Skip to main content
Log in

Prevalence and Implications of Per- and Polyfluoroalkyl Substances (PFAS) in Settled Dust

  • Susceptibility Factors in Environmental Health (Z Liew and K Pollitt, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Per- and polyfluoroalkyl substances (PFAS) are a family of more than 7,000 fluorinated compounds. The carbon-fluorine bond of PFAS provides desirable hydrophobic and oleophobic properties and stability that has led to widespread usage in consumer products and industrial applications. The strength of the carbon-fluorine bond also prevents appreciable degradation once released into the environment. Consequently, various household products can release volatile and nonvolatile PFAS into the indoor environment that often concentrate in dust. We discuss the diversity of PFAS in settled dust, emission sources of these chemicals, changes in PFAS profiles in dust over the past century, and the implications for human health.

Recent Findings

Sources of PFAS found in dust include building materials and furnishings and consumer products used in typical indoor spaces. Daycares and workplaces are emphasized as locations with widespread exposure due to the presence of treated carpeting and industrial-strength cleaners. Comparison and interpretation of findings across studies are complicated by the different ways in which PFAS are screened across studies. We further discuss recent developments in non-targeted software for the comprehensive annotation of PFAS in indoor dust and emphasize the need for comprehensive and harmonized analytical workflows.

Summary

We highlight the detection and diversity of PFAS in settled dust collected from various indoor spaces, including locations with vulnerable subpopulations. There are opportunities for future research to leverage settled dust as a sentinel environmental matrix to evaluate the link between inhalation and ingestion routes of PFAS exposure to adverse health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Risk Management for Per- and Polyfluoroalkyl Substances (PFAS) under TSCA. Published online August 10, 2020. https://www.epa.gov/assessing-and-managing-chemicals-under-tsca/risk-managementand-polyfluoroalkyl-substances-pfas. Accessed 21 Dec 2020.

  2. EPA’s Per- and Polyfluoroalkyl Substances (PFAS) Action Plan (EPA 823R18004). Published online February 2019. https://www.epa.gov/sites/production/files/2019-02/documents/pfas_action_plan_021319_508compliant_1.pdf. Accessed 21 Dec 2020.

  3. Fujii Y, Harada KH, Koizumi A. Occurrence of perfluorinated carboxylic acids (PFCAs) in personal care products and compounding agents. Chemosphere. 2013;93(3):538–44. https://doi.org/10.1016/j.chemosphere.2013.06.049.

    Article  PubMed  CAS  Google Scholar 

  4. Sajid M, Ilyas M, et al. Environ Sci Pollut Res Int. 2017;24(30):23436–40. https://doi.org/10.1007/s11356-017-0095-y.

    Article  PubMed  CAS  Google Scholar 

  5. European Food Safety Authority. Perfluoroalkylated substances in food: occurrence and dietary exposure. EFSA J. 2012;10(6):2743. https://doi.org/10.2903/j.efsa.2012.2743.

    Article  CAS  Google Scholar 

  6. Domingo JL. Health risks of dietary exposure to perfluorinated compounds. Environ Int. 2012;40:187–95. https://doi.org/10.1016/j.envint.2011.08.001.

    Article  PubMed  CAS  Google Scholar 

  7. D’Hollander W, De Voogt P, de Coen W, Bervoets L. Perfluorinated substances in human food and other sources of human exposure. Rev Environ Contam Toxicol. 2010;208:179–215. https://doi.org/10.1007/978-1-4419-6880-7_4.

    Article  PubMed  CAS  Google Scholar 

  8. Banzhaf S, Filipovic M, Lewis J, Sparrenbom CJ, Barthel R. A review of contamination of surface-, ground-, and drinking water in Sweden by perfluoroalkyl and polyfluoroalkyl substances (PFASs). Ambio. 2017;46(3):335–46. https://doi.org/10.1007/s13280-016-0848-8.

    Article  PubMed  CAS  Google Scholar 

  9. Coggan TL, Moodie D, Kolobaric A, et al. An investigation into per- and polyfluoroalkyl substances (PFAS) in nineteen Australian wastewater treatment plants (WWTPs). Heliyon. 2019;5(8):e02316. https://doi.org/10.1016/j.heliyon.2019.e02316.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Quiñones O, Snyder SA. Occurrence of perfluoroalkyl carboxylates and sulfonates in drinking water utilities and related waters from the United States. Environ Sci Technol. 2009;43(24):9089–95. https://doi.org/10.1021/es9024707.

    Article  PubMed  CAS  Google Scholar 

  11. Egeghy PP, Lorber M. An assessment of the exposure of Americans to perfluorooctane sulfonate: a comparison of estimated intake with values inferred from NHANES data. J Exp Sci Environ Epidemiol. 2011;21(2):150–68. https://doi.org/10.1038/jes.2009.73.

    Article  CAS  Google Scholar 

  12. Sunderland EM, Hu XC, Dassuncao C, Tokranov AK, Wagner CC, Allen JG. A review of the pathways of human exposure to poly- and perfluoroalkyl substances (PFASs) and present understanding of health effects. J Expo Sci Environ Epidemiol. 2019;29(2):131–47. https://doi.org/10.1038/s41370-018-0094-1.

