Skip to main content

Advertisement

Log in

Assessing the Public Health Implications of the Food Preservative Propylparaben: Has This Chemical Been Safely Used for Decades

  • Food, Health, and the Environment (KE Nachman and D Love, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose

Parabens are chemicals containing alkyl-esters of p-hydroxybenzoic acid, which give them antimicrobial, antifungal, and preservative properties. Propylparaben (PP) is one paraben that has been widely used in personal care products, cosmetics, pharmaceuticals, and food. In this review, we address the ongoing controversy over the safety of parabens, and PP specifically. These chemicals have received significant public attention after studies published almost 20 years ago suggested plausible associations between PP exposures and breast cancer.

Recent Findings

Here, we use key characteristics, a systematic approach to evaluate the endocrine disrupting properties of PP based on features of “known” endocrine disruptors, and consider whether its classification as a “weak” estrogen should alleviate public health concerns over human exposures. We also review the available evidence from rodent and human studies to illustrate how the large data gaps that exist in hazard assessments raise concerns about current evaluations by regulatory agencies that PP use is safe. Finally, we address the circular logic that is used to suggest that because PP has been used for several decades, it must be safe.

Summary

We conclude that inadequate evidence has been provided for the safe use of PP in food, cosmetics, and consumer products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DES:

Diethylstilbestrol

EDCs:

Endocrine disrupting chemicals

ER:

Estrogen receptor

FDA:

Food and Drug Administration

GRAS:

Generally recognized as safe

ICC:

Intra-class correlation coefficients

NICU:

Neonatal infant care units

NOAEL:

No observed adverse effect level

PP:

Propylparaben

SCCS:

Scientific Committee on Consumer Safety

TMIPH:

Tokyo Metropolitan Institute of Public Health

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kirchhof MG, de Gannes GC. The health controversies of parabens. Skin Therapy Lett. 2013;18(2):5–7.

    PubMed  Google Scholar 

  2. Darbre PD, Harvey PW. Paraben esters: review of recent studies of endocrine toxicity, absorption, esterase and human exposure, and discussion of potential human health risks. J Appl Toxicol. 2008;28(5):561–78.

    Article  CAS  Google Scholar 

  3. Darbre PD, Aljarrah A, Miller WR, Coldham NG, Sauer MJ, Pope GS. Concentrations of parabens in human breast tumours. J Appl Toxicol. 2004;24(1):5–13.

    Article  CAS  Google Scholar 

  4. • Darbre P. Underarm cosmetics and breast cancer. Journal of Applied Toxicology: An International Journal. 2003;23(2):89–95 This manuscript was one of the earliest to hypothesize that chemicals used in deodorants, including parabens, might bioaccumulate in nearby tissues, including the breast, ultimately contributing to breast cancer risk.

    Article  CAS  Google Scholar 

  5. Byford J, Shaw L, Drew M, Pope G, Sauer M, Darbre P. Oestrogenic activity of parabens in MCF7 human breast cancer cells. J Steroid Biochem Mol Biol. 2002;80(1):49–60.

    Article  CAS  Google Scholar 

  6. SCCS/1348/10 European Commission. “Scientific Committee on Consumer Safety.” Opinion on Parabens. COLIPA P82 (2010). Available from: https://ec.europa.eu/health/scientific_committees/consumer_safety/docs/sccs_o_041.pdf

  7. Golden R, Gandy J, Vollmer G. A review of the endocrine activity of parabens and implications for potential risks to human health. Crit Rev Toxicol. 2005;35(5):435–58.

    Article  CAS  Google Scholar 

  8. Bernauer U, Chaudhry Q, Degen G, Nielsen E, Platzek T, Rastogi S, et al. SCCS/1514/13: SCCS (scientific committee on consumer safety). Opinion on Parabens. 2013;3.

  9. Ye X, Bishop AM, Reidy JA, Needham LL, Calafat AM. Parabens as urinary biomarkers of exposure in humans. Environ Health Perspect. 2006;114(12):1843–6. https://doi.org/10.1289/ehp.9413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Smith KW, Braun JM, Williams PL, Ehrlich S, Correia KF, Calafat AM, et al. Predictors and variability of urinary paraben concentrations in men and women, including before and during pregnancy. Environ Health Perspect. 2012;120(11):1538–43. https://doi.org/10.1289/ehp.1104614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Majhi PD, Sharma A, Roberts AL, Daniele E, Majewski AR, Chuong LM, et al. Effects of benzophenone-3 and propylparaben on estrogen receptor-dependent R-loops and DNA damage in breast epithelial cells and mice. Environ Health Perspect. 2020;128(1):17002. https://doi.org/10.1289/ehp5221.

    Article  CAS  PubMed  Google Scholar 

  12. •• La Merrill MA, Vandenberg LN, Smith MT, Goodson W, Browne P, Patisaul HB, et al. Consensus on the key characteristics of endocrine-disrupting chemicals as a basis for hazard identification. Nat Rev Endocrinol. 2020;16(1):45–57. https://doi.org/10.1038/s41574-019-0273-8This manuscript provides a new way of evaluating and characterizing endocrine disrupting chemicals, and allows for the systematic organization of mechanistic data.

    Article  CAS  PubMed  Google Scholar 

  13. Matwiejczuk N, Galicka A, Brzóska MM. Review of the safety of application of cosmetic products containing parabens. J Appl Toxicol. 2020;40(1):176–210.

