Cumulative Risk and Impact Modeling on Environmental Chemical and Social Stressors

Abstract

Purpose of Review

The goal of this review is to identify cumulative modeling methods used to evaluate combined effects of exposures to environmental chemicals and social stressors. The specific review question is: What are the existing quantitative methods used to examine the cumulative impacts of exposures to environmental chemical and social stressors on health?

Recent Findings

There has been an increase in literature that evaluates combined effects of exposures to environmental chemicals and social stressors on health using regression models; very few studies applied other data mining and machine learning techniques to this problem.

Summary

The majority of studies we identified used regression models to evaluate combined effects of multiple environmental and social stressors. With proper study design and appropriate modeling assumptions, additional data mining methods may be useful to examine combined effects of environmental and social stressors.

This is a preview of subscription content, log in to check access.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.

    U.S. EPA (Environmental Protection Agency). Framework for cumulative risk assessment. Washington: U.S. EPA, National Center for Environmental Assessment. EPA/600/P-02/001F 2003. https://www.epa.gov/sites/production/files/2014-11/documents/frmwrk_cum_risk_assmnt.pdf.

  2. 2.

    Woodruff TJ, Zota AR, Schwartz JM. Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ Health Perspect. 2011;119(6):878–85. https://doi.org/10.1289/ehp.1002727.

    Article  PubMed  PubMed Central  Google Scholar 

  3. 3.

    National Research Council (U.S.). Committee on Human Biomonitoring for Environmental Toxicants. Human biomonitoring for environmental chemicals. Washington: National Academies Press; 2006. xxi, p. 291

  4. 4.

    U.S. CDC (Centers for Disease Control and Prevention). The Fourth National Report on Human Exposure to Environmental Chemicals: updated tables. 2017. Available: https://www.cdc.gov/exposurereport/index.html2017.

  5. 5.

    National Research Council (U.S.). Committee on the Health Risks of Phthalates., National Academies Press (U.S.). Phthalates and cumulative risk assessment: the task ahead. Washington: National Academies Press; 2008. xix, p. 188

  6. 6.

    •• McHale CM, Osborne G, Morello-Frosch R, Salmon AG, Sandy MS, Solomon G, et al. Assessing health risks from multiple environmental stressors: moving from G × E to I × E. Mutat Res/Rev Mutat Res. 2018;775(2018):11–20. This review provides clear definitions of several key concepts such as “cumulative risk” and “cumulative impacts.”. https://doi.org/10.1016/j.mrrev.2017.11.003.

    CAS  Article  Google Scholar 

  7. 7.

    deFur PL, Evans GW, Hubal EAC, Kyle AD, Morello-Frosch RA, Williams DR. Vulnerability as a function of individual and group resources in cumulative risk assessment. Environ Health Persp. 2007;115(5):817–24. https://doi.org/10.1289/ehp.9332.

    CAS  Article  Google Scholar 

  8. 8.

    Morello-Frosch R, Zuk M, Jerrett M, Shamasunder B, Kyle AD. Understanding the cumulative impacts of inequalities in environmental health: implications for policy. Health Affair. 2011;30(5):879–87. https://doi.org/10.1377/hlthaff.2011.0153.

    Article  Google Scholar 

  9. 9.

    U.S. EPA (Environmental Protection Agency). Organophosphorus Cumulative Risk Assessment (2006 Update). Available: http://www.epa.gov/pesticides/cumulative/pra_op_methods.htm2006.

  10. 10.

    Gennings C, Sabo R, Carney E. Identifying subsets of complex mixtures most associated with complex diseases. Epidemiology. 2010;21(Supplement):S77–84. https://doi.org/10.1097/EDE.0b013e3181ce946c.

    Article  PubMed  Google Scholar 

  11. 11.

    Varshavsky JR, Zota AR, Woodruff TJ. A novel method for calculating potency-weighted cumulative phthalates exposure with implications for identifying racial/ethnic disparities among U.S. reproductive-aged women in NHANES 2001–2012. Environ Sci Technol. 2016;50(19):10616–24. https://doi.org/10.1021/acs.est.6b00522.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12.

    Sexton K, Linder SH. Cumulative risk assessment for combined health effects from chemical and nonchemical stressors. Am J Public Health. 2011;101(S1):81–8.

    Article  Google Scholar 

  13. 13.

    Zota AR, Shenassa ED, Morello-Frosch R. Allostatic load amplifies the effect of blood lead levels on elevated blood pressure among middle-aged US adults: a cross-sectional study. Environ Health-Glob 2013;12.

  14. 14.

