Current Environmental Health Reports

, Volume 5, Issue 2, pp 233–243 | Cite as

An Integrated Socio-Environmental Model of Health and Well-Being: a Conceptual Framework Exploring the Joint Contribution of Environmental and Social Exposures to Health and Disease Over the Life Span

  • Hector A. Olvera AlvarezEmail author
  • Allison A. Appleton
  • Christina H. Fuller
  • Annie Belcourt
  • Laura D. Kubzansky
Food, Health, and the Environment (KE Nachman and D Love, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Food, Health, and the Environment


Purpose of the review

Environmental and social determinants of health often co-occur, particularly among socially disadvantaged populations, yet because they are usually studied separately, their joint effects on health are likely underestimated. Building on converging bodies of literature, we delineate a conceptual framework to address these issues.

Recent findings

Previous models provided a foundation for study in this area, and generated research pointing to additional important issues. These include a stronger focus on biobehavioral pathways, both positive and adverse health outcomes, and intergenerational effects. To accommodate the expanded set of issues, we put forward the Integrated Socio-Environmental Model of Health and Well-Being (ISEM), which examines how social and environmental factors combine and potentially interact, via multi-factorial pathways, to affect health and well-being over the life span. We then provide applied examples including the study of how food environments affect dietary behavior.


The ISEM provides a comprehensive, theoretically informed framework to guide future research on the joint contribution of social and environmental factors to health and well-being across the life span.


Total environment Social determinants Cumulative exposures Life course Health disparities 



This work was funded by the JPB Environmental Health Fellowship Program granted by The JPB Foundation and managed by the Harvard T.H. Chan School of Public Health. The authors thank the JPB fellows for the helpful discussion in developing the ideas put forward here. The authors also thank Nicolle Tulve (EPA), Rachel Morello-Frosch (UC-Berkeley), Madeleine Scammell (Boston University), and Jose Ricardo Suarez (SDSU) for their helpful comments on the manuscript.