    Article  CAS  Google Scholar 

  14. Dweck AC. Natural preservatives. Cosmetics and toiletries. 2003;118(8):45–50.

    CAS  Google Scholar 

  15. Guo Y, Kannan K. A survey of phthalates and parabens in personal care products from the United States and its implications for human exposure. Environmental science & technology. 2013;47(24):14442–9.

    Article  CAS  Google Scholar 

  16. Soni M, Burdock G, Taylor SL, Greenberg N. Safety assessment of propyl paraben: a review of the published literature. Food Chem Toxicol. 2001;39(6):513–32.

    Article  CAS  Google Scholar 

  17. Rastogi S, Schouten A, De Kruijf N, Weijland J. Contents of methyl-, ethyl-, propyl-, butyl-and benzylparaben in cosmetic products. Contact Dermatitis. 1995;32(1):28–30.

    Article  CAS  Google Scholar 

  18. Guo Y, Wang L, Kannan K. Phthalates and parabens in personal care products from China: concentrations and human exposure. Arch Environ Contam Toxicol. 2014;66(1):113–9.

    Article  CAS  Google Scholar 

  19. Cashman AL, Warshaw EM. Parabens: a review of epidemiology, structure, allergenicity, and hormonal properties. Dermatitis. 2005;16(2):57–66.

    PubMed  Google Scholar 

  20. US FDA. Sec. 184.1670 Propylparaben. Department of Health & Human Services. 2019. Code of Federal Regulations; Title 21, Volume 3; 21CFR184.1670.

  21. Daniel J. Metabolic aspects of antioxidants and preservatives. Xenobiotica. 1986;16(10–11):1073–8.

    Article  CAS  Google Scholar 

  22. Liao C, Liu F, Kannan K. Occurrence of and dietary exposure to parabens in foodstuffs from the United States. Environ Sci Technol. 2013;47(8):3918–25. https://doi.org/10.1021/es400724s.

    Article  CAS  PubMed  Google Scholar 

  23. • Liao C, Chen L, Kannan K. Occurrence of parabens in foodstuffs from China and its implications for human dietary exposure. Environ Int. 2013;(57–58):68–74. https://doi.org/10.1016/j.envint.2013.04.001This study provides a shocking account of the range of foods that contain parabens, including non-processed foods, and evaluates the potential for food packaging materials to contribute to parabens detected in foodstuffs.

  24. Liao C, Kannan K. Concentrations and composition profiles of parabens in currency bills and paper products including sanitary wipes. Sci Total Environ. 2014;475:8–15.

    Article  CAS  Google Scholar 

  25. Gosetti F, Bolfi B, Robotti E, Manfredi M, Binotti M, Ferrero F, et al. Study of endocrine disrupting compound release from different medical devices through an on-line SPE UHPLC-MS/MS method. Anal Chim Acta. 2018;1042:141–54. https://doi.org/10.1016/j.aca.2018.07.028.

    Article  CAS  PubMed  Google Scholar 

  26. US FDA. Safety and effectiveness of health care antiseptics; topical antimicrobial drug products for over-the-counter human use. Final rule Federal register. 2017;82(242):60474–503.

    Google Scholar 

  27. Dodge LE, Kelley KE, Williams PL, Williams MA, Hernández-Díaz S, Missmer SA, et al. Medications as a source of paraben exposure. Reprod Toxicol. 2015;52:93–100.

    Article  CAS  Google Scholar 

  28. Hernández-Díaz S, Mitchell AA, Kelley KE, Calafat AM, Hauser R. Medications as a potential source of exposure to phthalates in the US population. Environ Health Perspect. 2009;117(2):185–9.

    Article  Google Scholar 

  29. Iribarne-Duran LM, Artacho-Cordon F, Pena-Caballero M, Molina-Molina JM, Jimenez-Diaz I, Vela-Soria F, et al. Presence of bisphenol A and parabens in a neonatal intensive care unit: an exploratory study of potential sources of exposure. Environ Health Perspect. 2019;127(11):117004. https://doi.org/10.1289/ehp5564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Vandenberg LN. Low dose effects challenge the evaluation of endocrine disrupting chemicals. Trends Food Sci Technol. 2019;84:58–61. https://doi.org/10.1016/j.tifs.2018.11.029.

    Article  CAS  Google Scholar 

  31. Vandenberg LN, Colborn T, Hayes TB, Heindel JJ, Jacobs DR Jr, Lee DH, et al. Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev. 2012;33(3):378–455.

    Article  CAS  Google Scholar 

  32. Abbas S, Greige-Gerges H, Karam N, Piet MH, Netter P, Magdalou J. Metabolism of parabens (4-hydroxybenzoic acid esters) by hepatic esterases and UDP-glucuronosyltransferases in man. Drug Metab Pharmacokinet. 2010;25(6):568–77. https://doi.org/10.2133/dmpk.dmpk-10-rg-013.

    Article  CAS  PubMed  Google Scholar 

  33. Shin M-Y, Shin C, Choi JW, Lee J, Lee S, Kim S. Pharmacokinetic profile of propyl paraben in humans after oral administration. Environ Int. 2019;130:104917. https://doi.org/10.1016/j.envint.2019.104917.

