Skip to main content
Log in

Heavy Metal Exposure and Metabolic Syndrome: Evidence from Human and Model System Studies

  • Mechanisms of Toxicity (CJ Mattingly and A Planchart, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Metabolic syndrome (MS) describes the co-occurrence of conditions that increase one’s risk for heart disease and other disorders such as diabetes and stroke. The worldwide increase in the prevalence of MS cannot be fully explained by lifestyle factors such as sedentary behavior and caloric intake alone. Environmental exposures, such as heavy metals, have been implicated, but results are conflicting and possible mechanisms remain unclear. To assess recent progress in determining a possible role between heavy metal exposure and MS, we reviewed epidemiological and model system data for cadmium (Cd), lead (Pb), and mercury (Hg) from the last decade.

Recent Findings

Data from 36 epidemiological studies involving 17 unique countries/regions and 13 studies leveraging model systems are included in this review. Epidemiological and model system studies support a possible association between heavy metal exposure and MS or comorbid conditions; however, results remain conflicting. Epidemiological studies were predominantly cross-sectional and collectively, they highlight a global interest in this question and reveal evidence of differential susceptibility by sex and age to heavy metal exposures. In vivo studies in rats and mice and in vitro cell-based assays provide insights into potential mechanisms of action relevant to MS including altered regulation of lipid and glucose homeostasis, adipogenesis, and oxidative stress.

Summary

Heavy metal exposure may contribute to MS or comorbid conditions; however, available data are conflicting. Causal inference remains challenging as epidemiological data are largely cross-sectional; and variation in study design, including samples used for heavy metal measurements, age of subjects at which MS outcomes are measured; the scope and treatment of confounding factors; and the population demographics vary widely. Prospective studies, standardization or increased consistency across study designs and reporting, and consideration of molecular mechanisms informed by model system studies are needed to better assess potential causal links between heavy metal exposure and MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014;2014:943162.

    PubMed  PubMed Central  Google Scholar 

  2. Aguilar M, Bhuket T, Torres S, Liu B, Wong RJ. Prevalence of the metabolic syndrome in the United States, 2003-2012. JAMA. 2015;313(19):1973–4.

    Article  CAS  PubMed  Google Scholar 

  3. Ogden CL, Carroll MD, Fryar CD, Flegal KM. Prevalence of obesity among adults and youth: United States, 2011-2014. NCHS Data Brief. 2015;219:1–8.

    Google Scholar 

  4. De Long NE, Holloway AC. Early-life chemical exposures and risk of metabolic syndrome. Diabetes Metab Syndr Obes. 2017;10:101–9. https://doi.org/10.2147/DMSO.S95296.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Thayer KA, Heindel JJ, Bucher JR, Gallo MA. Role of environmental chemicals in diabetes and obesity: a National Toxicology Program workshop review. Environ Health Perspect. 2012;120(6):779–89. https://doi.org/10.1289/ehp.1104597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Roy C, Tremblay PY, Ayotte P. Is mercury exposure causing diabetes, metabolic syndrome and insulin resistance? A systematic review of the literature. Environ Res. 2017;156:747–60. https://doi.org/10.1016/j.envres.2017.04.038.

    Article  CAS  PubMed  Google Scholar 

  7. Tinkov AA, Filippini T, Ajsuvakova OP, Aaseth J, Gluhcheva YG, Ivanova JM, et al. The role of cadmium in obesity and diabetes. Sci Total Environ. 2017;601–602:741–55.

    Article  PubMed  Google Scholar 

  8. Li Y, Zhang Y, Wang W, Wu Y. Association of urinary cadmium with risk of diabetes: a meta-analysis. Environ Sci Pollut Res Int. 2017;24(11):10083–90.

    Article  CAS  PubMed  Google Scholar 

  9. Kuo CC, Moon K, Thayer KA, Navas-Acien A. Environmental chemicals and type 2 diabetes: an updated systematic review of the epidemiologic evidence. Curr Diabetes Rep. 2013;13(6):831–49. https://doi.org/10.1007/s11892-013-0432-6.

