Skip to main content

Advertisement

Log in

The gut microbiome and arsenic-induced disease—iAs metabolism in mice

  • Metals and Health (R Fry, Section Editor)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review summarizes inorganic arsenic (iAs) metabolism and toxicity in mice and the gut microbiome and how iAs and the gut microbiome interact to induce diseases.

Recent Findings

Recently, a variety of studies have started to reveal the interactions between iAs and the gut microbiome. Evidence shows that gut bacteria can influence iAs biotransformation and disease risks. The gut microbiome can directly metabolize iAs, and it can also indirectly be involved in iAs metabolism through the host, such as altering iAs absorption, cofactors, and genes related to iAs metabolism. Many factors, such as iAs metabolism influenced by the gut microbiome, and microbiome metabolites perturbed by iAs can lead to different disease risks.

Summary

iAs is a widespread toxic metalloid in environment, and iAs toxicity has become a global health issue. iAs is subject to metabolic reactions after entering the host body, including methylation, demethylation, oxidation, reduction, and thiolation. Different arsenic species, including trivalent and pentavalent forms and inorganic and organic forms, determine their toxicity. iAs poisoning is predominately caused by contaminated drinking water and food, and chronic arsenic toxicity can cause various diseases. Therefore, studies of iAs metabolism are important for understanding iAs associated disease risks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Humans, I.W.G.o.t.E.o.C.R.t., W.H. Organization, and I.A.f.R.o. Cancer. Some drinking-water disinfectants and contaminants, including arsenic, vol. 84. Lyon: IARC; 2004.

    Google Scholar 

  2. Nordstrom DK. Worldwide occurrences of arsenic in ground water. In: American Association for the Advancement of Science; 2002.

    Google Scholar 

  3. Authority EFS. Dietary exposure to inorganic arsenic in the European population. EFSA J. 2014;12(3):3597.

    Google Scholar 

  4. Taylor V, et al. Human exposure to organic arsenic species from seafood. Sci Total Environ. 2017;580:266–82.

    Article  CAS  PubMed  Google Scholar 

  5. Vahter M, Concha G. Role of metabolism in arsenic toxicity. Pharmacol Toxicol. 2001;89(1):1–5.

    Article  CAS  PubMed  Google Scholar 

  6. Cohen SM, et al. Evaluation of the carcinogenicity of inorganic arsenic. Crit Rev Toxicol. 2013;43(9):711–52.

    Article  CAS  PubMed  Google Scholar 

  7. Vahter M. Metabolism of arsenic. Biol Environ Effects Ars. 1983;6:171–98.

    Article  CAS  Google Scholar 

  8. Kapaj S, et al. Human health effects from chronic arsenic poisoning–a review. J Environ Sci Health A. 2006;41(10):2399–428.

    Article  CAS  Google Scholar 

  9. Kuo C-C, et al. The association of arsenic metabolism with cancer, cardiovascular disease, and diabetes: a systematic review of the epidemiological evidence. Environ Health Perspect. 2017;125(8):087001.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cheng T-J, Ke D-S, Guo H-R. The association between arsenic exposure from drinking water and cerebrovascular disease mortality in Taiwan. Water Res. 2010;44(19):5770–6.

    Article  CAS  PubMed  Google Scholar 

  11. Rahman M, et al. A prospective cohort study of stroke mortality and arsenic in drinking water in Bangladeshi adults. BMC Public Health. 2014;14(1):174.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Watanabe T, Hirano S. Metabolism of arsenic and its toxicological relevance. Arch Toxicol. 2013;87(6):969–79.

    Article  CAS  PubMed  Google Scholar 

  13. Hirano S, et al. Difference in uptake and toxicity of trivalent and pentavalent inorganic arsenic in rat heart microvessel endothelial cells. Arch Toxicol. 2003;77(6):305–12.

    Article  CAS  PubMed  Google Scholar 

  14. Healy SM, et al. Enzymatic methylation of arsenic compounds: V. arsenite methyltransferase activity in tissues of mice. Toxicol Appl Pharmacol. 1998;148(1):65–70.