    Article  CAS  PubMed  Google Scholar 

  34. •• Boberg J, Taxvig C, Christiansen S, Hass U. Possible endocrine disrupting effects of parabens and their metabolites. Reprod Toxicol. 2010;30(2):301–12. https://doi.org/10.1016/j.reprotox.2010.03.011This comprehensive review makes the argument, using human exposure data and lab toxicity studies, that some parabens might exceed the activity of endogenous estrogens in the bodies of children.

    Article  CAS  PubMed  Google Scholar 

  35. Jewell C, Prusakiewicz JJ, Ackermann C, Payne NA, Fate G, Voorman R, et al. Hydrolysis of a series of parabens by skin microsomes and cytosol from human and minipigs and in whole skin in short-term culture. Toxicol Appl Pharmacol. 2007;225(2):221–8. https://doi.org/10.1016/j.taap.2007.08.002.

    Article  CAS  PubMed  Google Scholar 

  36. Kassotis CD, Vandenberg LN, Demeneix B, Porta M, Slama R, Trasande L. Endocrine disrupting chemicals: economic, regulatory, and policy implications. The lancet Diabetes & endocrinology. 2020;8(8):719–30.

    Article  CAS  Google Scholar 

  37. EC Regulation No 1223/2009 of the European Parliament and of the Council of 30 November 2009 on cosmetic products, (2009). Available from: https://ec.europa.eu/health/sites/health/files/endocrine_disruptors/docs/cosmetic_1223_2009_regulation_en.pdf

  38. 301 USC. Chapter 9—Federal Food, Drug, and Cosmetic Act.

  39. Zoeller RT, Bergman A, Becher G, Bjerregaard P, Bornman R, Brandt I, et al. A path forward in the debate over health impacts of endocrine disrupting chemicals. Environ Health. 2014;13(1):118. https://doi.org/10.1186/1476-069x-13-118.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Damstra T, Barlow S, Bergman A, Kavlock RJ, van der Kraak G, editors. Global assessment of the state-of-the-science of endocrine disruptors. Geneva: World Health Organization; 2002.

    Google Scholar 

  41. Zoeller RT, Brown TR, Doan LL, Gore AC, Skakkebaek NE, Soto AM, et al. Endocrine-disrupting chemicals and public health protection: a statement of principles from the Endocrine Society. Endocrinology. 2012;153:4097–110.

    Article  CAS  Google Scholar 

  42. Lemini C, Jaimez R, Avila ME, Franco Y, Larrea F, Lemus AE. In vivo and in vitro estrogen bioactivities of alkyl parabens. Toxicol Ind Health. 2003;19(2–6):69–79. https://doi.org/10.1191/0748233703th177oa.

    Article  CAS  PubMed  Google Scholar 

  43. Lemini C, Hernandez A, Jaimez R, Franco Y, Avila ME, Castell A. Morphometric analysis of mice uteri treated with the preservatives methyl, ethyl, propyl, and butylparaben. Toxicol Ind Health. 2004;20(6–10):123–32.

    Article  CAS  Google Scholar 

  44. Vo TT, Jeung EB. An evaluation of estrogenic activity of parabens using uterine calbindin-d9k gene in an immature rat model. Toxicol Sci. 2009;112(1):68–77. https://doi.org/10.1093/toxsci/kfp176.

    Article  CAS  PubMed  Google Scholar 

  45. Sivaraman L, Pouliot L, Wang B, Brodie T, Graziano M, McNerney ME. Safety assessment of propylparaben in juvenile rats. Regul Toxicol Pharmacol. 2018;92:370–81. https://doi.org/10.1016/j.yrtph.2017.12.009.

    Article  CAS  PubMed  Google Scholar 

  46. Autrup H, Barile FA, Berry SC, Blaauboer BJ, Boobis A, Bolt H, et al. Human exposure to synthetic endocrine disrupting chemicals (S-EDCs) is generally negligible as compared to natural compounds with higher or comparable endocrine activity. How to evaluate the risk of the S-EDCs? Chem Biol Interact. 2020;326:109099. https://doi.org/10.1016/j.cbi.2020.109099.

    Article  CAS  PubMed  Google Scholar 

  47. Borgert CJ, Baker SP, Matthews JC. Potency matters: thresholds govern endocrine activity. Regul Toxicol Pharmacol. 2013;67(1):83–8.

    Article  CAS  Google Scholar 

  48. Nohynek GJ, Borgert CJ, Dietrich D, Rozman KK. Endocrine disruption: fact or urban legend? Toxicol Lett. 2013;223(3):295–305. https://doi.org/10.1016/j.toxlet.2013.10.022.

    Article  CAS  PubMed  Google Scholar 

  49. Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, et al. EDC-2: the Endocrine Society's second scientific statement on endocrine-disrupting chemicals. Endocr Rev. 2015;36(6):E1–150. https://doi.org/10.1210/er.2015-1010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Diamanti-Kandarakis E, Bourguignon JP, Giudice LC, Hauser R, Prins GS, Soto AM, et al. Endocrine-disrupting chemicals: an Endocrine Society scientific statement. Endocr Rev. 2009;30(4):293–342. https://doi.org/10.1210/er.2009-0002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Grandjean P, Barouki R, Bellinger DC, Casteleyn L, Chadwick LH, Cordier S, et al. Life-long implications of developmental exposure to environmental stressors: new perspectives. Endocrinology. 2015;156(10):3408–15. https://doi.org/10.1210/en.2015-1350.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Heindel JJ, Vandenberg LN. Developmental origins of health and disease: a paradigm for understanding disease etiology and prevention. Curr Opin Pediatr. 2015;27(2):248–53.

