2013;98(9):3755–64.

    Article  CAS  Google Scholar 

  37. Frederiksen H, Sørensen K, Mouritsen A, Aksglaede L, Hagen CP, Petersen JH, et al. High urinary phthalate concentration associated with delayed pubarche in girls. Int J Androl. 2012;35(3):216–26.

    Article  CAS  Google Scholar 

  38. Wolff MS, Pajak A, Pinney SM, Windham GC, Galvez M, Rybak M, et al. Associations of urinary phthalate and phenol biomarkers with menarche in a multiethnic cohort of young girls. Reprod Toxicol. 2017;67:56–64.

    Article  CAS  Google Scholar 

  39. Kasper-Sonnenberg M, Wittsiepe J, Wald K, Koch HM, Wilhelm M. Pre-pubertal exposure with phthalates and bisphenol A and pubertal development. PLoS ONE. 2017;12(11):e0187922.

    Article  Google Scholar 

  40. Shi H, Cao Y, Shen Q, Zhao Y, Zhang Z, Zhang Y. Association between urinary phthalates and pubertal timing in Chinese adolescents. J Epidemiol. 2015;25(9):574–82.

    Article  Google Scholar 

  41. Buttke DE, Sircar K, Martin C. Exposures to endocrine-disrupting chemicals and age of menarche in adolescent girls in NHANES (2003–2008). Environ Health Perspect. 2012;120(11):1613–8.

    Article  CAS  Google Scholar 

  42. Hou JW, Lin CL, Tsai YA, Chang CH, Liao KW, Yu CJ, et al. The effects of phthalate and nonylphenol exposure on body size and secondary sexual characteristics during puberty. Int J Hyg Environ Health. 2015;218(7):603–15.

    Article  CAS  Google Scholar 

  43. Oskar S, Wolff MS, Teitelbaum SL, Stingone JA. Identifying environmental exposure profiles associated with timing of menarche: a two-step machine learning approach to examine multiple environmental exposures. Environ Res. 2021;195:110524. Most recent NHANES report on age at menarche, sample more representative of U.S. population.

    Article  CAS  Google Scholar 

  44. Hashemipour M, Kelishadi R, Amin MM, Ebrahim K. Is there any association between phthalate exposure and precocious puberty in girls? Environ Sci Pollut Res Int. 2018;25(14):13589–96.

    Article  CAS  Google Scholar 

  45. Lomenick JP, Calafat AM, Melguizo Castro MS, Mier R, Stenger P, Foster MB, et al. Phthalate exposure and precocious puberty in females. J Pediatr. 2010;156(2):221–5.

    Article  CAS  Google Scholar 

  46. Srilanchakon K, Thadsri T, Jantarat C, Thengyai S, Nosoognoen W, Supornsilchai V. Higher phthalate concentrations are associated with precocious puberty in normal weight Thai girls. J Pediatr Endocrinol Metab. 2017;30(12):1293–8.

    Article  CAS  Google Scholar 

  47. Yum T, Lee S, Kim Y. Association between precocious puberty and some endocrine disruptors in human plasma. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2013;48(8):912–7.

    Article  CAS  Google Scholar 

  48. Durmaz E, Erkekoglu P, Asci A, Akçurin S, Bircan İ, Kocer-Gumusel B. Urinary phthalate metabolite concentrations in girls with premature thelarche. Environ Toxicol Pharmacol. 2018;59:172–81.

    Article  CAS  Google Scholar 

  49. Colón I, Caro D, Bourdony CJ, Rosario O. Identification of phthalate esters in the serum of young Puerto Rican girls with premature breast development. Environ Health Perspect. 2000;108(9):895–900.

    Google Scholar 

  50. Chen CY, Chou YY, Wu YM, Lin CC, Lin SJ, Lee CC. Phthalates may promote female puberty by increasing kisspeptin activity. Hum Reprod. 2013;28(10):2765–73.

    Article  CAS  Google Scholar 

  51. Frederiksen H, Aksglaede L, Sorensen K, Nielsen O, Main KM, Skakkebaek NE, et al. Bisphenol A and other phenols in urine from Danish children and adolescents analyzed by isotope diluted TurboFlow-LC-MS/MS. Int J Hyg Environ Health. 2013;216(6):710–20.