    Article  CAS  PubMed  Google Scholar 

  15. Uhlon M, Fagerberg L, Hallstrom B. Proteomics. Tissue-based map of the human proteome. Science. 2015;347(6220):1260419.

    Article  Google Scholar 

  16. Liu Z, et al. Arsenite transport by mammalian aquaglyceroporins AQP7 and AQP9. Proc Natl Acad Sci. 2002;99(9):6053–8.

    Article  CAS  PubMed  Google Scholar 

  17. Meng Y-L, Liu Z, Rosen BP. As (III) and Sb (III) uptake by GlpF and efflux by ArsB in Escherichia coli. J Biol Chem. 2004;279(18):18334–41.

    Article  CAS  PubMed  Google Scholar 

  18. Rosenberg H, Gerdes R, Chegwidden K. Two systems for the uptake of phosphate in Escherichia coli. J Bacteriol. 1977;131(2):505–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cullen WR. Chemical Mechanism of Arsenic Biomethylation. Chem Res Toxicol. 2014;27(4):457–61.

    Article  CAS  PubMed  Google Scholar 

  20. Challenger F. Biological methylation. Chem Rev. 1945;36(3):315–61.

    Article  CAS  Google Scholar 

  21. Dheeman DS, et al. Pathway of human AS3MT arsenic methylation. Chem Res Toxicol. 2014;27(11):1979–89 This article proposed a new and detailed pathway of arsenic methylation and briefly summarized Challenger pathway and Hayakawa pathway.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hayakawa T, et al. A new metabolic pathway of arsenite: arsenic–glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol. 2005;79(4):183–91.

    Article  CAS  PubMed  Google Scholar 

  23. Lin S, et al. A NovelS-adenosyl-L-methionine: arsenic (III) methyltransferase from rat liver cytosol. J Biol Chem. 2002;277(13):10795–803.

    Article  CAS  PubMed  Google Scholar 

  24. Chowdhury UK, et al. Glutathione-S-transferase-omega [MMA (V) reductase] knockout mice: enzyme and arsenic species concentrations in tissues after arsenate administration. Toxicol Appl Pharmacol. 2006;216(3):446–57.

    Article  CAS  PubMed  Google Scholar 

  25. Radabaugh TR, et al. Arsenate reductase II. Purine nucleoside phosphorylase in the presence of dihydrolipoic acid Is a route for reduction of arsenate to arsenite in mammalian systems. Chem Res Toxicol. 2002;15(5):692–8.

    Article  CAS  PubMed  Google Scholar 

  26. Naranmandura H, et al. Arsenic metabolism and thioarsenicals in hamsters and rats. Chem Res Toxicol. 2007;20(4):616–24.

    Article  CAS  PubMed  Google Scholar 

  27. Hansen HR, et al. Sulfur-containing arsenical mistaken for dimethylarsinous acid [DMA (III)] and identified as a natural metabolite in urine: major implications for studies on arsenic metabolism and toxicity. Chem Res Toxicol. 2004;17(8):1086–91.

    Article  CAS  PubMed  Google Scholar 

  28. Raab A, et al. Pentavalent arsenic can bind to biomolecules. Angew Chem Int Ed. 2007;46(15):2594–7.

    Article  CAS  Google Scholar 

  29. Fan C, et al. Thiolation in arsenic metabolism: a chemical perspective. Metallomics. 2018;10(10):1368–82.

    Article  CAS  PubMed  Google Scholar 

  30. Shen S, et al. Arsenic binding to proteins. Chem Rev. 2013;113(10):7769–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Drobna Z, et al. Disruption of the arsenic (+ 3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate. Chem Res Toxicol. 2009;22(10):1713–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Styblo M, et al. Comparative toxicity of trivalent and pentavalent inorganic and methylated arsenicals in rat and human cells. Arch Toxicol. 2000;74(6):289–99.