    Clougherty JE, Levy JI, Kubzansky LD, Ryan PB, Suglia SF, Canner MJ, et al. Synergistic effects of traffic-related air pollution and exposure to violence on urban asthma etiology. Environ Health Perspect. 2007;115(8):1140–6. https://doi.org/10.1289/ehp.9863.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Evans AM, Rice GE, Teuschler LK, Wright JM. Joint exposure to chemical and nonchemical neurodevelopmental stressors in U.S. women of reproductive age in NHANES. Int J Environ Res Public Health. 2014;11(4):4384–401. https://doi.org/10.3390/ijerph110404384.

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16.

    Perera FP, Rauh V, Whyatt RM, Tsai W-Y, Bernert JT, Tu Y-H, et al. Molecular evidence of an interaction between prenatal environmental exposures and birth outcomes in a multiethnic population. Environ Health Perspect. 2004;112(5):626–30. https://doi.org/10.1289/ehp.6617.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Apelberg BJ, Buckley TJ, White RH. Socioeconomic and racial disparities in cancer risk from air toxics in Maryland. Environ Health Perspect. 2005;113(6):693–9. https://doi.org/10.1289/ehp.7609.

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Bell ML, Ebisu K. Environmental inequality in exposures to airborne particulate matter components in the United States. Environ Health Perspect. 2012;120(12):1699–704. https://doi.org/10.1289/ehp.1205201.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Downey L, Hawkins B. Race, income, and environmental inequality in the United States. Sociol Perspect. 2008;51(4):759–81. https://doi.org/10.1525/sop.2008.51.4.759.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Pastor M, Morello-Frosch R, Sadd JL. The air is always cleaner on the other side: race, space, and ambient air toxics exposures in California. J Urban Affairs. 2005;27(2):127–48. https://doi.org/10.1111/j.0735-2166.2005.00228.x.

    Article  Google Scholar 

  21. 21.

    Perlin SA, Wong D, Sexton K. Residential proximity to industrial sources of air pollution: interrelationships among race, poverty, and age. J Air Waste Manage Assoc. 2001;51(3):406–21. https://doi.org/10.1080/10473289.2001.10464271.

    CAS  Article  Google Scholar 

  22. 22.

    Woodruff TJ, Parker JD, Kyle AD, Schoendorf KC. Disparities in exposure to air pollution during pregnancy. Environ Health Perspect. 2003;111(7):942–6. https://doi.org/10.1289/ehp.5317.

    Article  PubMed  PubMed Central  Google Scholar 

  23. 23.

    U.S. EPA (Environmental Protection Agency). Concepts, methods and data sources for cumulative health risk assessment of multiple chemicals, exposures and effects: a resource document. U.S. EPA. Cincinnati: National Center for Environmental Assessment. EPA/600/R-06/013F2007.

  24. 24.

    • Solomon GM, Morello-Frosch R, Zeise L, Faust JB. Cumulative environmental impacts: science and policy to protect communities. Annu Rev Publ Health. 2016;37(1):83–96. This reference provides a thorough description of the different categories of cumulative environmental impact methods. https://doi.org/10.1146/annurev-publhealth-032315-021807.

    Article  Google Scholar 

  25. 25.

    Callahan MA, Sexton K. If cumulative risk assessment is the answer, what is the question? Environ Health Persp. 2007;115(5):799–806. https://doi.org/10.1289/ehp.9330.

    CAS  Article  Google Scholar 

  26. 26.

    Marshall JD, Swor KR, Nguyen NP. Prioritizing environmental justice and equality: diesel emissions in southern California. Environ Sci Technol. 2014;48(7):4063–8. https://doi.org/10.1021/es405167f.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    U.S. EPA (Environmental Protection Agency). Exposure factors handbook. 2011 ed. U.S. EPA. Washington: National Center for Environmental Assessment. EPA/600/R-09/052F. 2011. Available: http://cfpub.epa.gov/ncea/risk/recordisplay.cfm?deid=236252. Accessed 29 Dec 2015.

  28. 28.

    Huang H, Barzyk TM. Connecting the dots: linking environmental justice indicators to daily dose model estimates. Int J Environ Res Public Health. 2016;14(1). https://doi.org/10.3390/ijerph14010024.

  29. 29.

    Borgelt C. Frequent item set mining. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 2012;2(6):437–456, DOI: https://doi.org/10.1002/widm.1074.

  30. 30.

    Huang H, Tornero-Velez R, Barzyk TM. Associations between socio-demographic characteristics and chemical concentrations contributing to cumulative exposures in the United States. J Expo Sci Environ Epidemiol. 2017. https://doi.org/10.1038/jes.2017.15.