    Article  CAS  Google Scholar 

  52. Wolff MS, Teitelbaum SL, McGovern K, Pinney SM, Windham GC, Galvez M, et al. Environmental phenols and pubertal development in girls. Environ Int. 2015;84:174–80. Although this study is not within the past 3 years, is one of the few assessing chemicals found in hair care products. Further examination of hair care products in relation to pubertal development is a current gap in the literature. Strong study design and large smaple size.

    Article  CAS  Google Scholar 

  53. James-Todd T, Terry MB, Rich-Edwards J, Deierlein A, Senie R. Childhood hair product use and earlier age at menarche in a racially diverse study population: a pilot study. Ann Epidemiol. 2011;21(6):461–5.

    Article  Google Scholar 

  54. McDonald JA, Tehranifar P, Flom JD, Terry MB, James-Todd T. Hair product use, age at menarche and mammographic breast density in multiethnic urban women. Environ Health. 2018;17(1):1.

    Article  Google Scholar 

  55. FDA. Title 21 Code of Federal Regulation--Food and drugs chapter I--Food and Drug Administration Department of Health and Human Service Subchapter D - drugs for human use. 2020.

  56. Helm JS, Nishioka M, Brody JG, Rudel RA, Dodson RE. Measurement of endocrine disrupting and asthma-associated chemicals in hair products used by Black women. Environ Res. 2018;165:448–58.

    Article  CAS  Google Scholar 

  57. De Sanctis V, Elhakim IZ, Soliman AT, Elsedfy H, Elalaily R, Millimaggi G. Methods for rating sexual development in girls. Pediatr Endocrinol Rev. 2016;14(1):27–32.

    Google Scholar 

  58. Dorn LD, Sontag-Padilla LM, Pabst S, Tissot A, Susman EJ. Longitudinal reliability of self-reported age at menarche in adolescent girls: variability across time and setting. Dev Psychol. 2013;49(6):1187–93.

    Article  Google Scholar 

  59. Biro FM, McMahon RP, Striegel-Moore R, Crawford PB, Obarzanek E, Morrison JA, et al. Impact of timing of pubertal maturation on growth in black and white female adolescents: the National Heart, Lung, and Blood Institute Growth and Health Study. J Pediatr. 2001;138(5):636–43.

    Article  CAS  Google Scholar 

  60. Ramnitz MS, Lodish MB. Racial disparities in pubertal development. Semin Reprod Med. 2013;31(5):333–9.

    Article  Google Scholar 

  61. Cheng M, Yao Y, Zhao Y, Lin Y, Gao S, Xie J, et al. The influence of socioeconomic status on menarcheal age among Chinese school-age girls in Tianjin. China Eur J Pediatr. 2021;180(3):825–32.

    Article  Google Scholar 

  62. Deardorff J, Abrams B, Ekwaru JP, Rehkopf DH. Socioeconomic status and age at menarche: an examination of multiple indicators in an ethnically diverse cohort. Ann Epidemiol. 2014;24(10):727–33.

    Article  Google Scholar 

  63. Yang TC, Peterson KE, Meeker JD, Sánchez BN, Zhang Z, Cantoral A, et al. Bisphenol A and phthalates in utero and in childhood: association with child BMI z-score and adiposity. Environ Res. 2017;156:326–33.

    Article  CAS  Google Scholar 

  64. Lee JM, Appugliese D, Kaciroti N, Corwyn RF, Bradley RH, Lumeng JC. Weight status in young girls and the onset of puberty. Pediatrics. 2007;119(3):e624–30.

    Article  Google Scholar 

  65. Artacho-Cordón F, Fernández MF, Frederiksen H, Iribarne-Durán LM, Jiménez-Díaz I, Vela-Soria F, et al. Environmental phenols and parabens in adipose tissue from hospitalized adults in Southern Spain. Environ Int. 2018;119:203–11.

    Article  Google Scholar 

  66. La Merrill M, Birnbaum LS. Childhood obesity and environmental chemicals. Mt Sinai J Med. 2011;78(1):22–48.

    Article  Google Scholar 

  67. Vindenes HK, Svanes C, Lygre SHL, Real FG, Ringel-Kulka T, Bertelsen RJ. Exposure to environmental phenols and parabens, and relation to body mass index, eczema and respiratory outcomes in the Norwegian RHINESSA study. Environ Health. 2021;20(1):81.