    Article  PubMed  CAS  Google Scholar 

  13. Poothong S, Papadopoulou E, Padilla-Sánchez JA, Thomsen C, Haug LS. Multiple pathways of human exposure to poly- and perfluoroalkyl substances (PFASs): from external exposure to human blood. Environ Int. 2020;134:105244. https://doi.org/10.1016/j.envint.2019.105244.

    Article  PubMed  CAS  Google Scholar 

  14. Sukiene V, Gerecke AC, Park Y-M, et al. Tracking SVOCs’ Transfer from products to indoor air and settled dust with deuterium-labeled substances. Environ Sci Technol. 2016;50(8):4296–303. https://doi.org/10.1021/acs.est.5b05906.

    Article  PubMed  CAS  Google Scholar 

  15. Haines SR, Adams RI, Boor BE, et al. Ten questions concerning the implications of carpet on indoor chemistry and microbiology. Build Environ. 2020;170:106589. https://doi.org/10.1016/j.buildenv.2019.106589.

    Article  Google Scholar 

  16. Björklund JA, Thuresson K, de Wit CA. Perfluoroalkyl compounds (PFCs) in indoor dust: concentrations, human exposure estimates, and sources. Environ Sci Technol. 2009;43(7):2276–81. https://doi.org/10.1021/es803201a.

    Article  PubMed  CAS  Google Scholar 

  17. Winkens K, Giovanoulis G, Koponen J, et al. Perfluoroalkyl acids and their precursors in floor dust of children’s bedrooms – implications for indoor exposure. Environ Int. 2018;119:493–502. https://doi.org/10.1016/j.envint.2018.06.009.

    Article  PubMed  CAS  Google Scholar 

  18. Haug LS, Huber S, Schlabach M, Becher G, Thomsen C. Investigation on per- and polyfluorinated compounds in paired samples of house dust and indoor air from Norwegian homes. Environ Sci Technol. 2011;45(19):7991–8. https://doi.org/10.1021/es103456h.

    Article  PubMed  CAS  Google Scholar 

  19. Wilson R, Jones-Otazo H, Petrovic S, et al. Revisiting dust and soil ingestion rates based on hand-to-mouth transfer. Null. 2013;19(1):158–88. https://doi.org/10.1080/10807039.2012.685807.

    Article  CAS  Google Scholar 

  20. Wu T, Täubel M, Holopainen R, et al. Infant and adult inhalation exposure to resuspended biological particulate matter. Environ Sci Technol. 2018;52(1):237–47. https://doi.org/10.1021/acs.est.7b04183.

    Article  PubMed  CAS  Google Scholar 

  21. Bennett WD, Zeman KL, Jarabek AM. Nasal Contribution to breathing and fine particle deposition in children versus adults. J Toxic Environ Health A. 2007;71(3):227–37. https://doi.org/10.1080/15287390701598200.

    Article  CAS  Google Scholar 

  22. Harrad S, de Wit CA, Abdallah MA-E, et al. Indoor contamination with hexabromocyclododecanes, polybrominated diphenyl ethers, and perfluoroalkyl compounds: an important exposure pathway for people? Environ Sci Technol. 2010;44(9):3221–31. https://doi.org/10.1021/es903476t.

    Article  PubMed  CAS  Google Scholar 

  23. Liew Z, Goudarzi H, Oulhote Y. Developmental exposures to perfluoroalkyl substances (PFASs): an update of associated health outcomes. Curr Environ Health Rep. 2018;5(1):1–19. https://doi.org/10.1007/s40572-018-0173-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Franko J, Meade B, Frasch HF, Barbero AM, Anderson SE. Dermal penetration potential of perfluorooctanoic acid (PFOA) in human and mouse skin. J Toxicol Environ Health Part A. 2012;75(1):50–62. https://doi.org/10.1080/15287394.2011.615108.

    Article  CAS  Google Scholar 

  25. Lee J-W, Lee H-K, Lim J-E, Moon H-B. Legacy and emerging per- and polyfluoroalkyl substances (PFASs) in the coastal environment of Korea: occurrence, spatial distribution, and bioaccumulation potential. Chemosphere. 2020;251:126633. https://doi.org/10.1016/j.chemosphere.2020.126633.

    Article  PubMed  CAS  Google Scholar 

  26. Wang X, Li B, Zhao W-D, et al. Perfluorooctane sulfonate triggers tight junction “opening” in brain endothelial cells via phosphatidylinositol 3-kinase. Biochem Biophys Res Commun. 2011;410(2):258–63. https://doi.org/10.1016/j.bbrc.2011.05.128.

    Article  PubMed  CAS  Google Scholar 

  27. Zeng Z, Song B, Xiao R, et al. Assessing the human health risks of perfluorooctane sulfonate by in vivo and in vitro studies. Environ Int. 2019;126:598–610. https://doi.org/10.1016/j.envint.2019.03.002.