    Article  CAS  Google Scholar 

  10. Borne Y, Fagerberg B, Persson M, Sallsten G, Forsgard N, Hedblad B, et al. Cadmium exposure and incidence of diabetes mellitus—results from the Malmo diet and cancer study. PLoS One. 2014;9(11):e112277. https://doi.org/10.1371/journal.pone.0112277.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Menai M, Heude B, Slama R, Forhan A, Sahuquillo J, Charles MA, et al. Association between maternal blood cadmium during pregnancy and birth weight and the risk of fetal growth restriction: the EDEN mother-child cohort study. Reprod Toxicol. 2012;34(4):622–7. https://doi.org/10.1016/j.reprotox.2012.09.002.

    Article  CAS  PubMed  Google Scholar 

  12. • Swaddiwudhipong W, Limpatanachote P, Mahasakpan P, Krintratun S, Punta B, Funkhiew T. Progress in cadmium-related health effects in persons with high environmental exposure in northwestern Thailand: a five-year follow-up. Environ Res. 2012;112:194–8. Prospective study with significant associations between Cd exposure and T2D and HT.

    Article  CAS  PubMed  Google Scholar 

  13. Virtanen JK, Mursu J, Voutilainen S, Uusitupa M, Tuomainen TP. Serum omega-3 polyunsaturated fatty acids and risk of incident type 2 diabetes in men: the Kuopio ischemic heart disease risk factor study. Diabetes Care. 2014;37(1):189–96. https://doi.org/10.2337/dc13-1504.

    Article  CAS  PubMed  Google Scholar 

  14. Mozaffarian D, Shi P, Morris JS, Grandjean P, Siscovick DS, Spiegelman D, et al. Methylmercury exposure and incident diabetes in U.S. men and women in two prospective cohorts. Diabetes Care. 2013;36(11):3578–84. https://doi.org/10.2337/dc13-0894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Drouillet-Pinard P, Huel G, Slama R, Forhan A, Sahuquillo J, Goua V, et al. Prenatal mercury contamination: relationship with maternal seafood consumption during pregnancy and fetal growth in the ‘EDEN mother-child’ cohort. Br J Nutr. 2010;104(8):1096–100. https://doi.org/10.1017/S0007114510001947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. He K, Xun P, Liu K, Morris S, Reis J, Guallar E. Mercury exposure in young adulthood and incidence of diabetes later in life: the CARDIA trace element study. Diabetes Care. 2013;36(6):1584–9. https://doi.org/10.2337/dc12-1842.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Singh PK, Baxi D, Diwedi R, Ramachandran AV. Prior cadmium exposure improves glucoregulation in diabetic rats but exacerbates effects on metabolic dysregulation, oxidative stress, and hepatic and renal toxicity. Drug Chem Toxicol. 2012;35(2):167–77.

    Article  CAS  PubMed  Google Scholar 

  18. Treviño S, Waalkes MP, Flores Hernández JA, León-Chavez BA, Aguilar-Alonso P, Brambila E. Chronic cadmium exposure in rats produces pancreatic impairment and insulin resistance in multiple peripheral tissues. Arch Biochem Biophys. 2015;583:27–35.

    Article  PubMed  Google Scholar 

  19. • Kawakami T, Nishiyama K, Kadota Y, Sato M, Inoue M, Suzuki S. Cadmium modulates adipocyte functions in metallothionein-null mice. Toxicol Appl Pharmacol. 2013;272(3):625–36. In vivo and in vitro study identifying Cd-mediated alterations in molecular markers of metabolism and adiposity.

    Article  CAS  PubMed  Google Scholar 

  20. Gong P, Chang X, Chen X, Bai X, Wen H, Pi S, et al. Metabolomics study of cadmium-induced diabetic nephropathy and protective effect of caffeic acid phenethyl ester using UPLC-Q-TOF-MS combined with pattern recognition. Environ Toxicol Pharmacol. 2017;54:80–92.