    Article  CAS  Google Scholar 

  53. Borgert CJ, Sargent EV, Casella G, Dietrich DR, McCarty LS, Golden RJ. The human relevant potency threshold: reducing uncertainty by human calibration of cumulative risk assessments. Regul Toxicol Pharmacol. 2012;62(2):313–28. https://doi.org/10.1016/j.yrtph.2011.10.012.

    Article  CAS  PubMed  Google Scholar 

  54. Trasande L, Vandenberg LN, Bourguignon JP, Myers JP, Slama R, Vom Saal F, et al. Peer-reviewed and unbiased research, rather than 'sound science', should be used to evaluate endocrine-disrupting chemicals. J Epidemiol Community Health. 2016;70(11):1051–6. https://doi.org/10.1136/jech-2016-207841.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Strunck E, Stemmann N, Hopert A, Wunsche W, Frank K, Vollmer G. Relative binding affinity does not predict biological response to xenoestrogens in rat endometrial adenocarcinoma cells. J Steroid Biochem Mol Biol. 2000;74(3):73–81. https://doi.org/10.1016/s0960-0760(00)00092-3.

    Article  CAS  PubMed  Google Scholar 

  56. Hoover RN, Hyer M, Pfeiffer RM, Adam E, Bond B, Cheville AL, et al. Adverse health outcomes in women exposed in utero to diethylstilbestrol. N Engl J Med. 2011;365(14):1304–14. https://doi.org/10.1056/NEJMoa1013961.

    Article  CAS  PubMed  Google Scholar 

  57. Troisi R, Hatch EE, Titus L, Strohsnitter W, Gail MH, Huo D, et al. Prenatal diethylstilbestrol exposure and cancer risk in women. Environ Mol Mutagen. 2019;60(5):395–403. https://doi.org/10.1002/em.22155.

    Article  CAS  PubMed  Google Scholar 

  58. Soto AM, Vandenberg LN, Maffini MV, Sonnenschein C. Does breast cancer start in the womb? Basic Clin Pharmacol Toxicol. 2008;102(2):125–33.

    Article  CAS  Google Scholar 

  59. Heindel JJ, Skalla LA, Joubert BR, Dilworth CH, Gray KA. Review of developmental origins of health and disease publications in environmental epidemiology. Reprod Toxicol. 2017;68:34–48. https://doi.org/10.1016/j.reprotox.2016.11.011.

    Article  CAS  PubMed  Google Scholar 

  60. Cohn BA, Cirillo PM, Terry MB. DDT and breast Cancer: prospective study of induction time and susceptibility windows. J Natl Cancer Inst. 2019;111(8):803–10. https://doi.org/10.1093/jnci/djy198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Krigbaum NY, Cirillo PM, Flom JD, McDonald JA, Terry MB, Cohn BA. In utero DDT exposure and breast density before age 50. Reprod Toxicol. 2019;92:85–90. https://doi.org/10.1016/j.reprotox.2019.11.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. McDonald JA, Cirillo PM, Tehranifar P, Krigbaum NY, Engmann NJ, Cohn BA, et al. In utero DDT exposure and breast density in early menopause by maternal history of breast cancer. Reprod Toxicol. 2019;92:78–84. https://doi.org/10.1016/j.reprotox.2019.08.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Cohn BA, Wolff MS, Cirillo PM, Sholtz RI. DDT and breast cancer in young women: new data on the significance of age at exposure. Environ Health Perspect. 2007;115(10):1406–14. https://doi.org/10.1289/ehp.10260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cohn BA, La Merrill M, Krigbaum NY, Yeh G, Park JS, Zimmermann L, et al. DDT exposure in utero and breast Cancer. J Clin Endocrinol Metab. 2015;100(8):2865–72. https://doi.org/10.1210/jc.2015-1841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lopez-Cervantes M, Torres-Sanchez L, Tobias A, Lopez-Carrillo L. Dichlorodiphenyldichloroethane burden and breast cancer risk: a meta-analysis of the epidemiologic evidence. Environ Health Perspect. 2004;112(2):207–14. https://doi.org/10.1289/ehp.112-1241830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Calafat AM, Longnecker MP, Koch HM, Swan SH, Hauser R, Goldman LR, et al. Optimal exposure biomarkers for nonpersistent Chemicals in Environmental Epidemiology. Environ Health Perspect. 2015;123(7):A166–8. https://doi.org/10.1289/ehp.1510041.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Assens M, Frederiksen H, Petersen JH, Larsen T, Skakkebaek NE, Juul A, et al. Variations in repeated serum concentrations of UV filters, phthalates, phenols and parabens during pregnancy. Environ Int. 2019;123:318–24. https://doi.org/10.1016/j.envint.2018.11.047.

    Article  CAS  PubMed  Google Scholar 

  68. Sakhi AK, Sabaredzovic A, Papadopoulou E, Cequier E, Thomsen C. Levels, variability and determinants of environmental phenols in pairs of Norwegian mothers and children. Environ Int. 2018;114:242–51. https://doi.org/10.1016/j.envint.2018.02.037.