Compliance with Ethical Standards

Conflict of Interest

Hector A. Olvera Alvarez, Allison A. Appleton, Christina H. Fuller, Annie Belcourt, and Laura D. Kubzansky declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Appleton AA, Holdsworth EA, Kubzansky LD. A systematic review of the interplay between social determinants and environmental exposures for early-life outcomes. Curr Environ Health Rep. 2016;3(3):287–301.PubMedCrossRefGoogle Scholar
  2. 2.
    Clougherty JE, Schmool JLC, Kubzansky LD. The role of non-chemical stressors in mediating socioeconomic susceptibility to environmental chemicals. Curr Environ Health Rep. 2014;1:302–13. Scholar
  3. 3.
    U. S. Department of Health and Human Services NIoH, National Institute of Environmental Health Sciences. Advancing science, improving health: a plan for environmental health research. Bethesda: US Government Printing Office; 2012.Google Scholar
  4. 4.
    Payne-Sturges DC, Korfmacher KS, Cory-Slechta DA, Jimenez M, Symanski E, Carr Shmool JL, et al. Engaging communities in research on cumulative risk and social stress-environment interactions: lessons learned from EPA’s STAR program. Environ Justice. 2015;8(6):203–12.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Cascio WE. Proposed pathophysiologic framework to explain some excess cardiovascular death associated with ambient air particle pollution: insights for public health translation. Biochim Biophys Acta. 2016;1860(12):2869–79.PubMedCrossRefGoogle Scholar
  6. 6.
    Bedimo-Rung AL, Mowen AJ, Cohen DA. The significance of parks to physical activity and public health: a conceptual model. Am J Prev Med. 2005;28(2 Suppl 2):159–68.PubMedCrossRefGoogle Scholar
  7. 7.
    • Nusslock R, Miller GE. Early-life adversity and physical and emotional health across the lifespan: a neuroimmune network hypothesis. Biol Psychiatry. 2016;80(1):23–32. Proposes a detailed framework of biological mechanisims relevant to the connection between social and physical environments. PubMedCrossRefGoogle Scholar
  8. 8.
    Repetti RL, Taylor SE, Seeman TE. Risky families: family social environments and the mental and physical health of offspring. Psychol Bull. 2002;128(2):330–66.PubMedCrossRefGoogle Scholar
  9. 9.
    Beals J, Manson SM, Whitesell NR, Spicer P, Novins DK, Mitchell CM. Prevalence of DSM-IV disorders and attendant help-seeking in two American Indian reservation populations. Arch Gen Psychiatry. 2005;62:99–108.PubMedCrossRefGoogle Scholar
  10. 10.
    •• Morello-Frosch R, Shenassa ED. The environmental “riskscape” and social inequality: implications for explaining maternal and child health disparities. Environ Health Perspect. 2006;114(8):1150–3. Provides a streamlined framework for evaluating joint effects between environmental and social factors. PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    •• Tulve N. Development of a conceptual framework depicting a childs total (built, natural, social) environment in order to optimize health and well-being. J Environ Health Sci. 2016;2(2):1–8. Relies on a systems-based approach to delineate a comprehensive framework for examining joint exposures to social and environmental factors. CrossRefGoogle Scholar
  12. 12.
    Gravlee CC. How race becomes biology: embodiment of social inequality. Am J Phys Anthropol. 2009;139(1):47–57.PubMedCrossRefGoogle Scholar
  13. 13.
    Juarez PD, Matthews-Juarez P, Hood DB, Im W, Levine RS, Kilbourne BJ, et al. The public health exposome: a population-based, exposure science approach to health disparities research. Int J Environ Res Public Health. 2014;11(12):12866–95.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Diez Roux AV. Conceptual approaches to the study of health disparities. Annu Rev Public Health. 2012;33:41–58.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Diez Roux AV, Mair C. Neighborhoods and health. Ann N Y Acad Sci. 2010;1186(1):125–45.PubMedCrossRefGoogle Scholar
  16. 16.
    • Clougherty JE, Kubzansky LD. A framework for examining social stress and susceptibility to air pollution in respiratory health. Environ Health Perspect. 2009;117(9):1351–8. It provides and applied example of one existing framework. PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Kleinman A. Patients and healers in the context of culture: an exploration of the borderland between anthropology, medicine, and psychiatry. Berkeley: University of California Press; 1980.Google Scholar