  31. 31.

    Andersen PK, Gill RD. Cox regression-model for counting-processes—a large sample study. Ann Stat. 1982;10(4):1100–20. https://doi.org/10.1214/aos/1176345976.

    Article  Google Scholar 

  32. 32.

    Breiman L. Classification and regression trees. Belmont: Wadsworth International Group; 1984. x, p. 358

  33. 33.

    Hastie T, Tibshirani R, Friedman JH. The elements of statistical learning: data mining, inference, and prediction. 2nd ed. New York: Springer; 2009. xxii, p. 745, DOI: https://doi.org/10.1007/978-0-387-84858-7.

  34. 34.

    Vesterinen HM, Morello-Frosch R, Sen S, Zeise L, Woodruff TJ. Cumulative effects of prenatal-exposure to exogenous chemicals and psychosocial stress on fetal growth: systematic-review of the human and animal evidence. PLoS One. 2017;12(7):e0176331. https://doi.org/10.1371/journal.pone.0176331.

    Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Aschan-Leygonie C, Baudet-Michel S, Mathian H, Sanders L. Gaining a better understanding of respiratory health inequalities among cities: an ecological case study on elderly males in the larger French cities. Int J Health Geogr. 2013;12(1):19. https://doi.org/10.1186/1476-072X-12-19.

    Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Chen JC, Wang X, Wellenius GA, Serre ML, Driscoll I, Casanova R, et al. Ambient air pollution and neurotoxicity on brain structure: evidence from women's health initiative memory study. Ann Neurol. 2015;78(3):466–76. https://doi.org/10.1002/ana.24460.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Deguen S, Petit C, Delbarre A, Kihal W, Padilla C, Benmarhnia T, et al. Neighbourhood characteristics and long-term air pollution levels modify the association between the short-term nitrogen dioxide concentrations and all-cause mortality in Paris. PLoS One. 2015;10(7):e0131463. https://doi.org/10.1371/journal.pone.0131463.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Filigrana PA, Mendez F. Blood lead levels in schoolchildren living near an industrial zone in Cali, Colombia: the role of socioeconomic condition. Biol Trace Elem Res. 2012;149(3):299–306. https://doi.org/10.1007/s12011-012-9429-2.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Hicken MT, Adar SD, Diez Roux AV, O'Neill MS, Magzamen S, Auchincloss AH, et al. Do psychosocial stress and social disadvantage modify the association between air pollution and blood pressure?: the multi-ethnic study of atherosclerosis. Am J Epidemiol. 2013;178(10):1550–62. https://doi.org/10.1093/aje/kwt190.

    Article  PubMed  PubMed Central  Google Scholar 

  40. 40.

    Kippler M, Tofail F, Hamadani JD, Gardner RM, Grantham-McGregor SM, Bottai M, et al. Early-life cadmium exposure and child development in 5-year-old girls and boys: a cohort study in rural Bangladesh. Environ Health Perspect. 2012;120(10):1462–8. https://doi.org/10.1289/ehp.1104431.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Pratt GC, Vadali ML, Kvale DL, Ellickson KM. Traffic, air pollution, minority and socio-economic status: addressing inequities in exposure and risk. Int J Environ Res Public Health. 2015;12(5):5355–72. https://doi.org/10.3390/ijerph120505355.

    Article  PubMed  PubMed Central  Google Scholar 

  42. 42.

    Solimini AG, D’Addario M, Villari P. Ecological correlation between diabetes hospitalizations and fine particulate matter in Italian provinces. BMC Public Health. 2015;15(1):708. https://doi.org/10.1186/s12889-015-2018-5.

    Article  PubMed  PubMed Central  Google Scholar 

  43. 43.

    Vishnevetsky J, Tang D, Chang HW, Roen EL, Wang Y, Rauh V, et al. Combined effects of prenatal polycyclic aromatic hydrocarbons and material hardship on child IQ. Neurotoxicol Teratol. 2015;49:74–80. https://doi.org/10.1016/j.ntt.2015.04.002.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wilson S, Burwell-Naney K, Jiang C, Zhang H, Samantapudi A, Murray R, et al. Assessment of sociodemographic and geographic disparities in cancer risk from air toxics in South Carolina. Environ Res. 2015;140:562–8. https://doi.org/10.1016/j.envres.2015.05.016.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Allen EM, Alexander BH, MacLehose RF, Nelson HH, Ryan AD, Ramachandran G, et al. Occupational exposures and lung cancer risk among Minnesota taconite mining workers. Occup Environ Med. 2015;72(9):633–9. https://doi.org/10.1136/oemed-2015-102825.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Balmes JR, Cisternas M, Quinlan PJ, Trupin L, Lurmann FW, Katz PP, et al. Annual average ambient particulate matter exposure estimates, measured home particulate matter, and hair nicotine are associated with respiratory outcomes in adults with asthma. Environ Res. 2014;129:1–10. https://doi.org/10.1016/j.envres.2013.12.007.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Bravo MA, Son J, de Freitas CU, Gouveia N, Bell ML. Air pollution and mortality in Sao Paulo, Brazil: effects of multiple pollutants and analysis of susceptible populations. J Exposure Sci Environ Epidemiol. 2016;26(2):150–61. https://doi.org/10.1038/jes.2014.90.