    Article  CAS  Google Scholar 

  68. Wang Y, Zhu H, Kannan K. A review of biomonitoring of phthalate exposures. Toxics 2019;7(2).

  69. Hines EP, Mendola P, von Ehrenstein OS, Ye X, Calafat AM, Fenton SE. Concentrations of environmental phenols and parabens in milk, urine and serum of lactating North Carolina women. Reprod Toxicol. 2015;54:120–8.

    Article  CAS  Google Scholar 

  70. Högberg J, Hanberg A, Berglund M, Skerfving S, Remberger M, Calafat AM, et al. Phthalate diesters and their metabolites in human breast milk, blood or serum, and urine as biomarkers of exposure in vulnerable populations. Environ Health Perspect. 2008;116(3):334–9.

    Article  Google Scholar 

  71. Sandborgh-Englund G, Adolfsson-Erici M, Odham G, Ekstrand J. Pharmacokinetics of triclosan following oral ingestion in humans. J Toxicol Environ Health A. 2006;69(20):1861–73.

    Article  CAS  Google Scholar 

  72. Shin MY, Shin C, Choi JW, Lee J, Lee S, Kim S. Pharmacokinetic profile of propyl paraben in humans after oral administration. Environ Int. 2019;130:104917.

    Article  CAS  Google Scholar 

  73. Hoppin JA, Brock JW, Davis BJ, Baird DD. Reproducibility of urinary phthalate metabolites in first morning urine samples. Environ Health Perspect. 2002;110(5):515–8.

    Article  CAS  Google Scholar 

  74. Barr DB, Wilder LC, Caudill SP, Gonzalez AJ, Needham LL, Pirkle JL. Urinary creatinine concentrations in the U.S. population: implications for urinary biologic monitoring measurements. Environ Health Perspect. 2005;113(2):192–200.

    Article  CAS  Google Scholar 

  75. Kuiper JR, O’Brien KM, Ferguson KK, Buckley JP. Urinary specific gravity measures in the U.S. population: Implications for the adjustment of non-persistent chemical urinary biomarker data. Environ Int. 2021;156:106656.

    Article  CAS  Google Scholar 

  76. MacPherson S, Arbuckle TE, Fisher M. Adjusting urinary chemical biomarkers for hydration status during pregnancy. J Expo Sci Environ Epidemiol. 2018;28(5):481–93.

    Article  CAS  Google Scholar 

  77. Bruserud IS, Roelants M, Oehme NHB, Madsen A, Eide GE, Bjerknes R, et al. References for ultrasound staging of breast maturation, tanner breast staging, pubic hair, and menarche in Norwegian Girls. J Clin Endocrinol Metab. 2020;105(5):1599–607.

    Article  Google Scholar 

  78. Martinez G. Trends and patterns in menarche in the United States: 1995 through 2013–2017. In: Prevention CDC, editor. National Health Statistics Reports 2020.

  79. Carwile JL, Willett WC, Spiegelman D, Hertzmark E, Rich-Edwards J, Frazier AL, et al. Sugar-sweetened beverage consumption and age at menarche in a prospective study of US girls. Hum Reprod. 2015;30(3):675–83.

    Article  CAS  Google Scholar 

  80. Rogers IS, Northstone K, Dunger DB, Cooper AR, Ness AR, Emmett PM. Diet throughout childhood and age at menarche in a contemporary cohort of British girls. Public Health Nutr. 2010;13(12):2052–63.

    Article  Google Scholar 

  81. Moslehi N, Asghari G, Mirmiran P, Azizi F. Longitudinal association of dietary sources of animal and plant protein throughout childhood with menarche. BMC Pediatr. 2021;21(1):206.

    Article  CAS  Google Scholar 

  82. Boynton-Jarrett R, Wright RJ, Putnam FW, Lividoti Hibert E, Michels KB, Forman MR, et al. Childhood abuse and age at menarche. J Adolesc Health. 2013;52(2):241–7.

    Article  Google Scholar 

  83. April-Sanders AK, Tehranifar P, Argov EL, Suglia SF, Rodriguez CB, McDonald JA. Influence of childhood adversity and infection on timing of menarche in a multiethnic sample of women. Int J Environ Res Public Health 2021;18(8).

  84. Henrichs KL, McCauley HL, Miller E, Styne DM, Saito N, Breslau J. Early menarche and childhood adversities in a nationally representative sample. Int J Pediatr Endocrinol. 2014;2014(1):14.