    Article  CAS  PubMed  Google Scholar 

  69. Pollack AZ, Perkins NJ, Sjaarda L, Mumford SL, Kannan K, Philippat C, et al. Variability and exposure classification of urinary phenol and paraben metabolite concentrations in reproductive-aged women. Environ Res. 2016;151:513–20. https://doi.org/10.1016/j.envres.2016.08.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dewalque L, Pirard C, Vandepaer S, Charlier C. Temporal variability of urinary concentrations of phthalate metabolites, parabens and benzophenone-3 in a Belgian adult population. Environ Res. 2015;142:414–23. https://doi.org/10.1016/j.envres.2015.07.015.

    Article  CAS  PubMed  Google Scholar 

  71. Vandenberg LN, Maffini MV, Schaeberle CM, Ucci AA, Sonnenschein C, Rubin BS, et al. Perinatal exposure to the xenoestrogen bisphenol-a induces mammary intraductal hyperplasias in adult CD-1 mice. Reprod Toxicol. 2008;26:210–9.

    Article  CAS  Google Scholar 

  72. Murray TJ, Maffini MV, Ucci AA, Sonnenschein C, Soto AM. Induction of mammary gland ductal hyperplasias and carcinoma in situ following fetal bisphenol A exposure. Reprod Toxicol. 2007;23(3):383–90. https://doi.org/10.1016/j.reprotox.2006.10.002.

    Article  CAS  PubMed  Google Scholar 

  73. Durando M, Kass L, Piva J, Sonnenschein C, Soto AM, Luque EH, et al. Prenatal bisphenol a exposure induces preneoplastic lesions in the mammary gland in Wistar rats. Environ Health Perspect. 2007;115:80–6.

    Article  CAS  Google Scholar 

  74. Acevedo N, Davis B, Schaeberle CM, Sonnenschein C, Soto AM. Perinatally administered bisphenol a as a potential mammary gland carcinogen in rats. Environ Health Perspect. 2013;121(9):1040–6. doi:https://doi.org/10.1289/ehp.1306734 [doi].

  75. Jones LP, Sampson A, Kang HJ, Kim HJ, Yi YW, Kwon SY, et al. Loss of BRCA1 leads to an increased sensitivity to Bisphenol A. Toxicol Lett. 199(3):261–8. https://doi.org/10.1016/j.toxlet.2010.09.008.

  76. Wadia PR, Vandenberg LN, Schaeberle CM, Rubin BS, Sonnenschein C, Soto AM. Perinatal bisphenol a exposure increases estrogen sensitivity of the mammary gland in diverse mouse strains. Environ Health Perspect. 2007;115(4):592–8.

    Article  CAS  Google Scholar 

  77. Betancourt AM, Eltoum IA, Desmond RA, Russo J, Lamartiniere CA. In utero exposure to bisphenol a shifts the window of susceptibility for mammary carcinogenesis in the rat. Environ Health Perspect. 2010;118(11):1614–9.

    Article  CAS  Google Scholar 

  78. Lamartiniere CA, Jenkins S, Betancourt AM, Wang J, Russo J. Exposure to the endocrine disruptor bisphenol A alters susceptibility for mammary cancer. Horm Mol Biol Clin Investig. 2011;5(2):45–52. https://doi.org/10.1515/HMBCI.2010.075.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Vandenberg LN, Prins GS. Clarity in the face of confusion: new studies tip the scales on bisphenol a (BPA). Andrology. 2016;4(4):561–4. https://doi.org/10.1111/andr.12219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vandenberg LN, Hunt PA, Gore AC. Endocrine disruptors and the future of toxicology testing - lessons from CLARITY-BPA. Nat Rev Endocrinol. 2019;15(6):366–74. https://doi.org/10.1038/s41574-019-0173-y.

    Article  CAS  PubMed  Google Scholar 

  81. Oishi S. Effects of propyl paraben on the male reproductive system. Food Chem Toxicol. 2002;40(12):1807–13. https://doi.org/10.1016/s0278-6915(02)00204-1.

    Article  CAS  PubMed  Google Scholar 

  82. Gazin V, Marsden E, Marguerite F. Oral propylparaben administration to juvenile male Wistar rats did not induce toxicity in reproductive organs. Toxicol Sci. 2013;136(2):392–401. https://doi.org/10.1093/toxsci/kft211.

    Article  CAS  PubMed  Google Scholar 

  83. Prins GS, Patisaul HB, Belcher SM, Vandenberg LN. CLARITY-BPA academic laboratory studies identify consistent low-dose bisphenol a effects on multiple organ systems. Basic Clin Pharmacol Toxicol. 2019;125(Suppl 3):14–31. https://doi.org/10.1111/bcpt.13125.

    Article  CAS  PubMed  Google Scholar 

  84. Vandenberg LN, Ehrlich S, Belcher SM, Ben-Jonathan N, Dolinoy DC, Hugo ER, et al. Low dose effects of bisphenol A: an integrated review of in vitro, laboratory animal and epidemiology studies. Endocrine Disruptors. 2013;1:e26490.

    Article  Google Scholar 

  85. Needham LL, Calafat AM, Barr DB. Assessing developmental toxicant exposures via biomonitoring. Basic Clin Pharmacol Toxicol. 2008;102:100–8.

    Article  CAS  Google Scholar 

  86. Nguyen VK, Kahana A, Heidt J, Polemi K, Kvasnicka J, Jolliet O, et al. A comprehensive analysis of racial disparities in chemical biomarker concentrations in United States women, 1999-2014. Environ Int. 2020;137:105496. https://doi.org/10.1016/j.envint.2020.105496.