    Article  PubMed  CAS  Google Scholar 

  28. Anderko L, Pennea E. Exposures to per-and polyfluoroalkyl substances (PFAS): potential risks to reproductive and children’s health. Curr Problems Pediatr Adolesc Health Care. 2020;50(2):100760. https://doi.org/10.1016/j.cppeds.2020.100760.

    Article  Google Scholar 

  29. Barry V, Winquist A, Steenland K. Perfluorooctanoic acid (PFOA) exposures and incident cancers among adults living near a chemical plant. Environ Health Perspect. 2013;121(11-12):1313–8. https://doi.org/10.1289/ehp.1306615.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Shearer JJ, Callahan CL, Calafat AM, et al. Serum concentrations of per- and polyfluoroalkyl substances and risk of renal cell carcinoma. JNCI: J Natl Cancer Instit. 2020;(djaa143). https://doi.org/10.1093/jnci/djaa143.

  31. Lopez-Espinosa M-J, Mondal D, Armstrong B, Bloom MS, Fletcher T. Thyroid function and perfluoroalkyl acids in children living near a chemical plant. Environ Health Perspect. 2012;120(7):1036–41. https://doi.org/10.1289/ehp.1104370.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Nicole W. PFOA and cancer in a highly exposed community: new findings from the C8 science panel. Environ Health Perspect. 2013;121(11-12):A340. https://doi.org/10.1289/ehp.121-A340.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Temkin AM, Hocevar BA, Andrews DQ, Naidenko OV, Kamendulis LM, et al. Int J Environ Res Public Health. 2020;17(5):1668. https://doi.org/10.3390/ijerph17051668.

    Article  PubMed Central  CAS  Google Scholar 

  34. Steenland K, Zhao L, Winquist A, Parks C. Ulcerative colitis and perfluorooctanoic acid (PFOA) in a highly exposed population of community residents and workers in the mid-Ohio valley. Environ Health Perspect. 2013;121(8):900–5. https://doi.org/10.1289/ehp.1206449.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Heindel JJ, Blumberg B, Cave M, et al. Metabolism disrupting chemicals and metabolic disorders. Reprod Toxicol. 2017;68:3–33. https://doi.org/10.1016/j.reprotox.2016.10.001.

    Article  PubMed  CAS  Google Scholar 

  36. Nelson JW, Hatch EE, Webster TF. Exposure to polyfluoroalkyl chemicals and cholesterol, body weight, and insulin resistance in the general U.S. population. Environ Health Perspect. 2010;118(2):197–202. https://doi.org/10.1289/ehp.0901165.

    Article  PubMed  CAS  Google Scholar 

  37. Olsen GW, Burris JM, Burlew MM, Mandel JH. Epidemiologic assessment of worker serum perfluorooctanesulfonate (PFOS) and perfluorooctanoate (PFOA) concentrations and medical surveillance examinations. J Occup Environ Med. 2003;45(3):260–70 https://journals.lww.com/joem/Fulltext/2003/03000/Epidemiologic_Assessment_of_Worker_Serum.8.aspx. Accessed 1 Sep 2020.

  38. Steenland K, Tinker S, Frisbee S, Ducatman A, Vaccarino V. Association of perfluorooctanoic acid and perfluorooctane sulfonate with serum lipids among adults living near a chemical plant. Am J Epidemiol. 2009;170(10):1268–78. https://doi.org/10.1093/aje/kwp279.

    Article  PubMed  Google Scholar 

  39. Brendel S, Fetter É, Staude C, Vierke L, Biegel-Engler A. Short-chain perfluoroalkyl acids: environmental concerns and a regulatory strategy under REACH. Environ Sci Eur. 2018;30(1):9–9. https://doi.org/10.1186/s12302-018-0134-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Rice PA, Aungst J, Cooper J, Bandele O, Kabadi SV. Comparative analysis of the toxicological databases for 6:2 fluorotelomer alcohol (6:2 FTOH) and perfluorohexanoic acid (PFHxA). Food Chem Toxicol: an international journal published for the British Industrial Biological Research Association. 2020;138:111210. https://doi.org/10.1016/j.fct.2020.111210.

    Article  CAS  Google Scholar 

  41. Averina M, Brox J, Huber S, Furberg A-S, Sørensen M. Serum perfluoroalkyl substances (PFAS) and risk of asthma and various allergies in adolescents. The Tromsø study Fit Futures in Northern Norway. Environ Res. 2019;169:114–21. https://doi.org/10.1016/j.envres.2018.11.005.

    Article  PubMed  CAS  Google Scholar 

  42. Jackson-Browne MS, Eliot M, Patti M, Spanier AJ, Braun JM. PFAS (per- and polyfluoroalkyl substances) and asthma in young children: NHANES 2013–2014. Int J Hyg Environ Health. 2020;229:113565. https://doi.org/10.1016/j.ijheh.2020.113565.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Kvalem HE, Nygaard UC, Lødrup Carlsen KC, Carlsen KH, Haug LS, Granum B. Perfluoroalkyl substances, airways infections, allergy and asthma related health outcomes – implications of gender, exposure period and study design. Environ Int. 2020;134:105259. https://doi.org/10.1016/j.envint.2019.105259.