  18. 18.
    Beals J, Manson SM, Mitchell CM, Spicer P. AI-SUPERPFP team. Cultural specificity and comparison in psychiatric epidemiology: walking the tightrope in American Indian research. Culture. Med Psychiatry. 2003;27:259–89.CrossRefGoogle Scholar
  19. 19.
    Brook RD, Franklin B, Cascio W, Hong Y, Howard G, Lipsett M, et al. Air pollution and cardiovascular disease: a statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. Circulation. 2004;109(21):2655–71.PubMedCrossRefGoogle Scholar
  20. 20.
    Brook RD, Rajagopalan S, Pope CA 3rd, Brook JR, Bhatnagar A, Diez-Roux AV, et al. Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation. 2010;121(21):2331–78.PubMedCrossRefGoogle Scholar
  21. 21.
    Gascon M, Triguero-Mas M, Martinez D, Dadvand P, Rojas-Rueda D, Plasencia A, et al. Residential green spaces and mortality: a systematic review. Environ Int. 2016;86:60–7.PubMedCrossRefGoogle Scholar
  22. 22.
    Markevych I, Schoierer J, Hartig T, Chudnovsky A, Hystad P, Dzhambov AM, et al. Exploring pathways linking greenspace to health: theoretical and methodological guidance. Environ Res. 2017;158:301–17.PubMedCrossRefGoogle Scholar
  23. 23.
    Benmarhnia T, Grenier P, Brand A, Fournier M, Deguen S, Smargiassi A. Quantifying vulnerability to extreme heat in time series analyses: a novel approach applied to neighborhood social disparities under climate change. Int J Environ Res Public Health. 2015;12(9):11869–79.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Gronlund CJ, Zanobetti A, Schwartz JD, Wellenius GA, O’Neill MS. Heat, heat waves, and hospital admissions among the elderly in the United States, 1992–2006. Environ Health Perspect. 2014;122(11):1187–92.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Oakes JM, Kaufman JS. Methods in social epidemiology. 2nd ed. San Francisco: Jossey-Bass; 2006. 478 pGoogle Scholar
  26. 26.
    Berkman LF, Kawachi I. Social epidemiology. USA: Oxford University Press; 2000.Google Scholar
  27. 27.
    Mendelson T, Thurston RC, Kubzansky LD. Affective and cardiovascular effects of experimentally-induced social status. Health Psychol. 2008;27(4):482–9.PubMedCrossRefGoogle Scholar
  28. 28.
    Krieger N, Williams DR, Moss NE. Measuring social class in US public health research: concepts, methodologies, and guidelines. Annu Rev Public Health. 1997;18:341–78.PubMedCrossRefGoogle Scholar
  29. 29.
    Brunner E. Biology and health inequality. PLoS Biol. 2007;5(11):e267.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Clougherty JE, Shmool JLC, Kubzansky LD. The role of non-chemical stressors in mediating socioeconomic susceptibility to environmental chemicals. Curr Environ Health Rep. 2014;1(4):302–13.CrossRefGoogle Scholar
  31. 31.
    Cohen S, Janicki-Deverts D, Miller GE. Psychological stress and disease. JAMA. 2007;298(14):1685–7.PubMedCrossRefGoogle Scholar
  32. 32.
    Kendler KS, Kessler RC, Walters EE, MacLean C, Neale MC, Heath AC, et al. Stressful life events, genetic liability, and onset of an episode of major depression in women. Am J Psychiatry. 1995;152(6):833–42.PubMedCrossRefGoogle Scholar
  33. 33.
    Walker RE, Keane CR, Burke JG. Disparities and access to healthy food in the United States: a review of food deserts literature. Health Place. 2010;16(5):876–84.PubMedCrossRefGoogle Scholar
  34. 34.
    Lim YH, Bae HJ, Yi SM, Park E, Lee BE, Hong YC. Vascular and cardiac autonomic function and PM2.5 constituents among the elderly: a longitudinal study. Sci Total Environ. 2017;607-608:847–54.PubMedCrossRefGoogle Scholar
  35. 35.
    Shin CN, Soltero E, Mama SK, Sunseri C, Lee RE. Association of discrimination and stress with cardiometabolic risk factors in ethnic minority women. Clin Nurs Res. 2017;26(6):694–712.PubMedCrossRefGoogle Scholar
  36. 36.
    Majnik AV, Lane RH. The relationship between early-life environment, the epigenome and the microbiota. Epigenomics. 2015;7(7):1173–84.PubMedCrossRefGoogle Scholar
  37. 37.
    Bodor JN, Rose D, Farley TA, Swalm C, Scott SK. Neighbourhood fruit and vegetable availability and consumption: the role of small food stores in an urban environment. Public Health Nutr. 2008;11(4):413–20.PubMedCrossRefGoogle Scholar
  38. 38.