    Article  CAS  PubMed  Google Scholar 

  21. El Muayed M, Raja MR, Zhang X, MacRenaris KW, Bhatt S, Chen X, et al. Accumulation of cadmium in insulin-producing β cells. Islets. 2012;4(6):405–16.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chang K-C, Hsu C-C, Liu S-H, Su C-C, Yen C-C, Lee M-J, et al. Cadmium induces apoptosis in pancreatic β-cells through a mitochondria-dependent pathway: the role of oxidative stress-mediated c-Jun N-terminal kinase activation. PLoS One. 2013;8(2):e54374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tyrrell JB, Hafida S, Stemmer P, Adhami A, Leff T. Lead (Pb) exposure promotes diabetes in obese rodents. J Trace Elem Med Biol. 2017;39:221–6.

    Article  CAS  PubMed  Google Scholar 

  24. Mostafalou S, Baeeri M, Bahadar H, Soltany-Rezaee-Rad M, Gholami M, Abdollahi M. Molecular mechanisms involved in lead induced disruption of hepatic and pancreatic glucose metabolism. Environ Toxicol Pharmacol. 2015;39(1):16–26. https://doi.org/10.1016/j.etap.2014.11.001.

    Article  CAS  PubMed  Google Scholar 

  25. Sun H, Wang N, Nie X, Zhao L, Li Q, Cang Z, et al. Lead exposure induces weight gain in adult rats, Accompanied by DNA Hypermethylation. PLoS One. 2017;12(1):e0169958. https://doi.org/10.1371/journal.pone.0169958.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Beier EE, Inzana JA, Sheu T-J, Shu L, Puzas JE, Mooney RA. Effects of combined exposure to lead and high-fat diet on bone quality in juvenile male mice. Environ Health Perspect. 2015;123(10):935–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Faulk C, Barks A, Sánchez BN, Zhang Z, Anderson OS, Peterson KE, et al. Perinatal lead (Pb) exposure results in sex-specific effects on food intake, fat, weight, and insulin response across the murine life-course. PLoS One. 2014;9(8):e104273.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Chen YW, Huang CF, Tsai KS, Yang RS, Yen CC, Yang CY, et al. The role of phosphoinositide 3-kinase/Akt signaling in low-dose mercury-induced mouse pancreatic beta-cell dysfunction in vitro and in vivo. Diabetes. 2006;55(6):1614–24.

    Article  CAS  PubMed  Google Scholar 

  29. Kawakami T, Hanao N, Nishiyama K, Kadota Y, Inoue M, Sato M, et al. Differential effects of cobalt and mercury on lipid metabolism in the white adipose tissue of high-fat diet-induced obesity mice. Toxicol Appl Pharmacol. 2012;258(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  30. Thevenod F, Lee WK. Toxicology of cadmium and its damage to mammalian organs. Met Ions Life Sci. 2013;11:415–90. https://doi.org/10.1007/978-94-007-5179-8_14.

    Article  CAS  PubMed  Google Scholar 

  31. Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283(2–3):65–87. https://doi.org/10.1016/j.tox.2011.03.001.

    Article  CAS  PubMed  Google Scholar 

  32. Gundacker C, Gencik M, Hengstschlager M. The relevance of the individual genetic background for the toxicokinetics of two significant neurodevelopmental toxicants: mercury and lead. Mutat Res. 2010;705(2):130–40.

    Article  CAS  PubMed  Google Scholar 

  33. Moon SS. Association of lead, mercury and cadmium with diabetes in the Korean population: the Korea National Health and Nutrition Examination Survey (KNHANES) 2009-2010. Diabet Med. 2013;30(4):e143–8. https://doi.org/10.1111/dme.12103.

    Article  CAS  PubMed  Google Scholar 

  34. Simic A, Hansen AF, Asvold BO, Romundstad PR, Midthjell K, Syversen T, et al. Trace element status in patients with type 2 diabetes in Norway: the HUNT3 survey. J Trace Elem Med Biol. 2017;41:91–8.