    Article  PubMed  CAS  Google Scholar 

  44. Wu Y, Romanak K, Bruton T, Blum A, Venier M. Per- and polyfluoroalkyl substances in paired dust and carpets from childcare centers. Chemosphere. 2020;251:126771. https://doi.org/10.1016/j.chemosphere.2020.126771.

    Article  PubMed  CAS  Google Scholar 

  45. Buck RC, Franklin J, Berger U, et al. Perfluoroalkyl and polyfluoroalkyl substances in the environment: terminology, classification, and origins. Integr Environ Assess Manag. 2011;7(4):513–41. https://doi.org/10.1002/ieam.258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Xu Y, Fletcher T, Pineda D, et al. Serum half-lives for short- and long-chain perfluoroalkyl acids after ceasing exposure from drinking water contaminated by firefighting foam. Environ Health Perspect. 2020;128(7):77004. https://doi.org/10.1289/EHP6785.

    Article  PubMed  CAS  Google Scholar 

  47. Ellis DA, Martin JW, De Silva AO, et al. Degradation of fluorotelomer alcohols: a likely atmospheric source of perfluorinated carboxylic acids. Environ Sci Technol. 2004;38(12):3316–21. https://doi.org/10.1021/es049860w.

    Article  PubMed  CAS  Google Scholar 

  48. D’eon JC, Mabury SA. Production of perfluorinated carboxylic acids (PFCAs) from the biotransformation of polyfluoroalkyl phosphate surfactants (PAPS): exploring routes of human contamination. Environ Sci Technol. 2007;41(13):4799–805. https://doi.org/10.1021/es070126x.

    Article  PubMed  CAS  Google Scholar 

  49. Fraser AJ, Webster TF, Watkins DJ, et al. Polyfluorinated compounds in dust from homes, offices, and vehicles as predictors of concentrations in office workers’ serum. Environ Int. 2013;60:128–36. https://doi.org/10.1016/j.envint.2013.08.012.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Beesoon S, Genuis SJ, Benskin JP, Martin JW. Exceptionally high serum concentrations of perfluorohexanesulfonate in a Canadian family are linked to home carpet treatment applications. Environ Sci Technol. 2012;46(23):12960–7. https://doi.org/10.1021/es3034654.

    Article  PubMed  CAS  Google Scholar 

  51. Strynar MJ, Lindstrom AB. Perfluorinated compounds in house dust from Ohio and North Carolina. USA Environ Sci Technol. 2008;42(10):3751–6. https://doi.org/10.1021/es7032058.

    Article  PubMed  CAS  Google Scholar 

  52. Shoeib T, Hassan Y, Rauert C, Harner T. Poly- and perfluoroalkyl substances (PFASs) in indoor dust and food packaging materials in Egypt: trends in developed and developing countries. Chemosphere. 2016;144:1573–81. https://doi.org/10.1016/j.chemosphere.2015.08.066.

    Article  PubMed  CAS  Google Scholar 

  53. Giovanoulis G, Nguyen MA, Arwidsson M, Langer S, Vestergren R, Lagerqvist A. Reduction of hazardous chemicals in Swedish preschool dust through article substitution actions. Environ Int. 2019;130:104921. https://doi.org/10.1016/j.envint.2019.104921.

    Article  PubMed  CAS  Google Scholar 

  54. Eriksson U, Kärrman A. World-wide indoor exposure to polyfluoroalkyl phosphate esters (PAPs) and other PFASs in household dust. Environ Sci Technol. 2015;49(24):14503–11. https://doi.org/10.1021/acs.est.5b00679.

    Article  PubMed  CAS  Google Scholar 

  55. Liu X, Guo Z, Folk EE, Roache NF. Determination of fluorotelomer alcohols in selected consumer products and preliminary investigation of their fate in the indoor environment. Chemosphere. 2015;129:81–6. https://doi.org/10.1016/j.chemosphere.2014.06.012.

    Article  PubMed  CAS  Google Scholar 

  56. Eichler CMA, Hubal EAC, Xu Y, et al. Assessing human exposure to SVOCs in materials, products, and articles: a modular mechanistic framework. Environ Sci Technol. 2021;55(1):25–43. https://doi.org/10.1021/acs.est.0c02329.

    Article  PubMed  CAS  Google Scholar 

  57. Shoeib M, Harner T, Wilford BH, Jones KC, Zhu J. Perfluorinated sulfonamides in indoor and outdoor air and indoor dust: occurrence, partitioning, and human exposure. Environ Sci Technol. 2005;39(17):6599–606. https://doi.org/10.1021/es048340y.

    Article  PubMed  CAS  Google Scholar 

  58. Yao Y, Zhao Y, Sun H, et al. Per- and polyfluoroalkyl substances (PFASs) in indoor air and dust from homes and various microenvironments in China: Implications for human exposure. Environ Sci Technol. 2018;52(5):3156–66. https://doi.org/10.1021/acs.est.7b04971.