    Curl CL, Beresford SA, Hajat A, Kaufman JD, Moore K, Nettleton JA, et al. Associations of organic produce consumption with socioeconomic status and the local food environment: multi-ethnic study of atherosclerosis (MESA). PLoS One. 2013;8(7):e69778.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Mehta NK, Chang VW. Weight status and restaurant availability a multilevel analysis. Am J Prev Med. 2008;34(2):127–33.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Morland KB, Evenson KR. Obesity prevalence and the local food environment. Health Place. 2009;15(2):491–5.PubMedCrossRefGoogle Scholar
  41. 41.
    Penney TL, Almiron-Roig E, Shearer C, McIsaac JL, Kirk SF. Modifying the food environment for childhood obesity prevention: challenges and opportunities. Proc Nutr Soc. 2014;73(2):226–36.PubMedCrossRefGoogle Scholar
  42. 42.
    Cardenas A, Koestler DC, Houseman EA, Jackson BP, Kile ML, Karagas MR, et al. Differential DNA methylation in umbilical cord blood of infants exposed to mercury and arsenic in utero. Epigenetics. 2015;10(6):508–15.PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Bakulski KM, Lee H, Feinberg JI, Wells EM, Brown S, Herbstman JB, et al. Prenatal mercury concentration is associated with changes in DNA methylation at TCEANC2 in newborns. Int J Epidemiol. 2015;44(4):1249–62.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Kippler M, Engstrom K, Mlakar SJ, Bottai M, Ahmed S, Hossain MB, et al. Sex-specific effects of early life cadmium exposure on DNA methylation and implications for birth weight. Epigenetics. 2013;8(5):494–503.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Kile ML, Houseman EA, Baccarelli AA, Quamruzzaman Q, Rahman M, Mostofa G, et al. Effect of prenatal arsenic exposure on DNA methylation and leukocyte subpopulations in cord blood. Epigenetics. 2014;9(5):774–82.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Green BB, Karagas MR, Punshon T, Jackson BP, Robbins DJ, Houseman EA, et al. Epigenome-wide assessment of DNA methylation in the placenta and arsenic exposure in the New Hampshire birth cohort study (USA). Environ Health Perspect. 2016;124(8):1253–60.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Maccani JZ, Koestler DC, Houseman EA, Armstrong DA, Marsit CJ, Kelsey KT. DNA methylation changes in the placenta are associated with fetal manganese exposure. Reprod Toxicol (Elmsford, NY). 2015;57:43–9.CrossRefGoogle Scholar
  48. 48.
    Maccani JZ, Koestler DC, Lester B, Houseman EA, Armstrong DA, Kelsey KT, et al. Placental DNA methylation related to both infant toenail mercury and adverse neurobehavioral outcomes. Environ Health Perspect. 2015;123(7):723–9.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Liu J, Bann C, Lester B, Tronick E, Das A, Lagasse L, et al. Neonatal neurobehavior predicts medical and behavioral outcome. Pediatrics. 2010;125(1):e90–8.PubMedCrossRefGoogle Scholar
  50. 50.
    Appleton AA, Murphy MA, Koestler DC, Lesseur C, Paquette AG, Padbury JF, et al. Prenatal programming of infant neurobehaviour in a healthy population. Paediatr Perinat Epidemiol. 2016;30(4):367–75.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Rijlaarsdam J, Pappa I, Walton E, Bakermans-Kranenburg MJ, Mileva-Seitz VR, Rippe RC, et al. An epigenome-wide association meta-analysis of prenatal maternal stress in neonates: a model approach for replication. Epigenetics. 2016;11(2):140–9.PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Mulligan CJ, D’Errico NC, Stees J, Hughes DA. Methylation changes at NR3C1 in newborns associate with maternal prenatal stress exposure and newborn birth weight. Epigenetics. 2012;7(8):853–7.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Appleton AA, Armstrong DA, Lesseur C, Lee J, Padbury JF, Lester BM, et al. Patterning in placental 11-B hydroxysteroid dehydrogenase methylation according to prenatal socioeconomic adversity. PLoS One. 2013;8(9):e74691.PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hompes T, Izzi B, Gellens E, Morreels M, Fieuws S, Pexsters A, et al. Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. J Psychiatr Res. 2013;47(7):880–91.PubMedCrossRefGoogle Scholar
  55. 55.
    Stroud LR, Papandonatos GD, Rodriguez D, McCallum M, Salisbury AL, Phipps MG, et al. Maternal smoking during pregnancy and infant stress response: test of a prenatal programming hypothesis. Psychoneuroendocrinology. 2014;48:29–40.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Appleton AA, Lester BM, Armstrong DA, Lesseur C, Marsit CJ. Examining the joint contribution of placental NR3C1 and HSD11B2 methylation for infant neurobehavior. Psychoneuroendocrinology. 2015;52:32–42.PubMedCrossRefGoogle Scholar