    Article  CAS  PubMed  Google Scholar 

  33. Naranmandura H, Ibata K, Suzuki KT. Toxicity of dimethylmonothioarsinic acid toward human epidermoid carcinoma A431 cells. Chem Res Toxicol. 2007;20(8):1120–5.

    Article  CAS  PubMed  Google Scholar 

  34. Kim Y-T, et al. Kinetics of dimethylated thioarsenicals and the formation of highly toxic dimethylmonothioarsinic acid in environment. Environ Sci Technol. 2016;50(21):11637–45.

    Article  CAS  PubMed  Google Scholar 

  35. Rosen BP. Biochemistry of arsenic detoxification. FEBS Lett. 2002;529(1):86–92.

    Article  CAS  PubMed  Google Scholar 

  36. Willsky GR, Malamy MH. Effect of arsenate on inorganic phosphate transport in Escherichia coli. J Bacteriol. 1980;144(1):366–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Qin J, et al. Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci. 2006;103(7):2075–80.

    Article  CAS  PubMed  Google Scholar 

  38. Coryell M, Roggenbeck BA, Walk ST. The Human Gut Microbiome’s Influence on Arsenic Toxicity. Curr Pharmacol Rep. 2019;5(6):491–504 This review article provided a detalied discussion about Bacterial Arsenic Metabolism.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Neyt C, et al. Virulence and arsenic resistance in Yersiniae. J Bacteriol. 1997;179(3):612–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chen J, Bhattacharjee H, Rosen BP. ArsH is an organoarsenical oxidase that confers resistance to trivalent forms of the herbicide monosodium methylarsenate and the poultry growth promoter roxarsone. Mol Microbiol. 2015;96(5):1042–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Chen J, et al. ArsP: a methylarsenite efflux permease. Mol Microbiol. 2015;98(4):625–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. McDermott TR, Stolz JF, Oremland RS. Arsenic and the gastrointestinal tract microbiome. Environ Microbiol Rep. 2020;12(2):136–59 This review article discussed interactions between microbes and arsenic, particularly about genes of arsenic metabolism in bacteria.

    Article  PubMed  Google Scholar 

  43. Yoshinaga M, Rosen BP. AC· As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters. Proc Natl Acad Sci. 2014;111(21):7701–6.

    Article  CAS  PubMed  Google Scholar 

  44. Lett M-C, et al. Unified nomenclature for genes involved in prokaryotic aerobic arsenite oxidation. J Bacteriol. 2012;194(2):207–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu G, et al. A periplasmic arsenite-binding protein involved in regulating arsenite oxidation. Environ Microbiol. 2012;14(7):1624–34.

    Article  CAS  PubMed  Google Scholar 

  46. Kashyap DR, et al. Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol. 2006;188(3):1081–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Koechler S, et al. Multiple controls affect arsenite oxidase gene expression in Herminiimonas arsenicoxydans. BMC Microbiol. 2010;10(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zargar K, et al. Identification of a novel arsenite oxidase gene, arxA, in the haloalkaliphilic, arsenite-oxidizing bacterium Alkalilimnicola ehrlichii strain MLHE-1. J Bacteriol. 2010;192(14):3755–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Murphy JN, Durbin KJ, Saltikov CW. Functional Roles of arcA, etrA, Cyclic AMP (cAMP)-cAMP Receptor Protein, and cya in the Arsenate Respiration Pathway in Shewanella sp. Strain ANA-3. J Bacteriol. 2009;191(3):1035–43.

    Article  CAS  PubMed  Google Scholar 

  50. Murphy JN, Saltikov CW. The ArsR repressor mediates arsenite-dependent regulation of arsenate respiration and detoxification operons of Shewanella sp. strain ANA-3. J Bacteriol. 2009;191(21):6722–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Murphy JN, Saltikov CW. The ArsR repressor mediates arsenite-dependent regulation of arsenate respiration and detoxification operons of Shewanella sp. Strain ANA-3. J Bacteriol. 2009;191(21):6722–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. DC. Rubin SS, et al. Arsenic thiolation and the role of sulfate-reducing bacteria from the human intestinal tract. Environ Health Perspect. 2014;122(8):817–22.