    CAS  Article  Google Scholar 

  48. 48.

    Dominguez-Cortinas G, Cifuentes E, Escobar ER, Martinez FD. Assessment of environmental health children’s population living in environmental injustice scenarios. J Community Health. 2012;37(6):1199–207. https://doi.org/10.1007/s10900-012-9555-y.

    Article  PubMed  Google Scholar 

  49. 49.

    Findlay LC, Kohen DE. Bisphenol A and child and youth behaviour: Canadian Health Measures Survey 2007 to 2011. Health Rep. 2015;26(8):3–9.

    PubMed  Google Scholar 

  50. 50.

    Ou Y, Mai J, Zhuang J, Liu X, Wu Y, Gao X, et al. Risk factors of different congenital heart defects in Guangdong, China. Pediatr Res. 2016;79(4):549–58. https://doi.org/10.1038/pr.2015.264.

    Article  PubMed  Google Scholar 

  51. 51.

    Gray SC, Edwards SE, Schultz BD, Miranda ML. Assessing the impact of race, social factors and air pollution on birth outcomes: a population-based study. Environ Health : A Global Access Sci Source. 2014;13(1):4. https://doi.org/10.1186/1476-069X-13-4.

    Article  Google Scholar 

  52. 52.

    Li L, Laurent O, Wu J. Spatial variability of the effect of air pollution on term birth weight: evaluating influential factors using Bayesian hierarchical models. Environ Health : A Global Access Sci Source. 2016;15(1):14. https://doi.org/10.1186/s12940-016-0112-5.

    Article  Google Scholar 

  53. 53.

    Nelson EJ, Shacham E, Boutwell BB, Rosenfeld R, Schootman M, Vaughn M, et al. Childhood lead exposure and sexually transmitted infections: new evidence. Environ Res. 2015;143(Pt A):131–7. https://doi.org/10.1016/j.envres.2015.10.009.

    CAS  Article  PubMed  Google Scholar 

  54. 54.

    Richmond-Bryant J, Meng Q, Cohen J, Davis JA, Svendsgaard D, Brown JS, et al. Effect measure modification of blood lead-air lead slope factors. J Exposure Sci Environ Epidemiol. 2015;25(4):411–6. https://doi.org/10.1038/jes.2014.46.

    CAS  Article  Google Scholar 

  55. 55.

    Vaghri Z, Guhn M, Weinberg J, Grunau RE, Yu W, Hertzman C. Hair cortisol reflects socio-economic factors and hair zinc in preschoolers. Psychoneuroendocrinology. 2013;38(3):331–40. https://doi.org/10.1016/j.psyneuen.2012.06.009.

    CAS  Article  PubMed  Google Scholar 

  56. 56.

    Jochem WC, Razzaque A, Root ED. Effects of health intervention programs and arsenic exposure on child mortality from acute lower respiratory infections in rural Bangladesh. Int J Health Geogr. 2016;15(1):32. https://doi.org/10.1186/s12942-016-0061-9.

    Article  PubMed  PubMed Central  Google Scholar 

  57. 57.

    Ribeiro AI, de Pina MF, Mitchell R. Development of a measure of multiple physical environmental deprivation. After United Kingdom and New Zealand, Portugal. Eur J Pub Health. 2015;25(4):610–7. https://doi.org/10.1093/eurpub/cku242.

    Article  Google Scholar 

  58. 58.

    Osiecki KM, Kim S, Chukwudozie IB, Calhoun EA. Utilizing exploratory spatial data analysis to examine health and environmental disparities in disadvantaged neighborhoods. Environ Justice (Print). 2013;6(3):81–7. https://doi.org/10.1089/env.2013.0010.

    Article  Google Scholar 

  59. 59.

    Shmool JL, Kubzansky LD, Newman OD, Spengler J, Shepard P, Clougherty JE. Social stressors and air pollution across New York City communities: a spatial approach for assessing correlations among multiple exposures. Environ Health : A Global Access Sci Source. 2014;13(1):91. https://doi.org/10.1186/1476-069X-13-91.