  57. 57.
    Marsit CJ, Maccani MA, Padbury JF, Lester BM. Placental 11-beta hydroxysteroid dehydrogenase methylation is associated with newborn growth and a measure of neurobehavioral outcome. PLoS One. 2012;7(3):e33794.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Conradt E, Lester BM, Appleton AA, Armstrong DA, Marsit CJ. The roles of DNA methylation of NR3C1 and 11beta-HSD2 and exposure to maternal mood disorder in utero on newborn neurobehavior. Epigenetics. 2013;8(12):1321–9.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3(2):97–106.PubMedCrossRefGoogle Scholar
  60. 60.
    Monk C, Feng T, Lee S, Krupska I, Champagne FA, Tycko B. Distress during pregnancy: epigenetic regulation of placenta glucocorticoid-related genes and fetal neurobehavior. Am J Psychiatry. 2016;173(7):705–13.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Paquette AG, Houseman EA, Green BB, Lesseur C, Armstrong DA, Lester B, et al. Regions of variable DNA methylation in human placenta associated with newborn neurobehavior. Epigenetics. 2016;11(8):603–13.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    Lesseur C, Paquette AG, Marsit CJ. Epigenetic regulation of infant neurobehavioral outcomes. Med Epigenet. 2014;2(2):71–9.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Belkaid Y, Harrison OJ. Homeostatic immunity and the microbiota. Immunity. 2017;46(4):562–76.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Hahn DL, Dodge RW, Golubjatnikov R. Association of Chlamydia pneumoniae (strain TWAR) infection with wheezing, asthmatic bronchitis, and adult-onset asthma. JAMA. 1991;266(2):225–30.PubMedCrossRefGoogle Scholar
  65. 65.
    Huang YJ, Boushey HA. The microbiome in asthma. J Allergy Clin Immunol. 2015;135(1):25–30.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Halfvarson J, Brislawn CJ, Lamendella R, Vazquez-Baeza Y, Walters WA, Bramer LM, et al. Dynamics of the human gut microbiome in inflammatory bowel disease. Nat Microbiol. 2017;2:17004.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Jangi S, Gandhi R, Cox LM, Li N, von Glehn F, Yan R, et al. Alterations of the human gut microbiome in multiple sclerosis. Nat Commun. 2016;7:12015.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Schnorr SL, Bachner HA. Integrative therapies in anxiety treatment with special emphasis on the gut microbiome. Yale J Biol Med. 2016;89(3):397–422.PubMedPubMedCentralGoogle Scholar
  69. 69.
    Akkasheh G, Kashani-Poor Z, Tajabadi-Ebrahimi M, Jafari P, Akbari H, Taghizadeh M, et al. Clinical and metabolic response to probiotic administration in patients with major depressive disorder: a randomized, double-blind, placebo-controlled trial. Nutrition (Burbank, Los Angeles County, Calif). 2016;32(3):315–20.CrossRefGoogle Scholar
  70. 70.
    Breton J, Massart S, Vandamme P, De Brandt E, Pot B, Foligne B. Ecotoxicology inside the gut: impact of heavy metals on the mouse microbiome. BMC Pharmacol Toxicol. 2013;14(1):62.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Claus SP, Guillou H, Ellero-Simatos S. The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes. 2016;2:16003.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Cresci GA, Bawden E. Gut microbiome: what we do and don’t know. Nutr Clin Pract. 2015;30(6):734–46.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Ribiere C, Peyret P, Parisot N, Darcha C, Dechelotte PJ, Barnich N, et al. Oral exposure to environmental pollutant benzo[a]pyrene impacts the intestinal epithelium and induces gut microbial shifts in murine model. Sci Rep. 2016;6:31027.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Meakins TS, Jackson AA. Salvage of exogenous urea nitrogen enhances nitrogen balance in normal men consuming marginally inadequate protein diets. Clin Sci (Lond). 1996;90(3):215–25.CrossRefGoogle Scholar
  75. 75.
    Prideaux L, Kang S, Wagner J, Buckley M, Mahar JE, De Cruz P, et al. Impact of ethnicity, geography, and disease on the microbiota in health and inflammatory bowel disease. Inflamm Bowel Dis. 2013;19(13):2906–18.PubMedCrossRefGoogle Scholar
  76. 76.
    Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, et al. Human gut microbiome viewed across age and geography. Nature. 2012;486(7402):222–7.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Charreire H, Casey R, Salze P, Simon C, Chaix B, Banos A, et al. Measuring the food environment using geographical information systems: a methodological review. Public Health Nutr. 2010;13(11):1773–85.PubMedCrossRefGoogle Scholar