    Article  CAS  PubMed  Google Scholar 

  35. Feng W, Cui X, Liu B, Liu C, Xiao Y, Lu W, et al. Association of urinary metal profiles with altered glucose levels and diabetes risk: a population-based study in China. PLoS One. 2015;10(4):e0123742. https://doi.org/10.1371/journal.pone.0123742.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Menke A, Guallar E, Cowie CC. Metals in urine and diabetes in U.S. adults. Diabetes. 2016;65(1):164–71. https://doi.org/10.2337/db15-0316.

    CAS  PubMed  Google Scholar 

  37. Ettinger AS, Bovet P, Plange-Rhule J, Forrester TE, Lambert EV, Lupoli N, et al. Distribution of metals exposure and associations with cardiometabolic risk factors in the “modeling the epidemiologic transition study”. Environ Health. 2014;13(1):90. https://doi.org/10.1186/1476-069X-13-90.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Yang A, Liu S, Cheng N, Pu H, Dai M, Ding J, et al. Multiple metals exposure, elevated blood glucose and dysglycemia among Chinese occupational workers. J Diabetes Complicat. 2017;31(1):101–7. https://doi.org/10.1016/j.jdiacomp.2016.07.022.

    Article  PubMed  Google Scholar 

  39. Park SB, Choi SW, Nam AY. Hair tissue mineral analysis and metabolic syndrome. Biol Trace Elem Res. 2009;130(3):218–28. https://doi.org/10.1007/s12011-009-8336-7.

    Article  CAS  PubMed  Google Scholar 

  40. Rhee SY, Hwang YC, Woo JT, Sinn DH, Chin SO, Chon S, et al. Blood lead is significantly associated with metabolic syndrome in Korean adults: an analysis based on the Korea National Health and Nutrition Examination Survey (KNHANES), 2008. Cardiovasc Diabetol. 2013;12(1):9. https://doi.org/10.1186/1475-2840-12-9.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Moon SS. Additive effect of heavy metals on metabolic syndrome in the Korean population: the Korea National Health and Nutrition Examination Survey (KNHANES) 2009-2010. Endocrine. 2014;46(2):263–71. https://doi.org/10.1007/s12020-013-0061-5.

    Article  CAS  PubMed  Google Scholar 

  42. Barregard L, Bergstrom G, Fagerberg B. Cadmium exposure in relation to insulin production, insulin sensitivity and type 2 diabetes: a cross-sectional and prospective study in women. Environ Res. 2013;121:104–9. https://doi.org/10.1016/j.envres.2012.11.005.

    Article  CAS  PubMed  Google Scholar 

  43. Kelishadi R, Askarieh A, Motlagh ME, Tajadini M, Heshmat R, Ardalan G, et al. Association of blood cadmium level with cardiometabolic risk factors and liver enzymes in a nationally representative sample of adolescents: the CASPIAN-III study. J Environ Public Health. 2013;2013:142856.

    PubMed  PubMed Central  Google Scholar 

  44. Padilla MA, Elobeid M, Ruden DM, Allison DB. An examination of the association of selected toxic metals with total and central obesity indices: NHANES 99-02. Int J Environ Res Public Health. 2010;7(9):3332–47. https://doi.org/10.3390/ijerph7093332.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shao W, Liu Q, He X, Liu H, Gu A, Jiang Z. Association between level of urinary trace heavy metals and obesity among children aged 6-19 years: NHANES 1999-2011. Environ Sci Pollut Res Int. 2017;24(12):11573–81. https://doi.org/10.1007/s11356-017-8803-1.