    Article  PubMed  CAS  Google Scholar 

  59. Goosey E, Harrad S. Perfluoroalkyl substances in UK indoor and outdoor air: spatial and seasonal variation, and implications for human exposure. Environ Int. 2012;45:86–90. https://doi.org/10.1016/j.envint.2012.04.007.

    Article  PubMed  CAS  Google Scholar 

  60. Kwiatkowski CF, Andrews DQ, Birnbaum LS, et al. Scientific basis for managing PFAS as a chemical class. Environ Sci Technol Lett. 2020;7(8):532–43. https://doi.org/10.1021/acs.estlett.0c00255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Dinglasan-Panlilio MJA, Mabury SA. Significant residual fluorinated alcohols present in various fluorinated materials. Environ Sci Technol. 2006;40(5):1447–53. https://doi.org/10.1021/es051619+.

    Article  PubMed  CAS  Google Scholar 

  62. Besis A, Botsaropoulou E, Samara C, Katsoyiannis A, Hanssen L, Huber S. Perfluoroalkyl substances (PFASs) in air-conditioner filter dust of indoor microenvironments in Greece: implications for exposure. Ecotoxicol Environ Saf. 2019;183:109559. https://doi.org/10.1016/j.ecoenv.2019.109559.

    Article  PubMed  CAS  Google Scholar 

  63. Ericson Jogsten I, Nadal M, van Bavel B, Lindström G, Domingo JL. Per- and polyfluorinated compounds (PFCs) in house dust and indoor air in Catalonia, Spain: implications for human exposure. Environ Int. 2012;39(1):172–80. https://doi.org/10.1016/j.envint.2011.09.004.

    Article  PubMed  CAS  Google Scholar 

  64. Karásková P, Venier M, Melymuk L, et al. Perfluorinated alkyl substances (PFASs) in household dust in Central Europe and North America. Environ Int. 2016;94:315–24. https://doi.org/10.1016/j.envint.2016.05.031.

    Article  PubMed  CAS  Google Scholar 

  65. Goosey E, Harrad S. Perfluoroalkyl compounds in dust from Asian, Australian, European, and North American homes and UK cars, classrooms, and offices. Environ Int. 2011;37(1):86–92. https://doi.org/10.1016/j.envint.2010.08.001.

    Article  PubMed  CAS  Google Scholar 

  66. Zheng G, Boor BE, Schreder E, Salamova A. Indoor exposure to per- and polyfluoroalkyl substances (PFAS) in the childcare environment. Environ Pollut (Barking, Essex: 1987). 2020;258:113714. https://doi.org/10.1016/j.envpol.2019.113714.

    Article  CAS  Google Scholar 

  67. Glüge J, Scheringer M, Cousins IT, et al. An overview of the uses of per- and polyfluoroalkyl substances (PFAS). Environ Sci Process Impacts. 2020;22(12):2345–73. https://doi.org/10.1039/D0EM00291G.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sznajder-Katarzyńska K, Surma M, Cieślik I. A review of perfluoroalkyl acids (PFAAs) in terms of sources, applications, human exposure, dietary intake, toxicity, legal regulation, and methods of determination. Kalogeropoulos N, ed. J Chem. 2019;2019:2717528. https://doi.org/10.1155/2019/2717528.

    Article  CAS  Google Scholar 

  69. Bogdan D. Perfluorobutane sulfonic acid (PFBS) chemistry, production, uses, and environmental fate in Michigan. Published online September 23, 2019. https://www.michigan.gov/documents/pfasresponse/Perfluorobutane_Sulfonic_Acid_PFBS_Chemistry_Production_Uses_and_Environmental_Fate_704238_7.pdf. Accessed 5 Oct 2020.

  70. Knobeloch L, Imm P, Anderson H. Perfluoroalkyl chemicals in vacuum cleaner dust from 39 Wisconsin homes. Chemosphere. 2012;88(7):779–83. https://doi.org/10.1016/j.chemosphere.2012.03.082.

    Article  PubMed  CAS  Google Scholar 

  71. Steenland K, Fletcher T, Savitz DA. Epidemiologic evidence on the health effects of perfluorooctanoic acid (PFOA). Environ Health Perspect. 2010;118(8):1100–8. https://doi.org/10.1289/ehp.0901827.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Huber S, Haug LS, Schlabach M. Per- and polyfluorinated compounds in house dust and indoor air from northern Norway - a pilot study. Chemosphere. 2011;84(11):1686–93. https://doi.org/10.1016/j.chemosphere.2011.04.075.

    Article  PubMed  CAS  Google Scholar 

  73. Chemical Strategy. Published online 2017. https://corporate.homedepot.com/sites/default/files/pdfs/Chemical%20Strategy%20-%20PFAS%20update%20Sept%2012.pdf. Accessed 1 Dec 2020.

  74. Guo R, Liu X, Liu J, et al. Occurrence, partition and environmental risk assessment of per- and polyfluoroalkyl substances in water and sediment from the Baiyangdian Lake. China Sci Rep. 2020;10(1):4691. https://doi.org/10.1038/s41598-020-61651-6.