  78. 78.
    Holsten JE. Obesity and the community food environment: a systematic review. Public Health Nutr. 2009;12(3):397–405.PubMedGoogle Scholar
  79. 79.
    Zenk SN, Lachance LL, Schulz AJ, Mentz G, Kannan S, Ridella W. Neighborhood retail food environment and fruit and vegetable intake in a multiethnic urban population. Am J Health Promot. 2009;23(4):255–64.PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Robinson PL, Dominguez F, Teklehaimanot S, Lee M, Brown A, Goodchild M. Does distance decay modelling of supermarket accessibility predict fruit and vegetable intake by individuals in a large metropolitan area? J Health Care Poor Underserved. 2013;24(1 Suppl):172–85.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Cobb LK, Appel LJ, Franco M, Jones-Smith JC, Nur A, Anderson CA. The relationship of the local food environment with obesity: a systematic review of methods, study quality, and results. Obesity (Silver Spring). 2015;23(7):1331–44.CrossRefGoogle Scholar
  82. 82.
    Grigsby-Toussaint DS, Zenk SN, Odoms-Young A, Ruggiero L, Moise I. Availability of commonly consumed and culturally specific fruits and vegetables in African-American and Latino neighborhoods. J Am Diet Assoc. 2010;110(5):746–52.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Lee H. The role of local food availability in explaining obesity risk among young school-aged children. Soc Sci Med. 2012;74(8):1193–203.PubMedCrossRefGoogle Scholar
  84. 84.
    Fleischhacker SE, Evenson KR, Rodriguez DA, Ammerman AS. A systematic review of fast food access studies. Obes Rev. 2011;12(5):e460–71.PubMedCrossRefGoogle Scholar
  85. 85.
    Apparicio P, Cloutier MS, Shearmur R. The case of Montreal’s missing food deserts: evaluation of accessibility to food supermarkets. Int J Health Geogr. 2007;6(1):4.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Baum A, Garofalo JP, Yali AM. Socioeconomic status and chronic stress. Does stress account for SES effects on health? Ann N Y Acad Sci. 1999;896:131–44.PubMedCrossRefGoogle Scholar
  87. 87.
    Blaine B. Does depression cause obesity?: a meta-analysis of longitudinal studies of depression and weight control. J Health Psychol. 2008;13(8):1190–7.PubMedCrossRefGoogle Scholar
  88. 88.
    Darmon N, Drewnowski A. Does social class predict diet quality? Am J Clin Nutr. 2008;87(5):1107–17.PubMedCrossRefGoogle Scholar
  89. 89.
    de Wit L, Luppino F, van Straten A, Penninx B, Zitman F, Cuijpers P. Depression and obesity: a meta-analysis of community-based studies. Psychiatry Res. 2010;178(2):230–5.PubMedCrossRefGoogle Scholar
  90. 90.
    •• Olvera HA, Kubzansky LD, Campen MJ, Slavich GM. Early life stress, air pollution, inflammation, and disease: an integrative review and immunologic model of social-environmental adversity and lifespan health. 2017. Submitted for publication. Provides a detail example of how the ISEM can be applied to examine mechanisms of joint effects of social and environmental exposures.Google Scholar
  91. 91.
    Miller GE, Chen E, Fok AK, Walker H, Lim A, Nicholls EF, et al. Low early-life social class leaves a biological residue manifested by decreased glucocorticoid and increased proinflammatory signaling. Proc Natl Acad Sci U S A. 2009;106(34):14716–21.PubMedPubMedCentralCrossRefGoogle Scholar
  92. 92.
    Bennett JM, Gillie BL, Lindgren ME, Fagundes CP, Kiecolt-Glaser JK. Inflammation through a psychoneuroimmunological lens. Handbook of systems and complexity in health. New York: Springer; 2013. p. 279–99.Google Scholar
  93. 93.
    Fiordelisi A, Piscitelli P, Trimarco B, Coscioni E, Iaccarino G, Sorriento D. The mechanisms of air pollution and particulate matter in cardiovascular diseases. Heart Fail Rev. 2017;22(3):337–47.
  94. 94.
    Cain DW, Cidlowski JA. Specificity and sensitivity of glucocorticoid signaling in health and disease. Best Pract Res Clin Endocrinol Metab. 2015;29(4):545–56.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Hamid QA, Wenzel SE, Hauk PJ, Tsicopoulos A, Wallaert B, Lafitte JJ, et al. Increased glucocorticoid receptor beta in airway cells of glucocorticoid-insensitive asthma. Am J Respir Crit Care Med. 1999;159(5 Pt 1):1600–4.PubMedCrossRefGoogle Scholar
  96. 96.
    Centers for Disease Control and Prevention (CDC). Diabetes prevalence among American Indians and Alaska Natives and the overall population—United States, 1994–2002. MMWR Morb Mortal Wkly Rep. 2003;52(30):702–4.Google Scholar