    Article  CAS  PubMed  Google Scholar 

  87. •• Calafat AM, Ye X, Wong LY, Bishop AM, Needham LL. Urinary concentrations of four parabens in the U.S. population: NHANES 2005–2006. Environ Health Perspect. 2010;118(5):679–85. https://doi.org/10.1289/ehp.0901560This study demonstrates that there are sex, age, and ethnic/racial disparities in exposures to propylparaben in the US population, using the US CDC’s national biomonitoring study.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Barr L, Metaxas G, Harbach CA, Savoy LA, Darbre PD. Measurement of paraben concentrations in human breast tissue at serial locations across the breast from axilla to sternum. J Appl Toxicol. 2012;32(3):219–32. https://doi.org/10.1002/jat.1786.

    Article  CAS  PubMed  Google Scholar 

  89. Harvey PW, Everett DJ. Parabens detection in different zones of the human breast: consideration of source and implications of findings. J Appl Toxicol. 2012;32(5):305–9. https://doi.org/10.1002/jat.2743.

    Article  CAS  PubMed  Google Scholar 

  90. Meeker JD, Yang T, Ye X, Calafat AM, Hauser R. Urinary concentrations of parabens and serum hormone levels, semen quality parameters, and sperm DNA damage. Environ Health Perspect. 2011;119(2):252–7. https://doi.org/10.1289/ehp.1002238.

    Article  CAS  PubMed  Google Scholar 

  91. Jurewicz J, Radwan M, Wielgomas B, Dziewirska E, Karwacka A, Klimowska A, et al. Human semen quality, sperm DNA damage, and the level of reproductive hormones in relation to urinary concentrations of parabens. J Occup Environ Med. 2017;59(11):1034–40. https://doi.org/10.1097/jom.0000000000001106.

    Article  CAS  PubMed  Google Scholar 

  92. Adoamnei E, Mendiola J, Monino-Garcia M, Vela-Soria F, Iribarne-Duran LM, Fernandez MF, et al. Urinary concentrations of parabens and reproductive parameters in young men. Sci Total Environ. 2018;621:201–9. https://doi.org/10.1016/j.scitotenv.2017.11.256.

    Article  CAS  PubMed  Google Scholar 

  93. Wen Q, Zhou Y, Wang Y, Li J, Zhao H, Liao J, et al. Association between urinary paraben concentrations and gestational weight gain during pregnancy. J Expo Sci Environ Epidemiol. 2020;30:845–55. https://doi.org/10.1038/s41370-020-0205-7.

    Article  CAS  PubMed  Google Scholar 

  94. Bellavia A, Chiu YH, Brown FM, Minguez-Alarcon L, Ford JB, Keller M, et al. Urinary concentrations of parabens mixture and pregnancy glucose levels among women from a fertility clinic. Environ Res. 2019;168:389–96. https://doi.org/10.1016/j.envres.2018.10.009.

    Article  CAS  PubMed  Google Scholar 

  95. Messerlian C, Mustieles V, Minguez-Alarcon L, Ford JB, Calafat AM, Souter I, et al. Preconception and prenatal urinary concentrations of phenols and birth size of singleton infants born to mothers and fathers from the environment and reproductive health (EARTH) study. Environ Int. 2018;114:60–8. https://doi.org/10.1016/j.envint.2018.02.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Geer LA, Pycke BFG, Waxenbaum J, Sherer DM, Abulafia O, Halden RU. Association of birth outcomes with fetal exposure to parabens, triclosan and triclocarban in an immigrant population in Brooklyn, New York. Journal of hazardous materials. 2017;323(Pt A):177–83. https://doi.org/10.1016/j.jhazmat.2016.03.028.

    Article  CAS  PubMed  Google Scholar 

  97. Watkins DJ, Ferguson KK, Anzalota Del Toro LV, Alshawabkeh AN, Cordero JF, Meeker JD. Associations between urinary phenol and paraben concentrations and markers of oxidative stress and inflammation among pregnant women in Puerto Rico. Int J Hyg Environ Health. 2015;218(2):212–9. https://doi.org/10.1016/j.ijheh.2014.11.001.

    Article  CAS  PubMed  Google Scholar 

  98. Kolatorova L, Vitku J, Hampl R, Adamcova K, Skodova T, Simkova M, et al. Exposure to bisphenols and parabens during pregnancy and relations to steroid changes. Environ Res. 2018;163:115–22. https://doi.org/10.1016/j.envres.2018.01.031.

    Article  CAS  PubMed  Google Scholar 

  99. Aker AM, Johns L, McElrath TF, Cantonwine DE, Mukherjee B, Meeker JD. Associations between maternal phenol and paraben urinary biomarkers and maternal hormones during pregnancy: a repeated measures study. Environ Int. 2018;113:341–9. https://doi.org/10.1016/j.envint.2018.01.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Fisher JS, Turner KJ, Brown D, Sharpe RM. Effect of neonatal exposure to estrogenic compounds on development of the excurrent ducts of the rat testis through puberty to adulthood. Environ Health Perspect. 1999;107(5):397–405.

    Article  CAS  Google Scholar 

  101. Yu Y, Li W, Lu S, Wu S, Wang F, Tse LA, et al. Urinary parabens in adults from South China: implications for human exposure and health risks. Ecotoxicol Environ Saf. 2019;182:109419.