    Article  PubMed  CAS  Google Scholar 

  75. De Silva AO, Allard CN, Spencer C, Webster GM, Shoeib M. Phosphorus-containing fluorinated organics: polyfluoroalkyl phosphoric acid diesters (diPAPs), perfluorophosphonates (PFPAs), and perfluorophosphinates (PFPIAs) in residential indoor dust. Environ Sci Technol. 2012;46(22):12575–82. https://doi.org/10.1021/es303172p.

    Article  PubMed  CAS  Google Scholar 

  76. Makey CM, Webster TF, Martin JW, et al. Airborne precursors predict maternal serum perfluoroalkyl acid concentrations. Environ Sci Technol. 2017;51(13):7667–75. https://doi.org/10.1021/acs.est.7b00615.

    Article  PubMed  CAS  Google Scholar 

  77. Schultes L, Vestergren R, Hellström K, Westberg E, Jacobson T, Benskin J. Per- and polyfluoroalkyl substances and fluorine mass balance in cosmetic products from the Swedish market: implications for environmental emissions and human exposure. Environ Sci Process Impacts. 2018;20:1680–90. https://doi.org/10.1039/C8EM00368H.

    Article  PubMed  CAS  Google Scholar 

  78. Begley TH, Hsu W, Noonan G, Diachenko G. Migration of fluorochemical paper additives from food-contact paper into foods and food simulants. Null. 2008;25(3):384–90. https://doi.org/10.1080/02652030701513784.

    Article  CAS  Google Scholar 

  79. Yuan G, Peng H, Huang C, Hu J. Ubiquitous occurrence of fluorotelomer alcohols in eco-friendly paper-made food-contact materials and their implication for human exposure. Environ Sci Technol. 2016;50(2):942–50. https://doi.org/10.1021/acs.est.5b03806.

    Article  PubMed  CAS  Google Scholar 

  80. Schaider LA, Balan SA. Blum A, et al. Fluorinated compounds in U.S. fast food packaging. Environ Sci Technol Lett. 2017;4(3):105–11. https://doi.org/10.1021/acs.estlett.6b00435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Padilla-Sánchez JA, Haug LS. A fast and sensitive method for the simultaneous analysis of a wide range of per- and polyfluoroalkyl substances in indoor dust using on-line solid phase extraction-ultrahigh performance liquid chromatography-time-of-flight-mass spectrometry. J Chromatogr A. 2016;1445:36–45. https://doi.org/10.1016/j.chroma.2016.03.058.

    Article  PubMed  CAS  Google Scholar 

  82. Zafeiraki E, Costopoulou D, Vassiliadou I, Bakeas E, Leondiadis L. Determination of perfluorinated compounds (PFCs) in various foodstuff packaging materials used in the Greek market. Chemosphere. 2014;94:169–76. https://doi.org/10.1016/j.chemosphere.2013.09.092.

    Article  PubMed  CAS  Google Scholar 

  83. Ackerman J, McRobert D, Sears M. PFAS on food contact materials: consequences for human health, compost, and the food chain and prospects for regulatory action in Canada and beyond. McGill J Sustain Dev Law. Published January 26, 2021. https://www.mcgill.ca/mjsdl/article/pfas-food-contact-materials-consequences-human-health-compost-and-food-chain-and-prospects. Accessed 5 Jul 2021.

  84. Bečanová J, Melymuk L, Vojta Š, Komprdová K, Klánová J, et al. Chemosphere. 2016;164:322–9. https://doi.org/10.1016/j.chemosphere.2016.08.112.

    Article  PubMed  CAS  Google Scholar 

  85. Janousek RM, Lebertz S, Knepper TP. Previously unidentified sources of perfluoroalkyl and polyfluoroalkyl substances from building materials and industrial fabrics. Environ Sci Process Impacts. 2019;21(11):1936–45. https://doi.org/10.1039/C9EM00091G.

    Article  PubMed  CAS  Google Scholar 

  86. Herzke D, Olsson E, Posner S. Perfluoroalkyl and polyfluoroalkyl substances (PFASs) in consumer products in Norway – a pilot study. Chemosphere. 2012;88(8):980–7. https://doi.org/10.1016/j.chemosphere.2012.03.035.

    Article  PubMed  CAS  Google Scholar 

  87. Mueller R, Y Virginia. History and use of per- and polyfluoroalkyl substances (PFAS) dnr.wi.gov/topic/Brownfields/documents/bsg/ITRCPFAS1809.pdf. Published online 2017. dnr.wi.gov/topic/Brownfields/documents/bsg/ITRCPFAS1809.pdf. Accessed 1 Sep 2020.

  88. Fact Sheet: 2010/2015 PFOA Stewardship Program. Published online August 9, 2018. www.epa.gov/assessing-and-managing-chemicals-under-tsca/fact-sheet-20102015-pfoa-stewardship-program. Accessed 27 Feb 2021.