  97. 97.
    Barnes PM, Adams PF, Powell-Griner E. Health characteristics of the American Indian or Alaska native adult population: United States, 2004–2008. Natl Health Stat Rep. 2010;(20):1–22.Google Scholar
  98. 98.
    Holm JE, Vogeltanz-Holm N, Poltavski D, McDonald L. Assessing health status, behavioral risks, and health disparities in American Indians living on the northern plains of the U.S. Public Health Rep. 2010;125(1):68–78.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    MacDorman MF. Race and ethnic disparities in fetal mortality, preterm birth, and infant mortality in the United States: an overview. Semin Perinatol. 2011;35(4):200–8.PubMedCrossRefGoogle Scholar
  100. 100.
    Beals J, Belcourt-Dittloff A, Garroutte EM, Croy C, Jervis LL, Whitesell NR, et al. Trauma and conditional risk of posttraumatic stress disorder in two American Indian reservation communities. Soc Psychiatry Psychiatr Epidemiol. 2012;8:8.Google Scholar
  101. 101.
    Walters SP, Thebo AL, Boehm AB. Impact of urbanization and agriculture on the occurrence of bacterial pathogens and stx genes in coastal waterbodies of Central California. Water Res. 2011;45(4):1752–62.PubMedCrossRefGoogle Scholar
  102. 102.
    Noonan CW, Brown BD, Bentley B, Conway K, Corcoran M, Four Star K, et al. Variability in childhood asthma and body mass index across Northern Plains American Indian communities. J Asthma. 2010;47(5):496–500.PubMedCrossRefGoogle Scholar
  103. 103.
    Belcourt-Dittloff A, Swaney G, Belcourt G. Tribal borders: confronting health disparities & accessible care. Northwest Public Health. 2011;28(1):18–9.Google Scholar
  104. 104.
    Indian Health Service. Facts on Indian health disparities Rockville, MD 2006 [Available from:
  105. 105.
    U. S. Department of Health and Human Services. Mental health: culture, race, and ethnicity. Rockville: Public Health Service, Office of the Surgeon General; 2001.Google Scholar
  106. 106.
    Walters KL, Beltran R, Evans-Campbell T, Simoni JM. Keeping our hearts from touching the ground: HIV/AIDS in American Indian and Alaska native women. Womens Health Issues. 2011;21(6 Suppl):S261–5.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Garroutte EM, Goldberg J, Beals J, Herrell R, Manson SM. Spirituality and attempted suicide among American Indians. Soc Sci Med. 2003;56(7):1571–9.PubMedCrossRefGoogle Scholar
  108. 108.
    Ward T, Boulafentis J, Simpson J, Hester C, Moliga T, Warden K, et al. Lessons learned from a woodstove changeout on the Nez Perce reservation. Sci Total Environ. 2011;409(4):664–70.PubMedCrossRefGoogle Scholar
  109. 109.
    Semmens E, Noonan C, Ward T, Weiler E, Boulafentis J, editors. Effectiveness of interventions in improving indoor and outdoor air quality: preliminary results from a randomized trial of woodsmoke and asthma. 23rd Annual Conference of the International Society for Environmental Epidemiology; 2011 September 13–16; Barcelona, Spain.Google Scholar
  110. 110.
    Noonan C, Ward T, Navidi W, Sheppard L, Bergauff M, Palmer C. Assessing the impact of a wood stove replacement program on air quality and children’s health. Health Effects Institute: Boston; 2011.Google Scholar
  111. 111.
    Ward TJ, Palmer C, Bergauff M, Hooper K, Noonan CW. Results of a residential indoor PM2.5 sampling program before and after a woodstove changeout. Indoor Air. 2008;18(5):408–15.PubMedCrossRefGoogle Scholar
  112. 112.
    Clougherty JE, Rossi CA, Lawrence J, Long MS, Diaz EA, Lim RH, et al. Chronic social stress and susceptibility to concentrated ambient fine particles in rats. Environ Health Perspect. 2010;118(6):769–75.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Hector A. Olvera Alvarez
    • 1
    Email author
  • Allison A. Appleton
    • 2
  • Christina H. Fuller
    • 3
  • Annie Belcourt
    • 4
  • Laura D. Kubzansky
    • 5
  1. 1.School of NursingUniversity of Texas El PasoEl PasoUSA
  2. 2.School of Public Health, Department of Epidemiology and BiostatisticsUniversity at AlbanyRensselaerUSA
  3. 3.School of Public Health, Division of Environmental HealthGeorgia State UniversityAtlantaUSA
  4. 4.School of Community and Public Health Sciences/Pharmacy PracticeUniversity of MontanaMissoulaUSA
  5. 5.Department of Social and Behavioral SciencesHarvard T.H. Chan School of Public HealthBostonUSA

Personalised recommendations