    Article  CAS  Google Scholar 

  102. Shirai S, Suzuki Y, Yoshinaga J, Shiraishi H, Mizumoto Y. Urinary excretion of parabens in pregnant Japanese women. Reprod Toxicol. 2013;35:96–101. https://doi.org/10.1016/j.reprotox.2012.07.004.

    Article  CAS  PubMed  Google Scholar 

  103. Casas L, Fernandez MF, Llop S, Guxens M, Ballester F, Olea N, et al. Urinary concentrations of phthalates and phenols in a population of Spanish pregnant women and children. Environ Int. 2011;37(5):858–66.

    Article  CAS  Google Scholar 

  104. Pycke BF, Geer LA, Dalloul M, Abulafia O, Halden RU. Maternal and fetal exposure to parabens in a multiethnic urban U.S. population. Environ Int. 2015;84:193–200. https://doi.org/10.1016/j.envint.2015.08.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Philippat C, Mortamais M, Chevrier C, Petit C, Calafat AM, Ye X, et al. Exposure to phthalates and phenols during pregnancy and offspring size at birth. Environ Health Perspect. 2012;120(3):464–70. https://doi.org/10.1289/ehp.1103634.

    Article  CAS  PubMed  Google Scholar 

  106. US centers for Disease Control & Prevention. Fourth National Report on human exposure to environmental chemicals, updated tables, January 2017. Centers for Disease Control and Prevention (CDC). 2017.

  107. Gosens I, Delmaar CJE, Ter Burg W, de Heer C, Schuur AG. Aggregate exposure approaches for parabens in personal care products: a case assessment for children between 0 and 3 years old. Journal of exposure science & environmental epidemiology. 2014;24(2):208–14. https://doi.org/10.1038/jes.2013.33.

    Article  CAS  Google Scholar 

  108. Cowan-Ellsberry CE, Robison SH. Refining aggregate exposure: example using parabens. Regul Toxicol Pharmacol. 2009;55(3):321–9. https://doi.org/10.1016/j.yrtph.2009.08.004.

    Article  CAS  PubMed  Google Scholar 

  109. Jackson LS. Chemical food safety issues in the United States: past, present, and future. J Agric Food Chem. 2009;57(18):8161–70.

    Article  CAS  Google Scholar 

  110. Maffini MV, Alger HM, Olson ED, Neltner TG. Looking back to look forward: a review of FDA’s food additives safety assessment and recommendations for modernizing its program. Compr Rev Food Sci Food Saf. 2013;12(4):439–53. https://doi.org/10.1111/1541-4337.12020.

    Article  PubMed  Google Scholar 

  111. Neltner TG, Alger HM, Leonard JE, Maffini MV. Data gaps in toxicity testing of chemicals allowed in food in the United States. Reprod Toxicol. 2013;42:85–94. https://doi.org/10.1016/j.reprotox.2013.07.023.

    Article  CAS  PubMed  Google Scholar 

  112. Neltner TG, Alger HM, O'Reilly JT, Krimsky S, Bero LA, Maffini MV. Conflicts of interest in approvals of additives to food determined to be generally recognized as safe: out of balance. JAMA Intern Med. 2013;173(22):2032–6. https://doi.org/10.1001/jamainternmed.2013.10559.

    Article  PubMed  Google Scholar 

  113. Neltner T, Maffini M. Generally recognized as secret: chemicals added to food in the United States. National Resources Defense Council; 2014.

    Google Scholar 

  114. Hayes TB. Atrazine has been used safely for 50 years? In: Elliott JE, Bishop CA, Morrissey CA, editors. Wildlife Ecotoxicology: Forensic Approaches. New York: Spring Science + Business Media, LLC; 2011. p. 301–24.

    Chapter  Google Scholar 

  115. Demeneix B, Vandenberg LN, Ivell R, Zoeller RT. Thresholds and endocrine disruptors: an endocrine society policy perspective. Journal of the Endocrine Society. 2020;4(10):bvaa085.

    Article  Google Scholar 

  116. Blair RM, Fang H, Branham WS, Hass BS, Dial SL, Moland CL, et al. The estrogen receptor relative binding affinities of 188 natural and xenochemicals: structural diversity of ligands. Toxicol Sci. 2000;54(1):138–53.

    Article  CAS  Google Scholar 

  117. Chen J, Ahn KC, Gee NA, Gee SJ, Hammock BD, Lasley BL. Antiandrogenic properties of parabens and other phenolic containing small molecules in personal care products. Toxicol Appl Pharmacol. 2007;221(3):278–84. https://doi.org/10.1016/j.taap.2007.03.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Wrobel AM, Gregoraszczuk EL. Actions of methyl-, propyl- and butylparaben on estrogen receptor-alpha and -beta and the progesterone receptor in MCF-7 cancer cells and non-cancerous MCF-10A cells. Toxicol Lett. 2014;230(3):375–81. https://doi.org/10.1016/j.toxlet.2014.08.012.

    Article  CAS  PubMed  Google Scholar 

  119. Wrobel AM, Gregoraszczuk EL. Action of methyl-, propyl- and butylparaben on GPR30 gene and protein expression, cAMP levels and activation of ERK1/2 and PI3K/Akt signaling pathways in MCF-7 breast cancer cells and MCF-10A non-transformed breast epithelial cells. Toxicol Lett. 2015;238(2):110–6. https://doi.org/10.1016/j.toxlet.2015.08.001.