    Article  Google Scholar 

  85. van der Eng P, Sohn K. The biological standard of living in Indonesia during the 20th century: evidence from the age at menarche. Econ Hum Biol. 2019;34:216–24.

    Article  Google Scholar 

  86. Sohn K. Improvement in the biological standard of living in 20th century Korea: evidence from age at menarche. Am J Hum Biol 2017;29(1).

  87. Vasiliu O, Muttineni J, Karmaus W. In utero exposure to organochlorines and age at menarche. Hum Reprod. 2004;19(7):1506–12.

    Article  CAS  Google Scholar 

  88. Jung EM, Kim HS, Park H, Ye S, Lee D, Ha EH. Does exposure to PM(10) decrease age at menarche? Environ Int. 2018;117:16–21.

    Article  CAS  Google Scholar 

  89. Ernst A, Brix N, Lauridsen LLB, Olsen J, Parner ET, Liew Z, et al. Exposure to perfluoroalkyl substances during fetal life and pubertal development in boys and girls from the Danish National Birth Cohort. Environ Health Perspect. 2019;127(1):17004.

    Article  CAS  Google Scholar 

  90. Bingham CR, Miller BC, Adams GR. Correlates of age at first sexual intercourse in a national sample of young women. J Adolesc Res. 1990;5(1):18–33.

    Article  CAS  Google Scholar 

  91. Roberts E, Fraser A, Gunnell D, Joinson C, Mars B. Timing of menarche and self-harm in adolescence and adulthood: a population-based cohort study. Psychol Med. 2020;50(12):2010–8.

    Article  Google Scholar 

  92. Graber JA, Seeley JR, Brooks-Gunn J, Lewinsohn PM. Is pubertal timing associated with psychopathology in young adulthood. J Am Acad Child Adolesc Psychiatry. 2004;43(6):718–26.

    Article  Google Scholar 

  93. Johansson T, Ritzén EM. Very long-term follow-up of girls with early and late menarche. Endocr Dev. 2005;8:126–36.

    Article  Google Scholar 

  94. Richards MA, Oinonen KA. Age at menarche is associated with divergent alcohol use patterns in early adolescence and early adulthood. J Adolesc. 2011;34(5):1065–76.

    Article  Google Scholar 

  95. Shen Y, Xiao H, Hu H. Racial/ethnic differences in age at menarche and lifetime nonmedical marijuana use: results from the NHANES 2005–2016. J Racial Ethn Health Disparities. 2021;8(2):448–53.

    Article  Google Scholar 

  96. Charalampopoulos D, McLoughlin A, Elks CE, Ong KK. Age at menarche and risks of all-cause and cardiovascular death: a systematic review and meta-analysis. Am J Epidemiol. 2014;180(1):29–40.

    Article  Google Scholar 

  97. Gallicchio L, Flaws JA, Smith RL. Age at menarche, androgen concentrations, and midlife obesity: findings from the Midlife Women’s Health Study. Menopause. 2016;23(11):1182–8.

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the assistance of Ms. Denise Rimple, MPH in the early stages of manuscript preparation.

Funding

NIH grants P30ES005022; T32ES019854

Author information

Authors and Affiliations

Authors

Contributions

ZR-N: methodology, analysis, writing original draft, review, and editing. CK: methodology, analysis, writing original draft, review, and editing. YZ: methodology, literature search, review, and editing. AR: literature search, analysis, review, and editing. EB: methodology, review, and editing. AL: conceptualization, design, methodology, analysis, writing original draft, review, and editing. EB: conceptualization, design, methodology, analysis, writing original draft, review, and editing.

Corresponding author

Correspondence to Zorimar Rivera-Núñez.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Adana Llanos and Emily Barrett have joint senior authorship.

This article is part of the Topical Collection on Synthetic Chemicals and Health.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rivera-Núñez, Z., Kinkade, C.W., Zhang, Y. et al. Phenols, Parabens, Phthalates and Puberty: a Systematic Review of Synthetic Chemicals Commonly Found in Personal Care Products and Girls’ Pubertal Development. Curr Envir Health Rpt 9, 517–534 (2022). https://doi.org/10.1007/s40572-022-00366-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-022-00366-4

Keywords

Navigation