  89. Ellis DA, Martin JW, Mabury SA, Hurley MD, Sulbaek Andersen MP, Wallington TJ. Atmospheric lifetime of fluorotelomer alcohols. Environ Sci Technol. 2003;37(17):3816–20. https://doi.org/10.1021/es034136j.

    Article  PubMed  CAS  Google Scholar 

  90. Young AS, Hauser R, James-Todd TM, et al. Impact of “healthier” materials interventions on dust concentrations of per- and polyfluoroalkyl substances, polybrominated diphenyl ethers, and organophosphate esters. Environ Int. Published online October 19. 2020;150:106151. https://doi.org/10.1016/j.envint.2020.106151.

    Article  PubMed  CAS  Google Scholar 

  91. Berger U, Herzke D. Per-and polyfluorinated alkyl substances (PFAS) extracted from textile samples. Organohalogen Compd. 2006;68:2023–6.

    CAS  Google Scholar 

  92. Schulze PE, Norin H. Fluorinated Pollutants in All-Weather Clothing. Friends of the Earth Norway; 2006. https://www.fluoridealert.org/wpcontent/pesticides/2006/clothing.foe.norway.feb.2006.pdf.

  93. Peaslee GF, Wilkinson JT, McGuinness SR, et al. Another pathway for firefighter exposure to per- and polyfluoroalkyl substances: firefighter textiles. Environ Sci Technol Lett. 2020;7(8):594–9. https://doi.org/10.1021/acs.estlett.0c00410.

    Article  CAS  Google Scholar 

  94. Young AS, Sparer-Fine EH, Pickard HM, Sunderland EM, Peaslee GF, Allen JG. Per- and polyfluoroalkyl substances (PFAS) and total fluorine in fire station dust. J Exp Sci Environ Epidemiol Published online February 5. 2021. https://doi.org/10.1038/s41370-021-00288-7.

  95. Zabaleta I, Bizkarguenaga E, Nunoo DBO, et al. Biodegradation and uptake of the pesticide sulfluramid in a soil–carrot mesocosm. Environ Sci Technol. 2018;52(5):2603–11. https://doi.org/10.1021/acs.est.7b03876.

    Article  PubMed  CAS  Google Scholar 

  96. Results of the 2006 survey on production and use of PFOS, PFAS, PFOA, PFCA, their related substances and products/mixtures containing these substances. Published online 2006. http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?doclanguage=en&cote=env/jm/mono(2006)36. Accessed 1 Sep 2020.

  97. Nascimento RA, Nunoo DBO, Bizkarguenaga E, et al. Sulfluramid use in Brazilian agriculture: a source of per- and polyfluoroalkyl substances (PFASs) to the environment. Environ Pollut. 2018;242(Pt B):1436–43.

    Article  CAS  Google Scholar 

  98. D’Hollander W, Roosens L, Covaci A, et al. Brominated flame retardants and perfluorinated compounds in indoor dust from homes and offices in Flanders, Belgium. Chemosphere. 2010;81(4):478–87. https://doi.org/10.1016/j.chemosphere.2010.07.043.

    Article  PubMed  CAS  Google Scholar 

  99. Lucattini L, Poma G, Covaci A, de Boer J, Lamoree MH, Leonards PEG. A review of semi-volatile organic compounds (SVOCs) in the indoor environment: occurrence in consumer products, indoor air and dust. Chemosphere. 2018;201:466–82. https://doi.org/10.1016/j.chemosphere.2018.02.161.

    Article  PubMed  CAS  Google Scholar 

  100. Paul AG, Jones KC, Sweetman AJ. A first global production, emission, and environmental inventory for perfluorooctane sulfonate. Environ Sci Technol. 2009;43(2):386–92. https://doi.org/10.1021/es802216n.

    Article  PubMed  CAS  Google Scholar 

  101. Garg S, Kumar P, Mishra V, et al. A review on the sources, occurrence and health risks of per-/poly-fluoroalkyl substances (PFAS) arising from the manufacture and disposal of electric and electronic products. J Water Process Eng. 2020;38:101683. https://doi.org/10.1016/j.jwpe.2020.101683.

    Article  Google Scholar 

  102. Wang S, Huang J, Yang Y, et al. First report of a Chinese PFOS alternative overlooked for 30 years: its toxicity, persistence, and presence in the environment. Environ Sci Technol. 2013;47(18):10163–70. https://doi.org/10.1021/es401525n.

    Article  PubMed  CAS  Google Scholar 

  103. Zhang X, Lohmann R, Dassuncao C, et al. Source Attribution of poly- and perfluoroalkyl substances (PFASs) in surface waters from Rhode Island and the New York Metropolitan area. Environ Sci Technol Lett. 2016;3(9):316–21. https://doi.org/10.1021/acs.estlett.6b00255.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  104. Zhang B, He Y, Huang Y, et al. Novel and legacy poly- and perfluoroalkyl substances (PFASs) in indoor dust from urban, industrial, and e-waste dismantling areas: the emergence of PFAS alternatives in China. Environ Pollut (Barking, Essex: 1987). 2020;263(Pt A):114461. https://doi.org/10.1016/j.envpol.2020.114461.