    Article  CAS  PubMed  Google Scholar 

  120. van Meeuwen JA, van Son O, Piersma AH, de Jong PC, van den Berg M. Aromatase inhibiting and combined estrogenic effects of parabens and estrogenic effects of other additives in cosmetics. Toxicol Appl Pharmacol. 2008;230(3):372–82. https://doi.org/10.1016/j.taap.2008.03.002.

    Article  CAS  PubMed  Google Scholar 

  121. Khanna S, Dash PR, Darbre PD. Exposure to parabens at the concentration of maximal proliferative response increases migratory and invasive activity of human breast cancer cells in vitro. J Appl Toxicol. 2014;34(9):1051–9. https://doi.org/10.1002/jat.3003.

    Article  CAS  PubMed  Google Scholar 

  122. Kurata Y, Fukushima S, Hasegawa R, Hirose M, Shibata M, Shirai T, et al. Structure-activity relations in promotion of rat urinary bladder carcinogenesis by phenolic antioxidants. Japanese journal of cancer research : Gann. 1990;81(8):754–9. https://doi.org/10.1111/j.1349-7006.1990.tb02641.x.

    Article  CAS  PubMed  Google Scholar 

  123. Shaw J, de Catanzaro D. Estrogenicity of parabens revisited: impact of parabens on early pregnancy and an uterotrophic assay in mice. Reprod Toxicol. 2009;28(1):26–31. https://doi.org/10.1016/j.reprotox.2009.03.003.

    Article  CAS  PubMed  Google Scholar 

  124. Vo TT, Yoo YM, Choi KC, Jeung EB. Potential estrogenic effect(s) of parabens at the prepubertal stage of a postnatal female rat model. Reprod Toxicol. 2010;29(3):306–16. https://doi.org/10.1016/j.reprotox.2010.01.013.

    Article  CAS  PubMed  Google Scholar 

  125. Lee JH, Lee M, Ahn C, Kang HY, Tran DN, Jeung EB. Parabens accelerate ovarian dysfunction in a 4-vinylcyclohexene diepoxide-induced ovarian failure model. Int J Environ Res Public Health. 2017;14(2). https://doi.org/10.3390/ijerph14020161.

  126. Pollock T, Weaver RE, Ghasemi R, de Catanzaro D. Butyl paraben and propyl paraben modulate bisphenol a and estradiol concentrations in female and male mice. Toxicol Appl Pharmacol. 2017;325:18–24. https://doi.org/10.1016/j.taap.2017.04.001.

    Article  CAS  PubMed  Google Scholar 

  127. Vandenberg LN, Prins GS, Patisaul HB, Zoeller RT. The use and misuse of historical controls in regulatory toxicology: lessons from the CLARITY-BPA Study. Endocrinology. 2020;161(5):bqz014. https://doi.org/10.1210/endocr/bqz014.

    Article  PubMed  Google Scholar 

  128. Zoeller RT, Vandenberg LN. Assessing dose-response relationships for endocrine disrupting chemicals (EDCs): a focus on non-monotonicity. Environ Health. 2015;14(1):42. https://doi.org/10.1186/s12940-015-0029-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ferguson KK, Colacino JA, Lewis RC, Meeker JD. Personal care product use among adults in NHANES: associations between urinary phthalate metabolites and phenols and use of mouthwash and sunscreen. J Expo Sci Environ Epidemiol. 2017;27(3):326–32. https://doi.org/10.1038/jes.2016.27.

    Article  CAS  PubMed  Google Scholar 

  130. Pazos R, Palacios C, Campa A. Urinary paraben concentration and its association with serum triglyceride concentration in 2013-2014 NHANES participants: a cross-sectional study. J Environ Public Health. 2020;2020:8196014–6. https://doi.org/10.1155/2020/8196014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Arya S, Dwivedi AK, Alvarado L, Kupesic-Plavsic S. Exposure of U.S. population to endocrine disruptive chemicals (Parabens, Benzophenone-3, Bisphenol-A and Triclosan) and their associations with female infertility. Environmental Pollution. 2020;265:114763. https://doi.org/10.1016/j.envpol.2020.114763.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the members of the Vandenberg Lab for helpful feedback on this manuscript, including Klara Matouskova, Aastha Pokharel, and Joshua Mogus. The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The funders played no role in the writing of the report or in the decision to submit the article for publication.

Funding

This work was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health [Award Number U01ES026140].

Author information

Authors and Affiliations

Authors

Contributions

LNV developed the concept of the article, JB and LNV performed literature searches, and JB and LNV drafted and critically revised the text.

Corresponding author

Correspondence to Laura N. Vandenberg.

Ethics declarations

Grants Supporting the Writing of this Paper

The authors acknowledge support from the National Institute of Environmental Health Sciences of the National Institutes of Health (Award Number U01ES026140). The content of this manuscript is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the University of Massachusetts.

Conflict of Interest

LNV has received travel reimbursements from Universities, Governments, NGOs and Industry, to speak about endocrine-disrupting chemicals. JB has no conflicts to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Food, Health, and the Environment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandenberg, L.N., Bugos, J. Assessing the Public Health Implications of the Food Preservative Propylparaben: Has This Chemical Been Safely Used for Decades. Curr Envir Health Rpt 8, 54–70 (2021). https://doi.org/10.1007/s40572-020-00300-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-020-00300-6

Keywords

Navigation