    Article  CAS  Google Scholar 

  53. Lu K, et al. Gut microbiome perturbations induced by bacterial infection affect arsenic biotransformation. Chem Res Toxicol. 2013;26(12):1893–903.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Lu K, et al. Gut microbiome phenotypes driven by host genetics affect arsenic metabolism. Chem Res Toxicol. 2014;27(2):172–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Coryell M, et al. The gut microbiome is required for full protection against acute arsenic toxicity in mouse models. Nat Commun. 2018;9(1):5424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Chi L, et al. Gut microbiome disruption altered the biotransformation and liver toxicity of arsenic in mice. Arch Toxicol. 2019;93(1):25–35 This article used conventional mice and gut microbiome-disrupted mice to explore the role of the gut microbiota in iAs biotransformation and its toxicity.

    Article  CAS  PubMed  Google Scholar 

  57. Zhou G-W, et al. Arsenic transformation mediated by gut microbiota affects the fecundity of Caenorhabditis elegans. Environ Pollut. 2020;260:113991.

    Article  CAS  PubMed  Google Scholar 

  58. Van de Wiele T, et al. Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils. Environ Health Perspect. 2010;118(7):1004–9.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Yu H, et al. Arsenic metabolism and toxicity influenced by ferric iron in simulated gastrointestinal tract and the roles of gut microbiota. Environ Sci Technol. 2016;50(13):7189–97.

    Article  CAS  PubMed  Google Scholar 

  60. Isokpehi RD, et al. Evaluative profiling of arsenic sensing and regulatory systems in the human microbiome project genomes. Microbiol Insights. 2014;7:MBI. S18076.

    Article  Google Scholar 

  61. Chen Y, et al. Functional gene arrays-based analysis of fecal microbiomes in patients with liver cirrhosis. BMC Genomics. 2014;15(1):753.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Coryell M, et al. The gut microbiome is required for full protection against acute arsenic toxicity in mouse models. Nat Commun. 2018;9(1):1–9.

    Article  Google Scholar 

  63. Selhub J. Homocysteine metabolism. Annu Rev Nutr. 1999;19(1):217–46.

    Article  CAS  PubMed  Google Scholar 

  64. Lin Y-C, et al. Association of plasma folate, vitamin B12 levels, and arsenic methylation capacity with developmental delay in preschool children in Taiwan. Arch Toxicol. 2019;93(9):2535–44.

    Article  CAS  PubMed  Google Scholar 

  65. Putnam EE, Goodman AL. B vitamin acquisition by gut commensal bacteria. PLoS Pathog. 2020;16(1):e1008208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gurwara S, et al. Dietary nutrients involved in one-carbon metabolism and colonic mucosa-associated gut microbiome in individuals with an endoscopically normal colon. Nutrients. 2019;11(3):613.

    Article  CAS  PubMed Central  Google Scholar 

  67. Howe CG, et al. Dietary B vitamin intake is associated with lower urinary monomethyl arsenic and oxidative stress marker 15-f2t-isoprostane among New Hampshire adults. J Nutr. 2017;147(12):2289–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Gamble MV, et al. Folate and arsenic metabolism: a double-blind, placebo-controlled folic acid–supplementation trial in Bangladesh. Am J Clin Nutr. 2006;84(5):1093–101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Peters BA, et al. Folic acid and creatine as therapeutic approaches to lower blood arsenic: a randomized controlled trial. Environ Health Perspect. 2015;123(12):1294–301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mendez MA, et al. B-vitamins influence arsenic metabolism in Mexico. Hoboken: Wiley Online Library; 2013.

    Book  Google Scholar 

  71. Wang Y, et al. Effects of exogenous glutathione on arsenic burden and NO metabolism in brain of mice exposed to arsenite through drinking water. Arch Toxicol. 2011;85(3):177–84.