    Article  CAS  Google Scholar 

  105. Per- and Polyfluorinated Substances (PFAS) Factsheet Centers for Disease Control and Prevention. Published online April 7, 2017. https://www.cdc.gov/biomonitoring/PFAS_FactSheet.html. Accessed 1 Sep 2020.

  106. Hill PJ, Taylor M, Goswami P, Blackburn RS. Substitution of PFAS chemistry in outdoor apparel and the impact on repellency performance. Chemosphere. 2017;181:500–7. https://doi.org/10.1016/j.chemosphere.2017.04.122.

    Article  PubMed  CAS  Google Scholar 

  107. Ko, Su Sen. Hairspray containing fluorocarbon compounds as additives. U.S. patent 4,044,121 filed March 11, 1976.

  108. Thomasz S, Helton M, Matteson M. Project Management in the Face of Emerging Contaminants. The Military Engineer. 2018;110(714):53–5.

    Google Scholar 

  109. Noyes AV, Severns JC, Harman FA, et al. Composition comprising a silicone/perfluoro surfactant mixture for treating or cleaning fabrics. U.S. patent 7,439,216 B2 filed October 21, 2008.

  110. Lau C, Anitole K, Hodes C, Lai D, Pfahles-Hutchens A, Seed J. Perfluoroalkyl acids: a review of monitoring and toxicological findings. Toxicol Sci. 2007;99(2):366–94. https://doi.org/10.1093/toxsci/kfm128.

    Article  PubMed  CAS  Google Scholar 

  111. U.S. EPA Chemistry Dashboard, PFAS MASTER Chemicals. https://comptox.epa.gov/dashboard/. Accessed 2 Feb 2020. 

  112. Newton SR, Sobus JR, Ulrich EM, et al. Examining NTA performance and potential using fortified and reference house dust as part of EPA’s Non-Targeted Analysis Collaborative Trial (ENTACT). Anal Bioanal Chem. 2020;412(18):4221–33. https://doi.org/10.1007/s00216-020-02658-w.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Liu Y, D’Agostino LA, Qu G, Jiang G, Martin JW. High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. TrAC Trends Anal Chem. 2019;121:115420. https://doi.org/10.1016/j.trac.2019.02.021.

    Article  CAS  Google Scholar 

  114. Koelmel JP, Paige MK, Aristizabal-Henao JJ, et al. Toward comprehensive per- and polyfluoroalkyl substances annotation using FluoroMatch Software and intelligent high-resolution tandem mass spectrometry acquisition. Anal Chem. 2020;92(16):11186–94. https://doi.org/10.1021/acs.analchem.0c01591.

    Article  PubMed  CAS  Google Scholar 

  115. Nason SL, Koelmel J, Zuverza-Mena N, et al. Software comparison for nontargeted analysis of PFAS in AFFF-contaminated soil. J Am Soc Mass Spectrom. Published online November 23. 2020. https://doi.org/10.1021/jasms.0c00261.

  116. Djoumbou-Feunang Y, Pon A, Karu N, et al. CFM-ID 3.0: significantly improved ESI-MS/MS prediction and compound identification. Metabolites. 2019;9(4):72. https://doi.org/10.3390/metabo9040072.

    Article  PubMed Central  CAS  Google Scholar 

  117. Ruttkies C, Neumann S, Posch S. Improving MetFrag with statistical learning of fragment annotations. BMC Bioinformatics. 2019;20(1):376. https://doi.org/10.1186/s12859-019-2954-7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  118. und Herausgeber M, ed. Standard 100 by OEKO-TEX. Published online 2021. https://www.oekotex.com/importedmedia/downloadfiles/STANDARD_100_by_OEKO-TEX_R__-_Standard_en.pdf. Accessed 3 Mar 2021.

  119. Sustainability Assured for Carpet. Published online 2015.. https://d2evkimvhatqav.cloudfront.net/documents/SU_NSF140_Carpet_Standard_Insert_LT_EN_LSU27020812.pdf. Accessed 3 Mar 2021.

  120. OEKO-TEX New Regulations 2021. Published online May 1, 2021. https://www.oekotex.com/fileadmin/user_upload/Aktuelles/Pressemitteilungen/2021/OT_PR_New_Regulations_2021_EN_01.pdf. Accessed 22 Jul 2021. 

  121. 121. Vallette J, Stamm R, Lent T. Eliminating Toxics in Carpet: Lessons for the Future of Recycling. Healthy Building Network; 2017:1-38. https://healthybuilding.net/reports/1-eliminating-toxics-in-carpet-lessons-for-the-future-ofrecycling. Accessed 22 Jul 2021.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krystal J. Godri Pollitt.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Susceptibility Factors in Environmental Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savvaides, T., Koelmel, J.P., Zhou, Y. et al. Prevalence and Implications of Per- and Polyfluoroalkyl Substances (PFAS) in Settled Dust. Curr Envir Health Rpt 8, 323–335 (2021). https://doi.org/10.1007/s40572-021-00326-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-021-00326-4

Keywords

Navigation