    Article  CAS  PubMed  Google Scholar 

  46. Jornayvaz FR, Vollenweider P, Bochud M, Mooser V, Waeber G, Marques-Vidal P. Low birth weight leads to obesity, diabetes and increased leptin levels in adults: the CoLaus study. Cardiovasc Diabetol. 2016;15(1):73. https://doi.org/10.1186/s12933-016-0389-2.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Schellong K, Schulz S, Harder T, Plagemann A. Birth weight and long-term overweight risk: systematic review and a meta-analysis including 643,902 persons from 66 studies and 26 countries globally. PLoS One. 2012;7(10):e47776. https://doi.org/10.1371/journal.pone.0047776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Rotter I, Kosik-Bogacka D, Dolegowska B, Safranow K, Lubkowska A, Laszczynska M. Relationship between the concentrations of heavy metals and bioelements in aging men with metabolic syndrome. Int J Environ Res Public Health. 2015;12(4):3944–61. https://doi.org/10.3390/ijerph120403944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Swaddiwudhipong W, Mahasakpan P, Limpatanachote P, Krintratun S. Correlations of urinary cadmium with hypertension and diabetes in persons living in cadmium-contaminated villages in northwestern Thailand: a population study. Environ Res. 2010;110(6):612–6. https://doi.org/10.1016/j.envres.2010.06.002.

    Article  CAS  PubMed  Google Scholar 

  50. Everett CJ, Frithsen IL. Association of urinary cadmium and myocardial infarction. Environ Res. 2008;106(2):284–6. https://doi.org/10.1016/j.envres.2007.10.009.

    Article  CAS  PubMed  Google Scholar 

  51. Hecht EM, Arheart KL, Lee DJ, Hennekens CH, Hlaing WM. Interrelation of cadmium, smoking, and cardiovascular disease (from the National Health and Nutrition Examination Survey). Am J Cardiol. 2016;118(2):204–9. https://doi.org/10.1016/j.amjcard.2016.04.038.

    Article  CAS  PubMed  Google Scholar 

  52. Hansen AF, Simic A, Asvold BO, Romundstad PR, Midthjell K, Syversen T, et al. Trace elements in early phase type 2 diabetes mellitus—a population-based study. The HUNT study in Norway. J Trace Elem Med Biol. 2017;40:46–53.

    Article  CAS  PubMed  Google Scholar 

  53. Afridi HI, Kazi TG, Kazi N, Jamali MK, Arain MB, Jalbani N, et al. Evaluation of status of toxic metals in biological samples of diabetes mellitus patients. Diabetes Res Clin Pract. 2008;80(2):280–8. https://doi.org/10.1016/j.diabres.2007.12.021.

    Article  CAS  PubMed  Google Scholar 

  54. Liu B, Feng W, Wang J, Li Y, Han X, Hu H, et al. Association of urinary metals levels with type 2 diabetes risk in coke oven workers. Environ Pollut. 2016;210:1–8.

    Article  CAS  PubMed  Google Scholar 

  55. Son HS, Kim SG, Suh BS, Park DU, Kim DS, Yu SD, et al. Association of cadmium with diabetes in middle-aged residents of abandoned metal mines: the first health effect surveillance for residents in abandoned metal mines. Ann Occup Environ Med. 2015;27(1):20. https://doi.org/10.1186/s40557-015-0071-2.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Nie X, Wang N, Chen Y, Chen C, Han B, Zhu C, et al. Blood cadmium in Chinese adults and its relationships with diabetes and obesity. Environ Sci Pollut Res Int. 2016;23(18):18714–23. https://doi.org/10.1007/s11356-016-7078-2.

    Article  CAS  PubMed  Google Scholar 

  57. Lee BK, Kim Y. Association of blood cadmium level with metabolic syndrome after adjustment for confounding by serum ferritin and other factors: 2008-2012 Korean National Health and Nutrition Examination Survey. Biol Trace Elem Res. 2016;171(1):6–16. https://doi.org/10.1007/s12011-015-0499-9.

    Article  CAS  PubMed  Google Scholar 

  58. Lee BK, Kim Y. Blood cadmium, mercury, and lead and metabolic syndrome in South Korea: 2005-2010 Korean National Health and Nutrition Examination Survey. Am J Ind Med. 2013;56(6):682–92. https://doi.org/10.1002/ajim.22107.