    Article  CAS  PubMed  Google Scholar 

  72. Paul DS, et al. Molecular mechanisms of the diabetogenic effects of arsenic: inhibition of insulin signaling by arsenite and methylarsonous acid. Environ Health Perspect. 2007;115(5):734–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Huang M, Douillet C, Stýblo M. Arsenite and its trivalent methylated metabolites inhibit glucose-stimulated calcium influx and insulin secretion in murine pancreatic islets. Arch Toxicol. 2019;93(9):2525–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dheer R, et al. Arsenic induces structural and compositional colonic microbiome change and promotes host nitrogen and amino acid metabolism. Toxicol Appl Pharmacol. 2015;289(3):397–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Seltenrich N. Arsenic and diabetes: assessing risk at low-to-moderate exposures. Environ Health Perspect. 2018;126(4):044002.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Tseng C-H. Arsenic methylation, urinary arsenic metabolites and human diseases: current perspective. J Environ Sci Health C. 2007;25(1):1–22.

    Article  CAS  Google Scholar 

  77. Wei B, et al. Effects of arsenic methylation and metabolism on the changes of arsenic-related skin lesions. Environ Sci Pollut Res. 2018;25(24):24394–402.

    Article  CAS  Google Scholar 

  78. Lu K, et al. Arsenic exposure perturbs the gut microbiome and its metabolic profile in mice: an integrated metagenomics and metabolomics analysis. Environ Health Perspect. 2014;122(3):284–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Martin AM, et al. The gut microbiome regulates host glucose homeostasis via peripheral serotonin. Proc Natl Acad Sci. 2019;116(40):19802–4.

    Article  CAS  PubMed  Google Scholar 

  80. Caricilli AM, Saad MJ. The role of gut microbiota on insulin resistance. Nutrients. 2013;5(3):829–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Bunderson M, Coffin JD, Beall HD. Arsenic induces peroxynitrite generation and cyclooxygenase-2 protein expression in aortic endothelial cells: possible role in atherosclerosis. Toxicol Appl Pharmacol. 2002;184(1):11–8.

    Article  CAS  PubMed  Google Scholar 

  82. Ding W, Hudson LG, Liu KJ. Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes. Mol Cell Biochem. 2005;279(1-2):105–12.

    Article  CAS  PubMed  Google Scholar 

  83. Hu Y, et al. The role of reactive oxygen species in arsenic toxicity. Biomolecules. 2020;10(2):240.

    Article  CAS  PubMed Central  Google Scholar 

  84. Flora SJ, Mehta A, Gupta R. Prevention of arsenic-induced hepatic apoptosis by concomitant administration of garlic extracts in mice. Chem Biol Interact. 2009;177(3):227–33.

    Article  CAS  PubMed  Google Scholar 

  85. Chi L, et al. The effects of an environmentally relevant level of arsenic on the gut microbiome and its functional metagenome. Toxicol Sci. 2017;160(2):193–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Chattopadhyay S, et al. Apoptosis and necrosis in developing brain cells due to arsenic toxicity and protection with antioxidants. Toxicol Lett. 2002;136(1):65–76.

    Article  CAS  PubMed  Google Scholar 

  87. Simeonova PP, Luster MI. Mechanisms of arsenic carcinogenicity: genetic or epigenetic mechanisms? J Environ Pathol Toxicol Oncol. 2000;19(3):281–6.

    CAS  PubMed  Google Scholar 

Download references

Funding

This work was support in part by the NIH grant (R01ES024950), the UNC-Superfund Research Program funding (P42-ES-031007), and the University of North Carolina Center for Environmental Health and Susceptibility with the NIH grant (P30ES010126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kun Lu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Metals and Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Chi, L., Lai, Y. et al. The gut microbiome and arsenic-induced disease—iAs metabolism in mice. Curr Envir Health Rpt 8, 89–97 (2021). https://doi.org/10.1007/s40572-021-00305-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-021-00305-9

Keywords

Navigation