    Article  CAS  PubMed  Google Scholar 

  59. Cummings BP, Digitale EK, Stanhope KL, Graham JL, Baskin DG, Reed BJ, et al. Development and characterization of a novel rat model of type 2 diabetes mellitus: the UC Davis type 2 diabetes mellitus UCD-T2DM rat. AJP: Regul Integr Comp Physiol. 2008;295(6):R1782–R93.

    CAS  Google Scholar 

  60. Zhang H, Yan C, Yang Z, Zhang W, Niu Y, Li X, et al. Alterations of serum trace elements in patients with type 2 diabetes. J Trace Elem Med Biol. 2017;40:91–6.

    Article  CAS  PubMed  Google Scholar 

  61. CDC. CDC’s childhood lead poisoning prevention program/what do parents need to know to protect their children? 2017 [cited 2017 November 2017]. Available from: https://www.cdc.gov/nceh/lead/acclpp/blood_lead_levels.htm.

  62. Jeppesen C, Valera B, Nielsen NO, Bjerregaard P, Jorgensen ME. Association between whole blood mercury and glucose intolerance among adult Inuit in Greenland. Environ Res. 2015;143(Pt A):192–7.

    Article  CAS  PubMed  Google Scholar 

  63. Eom SY, Choi SH, Ahn SJ, Kim DK, Kim DW, Lim JA, et al. Reference levels of blood mercury and association with metabolic syndrome in Korean adults. Int Arch Occup Environ Health. 2014;87(5):501–13. https://doi.org/10.1007/s00420-013-0891-8.

    Article  CAS  PubMed  Google Scholar 

  64. Park K, Seo E. Association between toenail mercury and metabolic syndrome is modified by selenium. Nutrients. 2016;8(7) https://doi.org/10.3390/nu8070424.

  65. Park JS, Ha KH, He K, Kim DJ. Association between blood mercury level and visceral adiposity in adults. Diabetes Metab J. 2017;41(2):113–20. https://doi.org/10.4093/dmj.2017.41.2.113.

    Article  PubMed  Google Scholar 

  66. Barnes DM, Hanlon PR, Kircher EA. Effects of inorganic HgCl2 on adipogenesis. Toxicol Sci. 2003;75(2):368–77.

    Article  CAS  PubMed  Google Scholar 

  67. Wang RY, Caldwell KL, Jones RL. Analytical considerations in the clinical laboratory assessment of metals. J Med Toxicol. 2014;10(2):232–9. https://doi.org/10.1007/s13181-014-0381-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Akerstrom M, Barregard L, Lundh T, Sallsten G. The relationship between cadmium in kidney and cadmium in urine and blood in an environmentally exposed population. Toxicol Appl Pharmacol. 2013;268(3):286–93. https://doi.org/10.1016/j.taap.2013.02.009.

    Article  CAS  PubMed  Google Scholar 

  69. Satarug S, Moore MR. Emerging roles of cadmium and heme oxygenase in type-2 diabetes and cancer susceptibility. Tohoku J Exp Med. 2012;228(4):267–88. https://doi.org/10.1620/tjem.228.267.

    Article  CAS  PubMed  Google Scholar 

  70. King KE, Darrah TH, Money E, Meentemeyer R, Maguire RL, Nye MD, et al. Geographic clustering of elevated blood heavy metal levels in pregnant women. BMC Public Health. 2015;15(1):1035. https://doi.org/10.1186/s12889-015-2379-9.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the outstanding team at the Comparative Toxicogenomics Database for helpful discussions and for curating and providing access to additional information about the articles reviewed in this manuscript as well as the Center for Human Health and the Environment, which helped to facilitate collaborations such as this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carolyn J. Mattingly.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Mechanisms of Toxicity

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Planchart, A., Green, A., Hoyo, C. et al. Heavy Metal Exposure and Metabolic Syndrome: Evidence from Human and Model System Studies. Curr Envir Health Rpt 5, 110–124 (2018). https://doi.org/10.1007/s40572-018-0182-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-018-0182-3

Keywords

Navigation