    Article  Google Scholar 

  60. 60.

    Genowska A, Jamiolkowski J, Szafraniec K, Stepaniak U, Szpak A, Pajak A. Environmental and socio-economic determinants of infant mortality in Poland: an ecological study. Environ Health : A Global Access Sci Source. 2015;14(1):61. https://doi.org/10.1186/s12940-015-0048-1.

    Article  Google Scholar 

  61. 61.

    Grineski SE, Collins TW, Morales DX. Asian Americans and disproportionate exposure to carcinogenic hazardous air pollutants: a national study. Soc Sci Med. 2017;185:71–80. https://doi.org/10.1016/j.socscimed.2017.05.042.

    Article  PubMed  Google Scholar 

  62. 62.

    Hart JE, Kallberg H, Laden F, Costenbader KH, Yanosky JD, Klareskog L, et al. Ambient air pollution exposures and risk of rheumatoid arthritis. Arthritis Care Res. 2013;65(7):1190–6. https://doi.org/10.1002/acr.21975.

    CAS  Article  Google Scholar 

  63. 63.

    James P, Hart JE, Banay RF, Laden F. Exposure to greenness and mortality in a nationwide prospective cohort study of women. Environ Health Perspect. 2016;124(9):1344–52. https://doi.org/10.1289/ehp.1510363.

    Article  PubMed  PubMed Central  Google Scholar 

  64. 64.

    Padilla CM, Deguen S, Lalloue B, Blanchard O, Beaugard C, Troude F, et al. Cluster analysis of social and environment inequalities of infant mortality. A spatial study in small areas revealed by local disease mapping in France. Sci Total Environ. 2013;454-455:433–41. https://doi.org/10.1016/j.scitotenv.2013.03.027.

    CAS  Article  PubMed  Google Scholar 

  65. 65.

    Al-Wahaibi A, Zeka A. Health impacts from living near a major industrial park in Oman. BMC Public Health. 2015;15(1):524. https://doi.org/10.1186/s12889-015-1866-3.

    Article  PubMed  PubMed Central  Google Scholar 

  66. 66.

    Best EA, Juarez-Colunga E, James K, LeBlanc WG, Serdar B. Biomarkers of exposure to polycyclic aromatic hydrocarbons and cognitive function among elderly in the United States (National Health and Nutrition Examination Survey: 2001–2002). PLoS One. 2016;11(2):e0147632. https://doi.org/10.1371/journal.pone.0147632.

    Article  PubMed  PubMed Central  Google Scholar 

  67. 67.

    Candido da Silva AM, Moi GP, Mattos IE, Hacon Sde S. Low birth weight at term and the presence of fine particulate matter and carbon monoxide in the Brazilian Amazon: a population-based retrospective cohort study. BMC Pregnancy and Childbirth. 2014;14(1):309. https://doi.org/10.1186/1471-2393-14-309.

    Article  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Domazet SL, Grontved A, Timmermann AG, Nielsen F, Jensen TK. Longitudinal associations of exposure to perfluoroalkylated substances in childhood and adolescence and indicators of adiposity and glucose metabolism 6 and 12 years later: the European Youth Heart Study. Diabetes Care. 2016;39(10):1745–51. https://doi.org/10.2337/dc16-0269.

    Article  PubMed  Google Scholar 

  69. 69.

    Skroder HM, Hamadani JD, Tofail F, Persson LA, Vahter ME, Kippler MJ. Selenium status in pregnancy influences children’s cognitive function at 1.5 years of age. Clin Nutr (Edinburgh, Scotland). 2015;34(5):923–30. https://doi.org/10.1016/j.clnu.2014.09.020.

    Article  Google Scholar 

  70. 70.

    Winquist A, Steenland K. Modeled PFOA exposure and coronary artery disease, hypertension, and high cholesterol in community and worker cohorts. Environ Health Perspect. 2014;122(12):1299–305. https://doi.org/10.1289/ehp.1307943.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. 71.

    Breiman L. Random forests. Mach Learn. 2001;45(1):5–32. https://doi.org/10.1023/A:1010933404324.

    Article  Google Scholar 

  72. 72.

    Svetnik V, Liaw A, Tong C, Culberson JC, Sheridan RP, Feuston BP. Random forest: a classification and regression tool for compound classification and QSAR modeling. J Chem Inf Comp Sci. 2003;43(6):1947–58. https://doi.org/10.1021/ci034160g.

    CAS  Article  Google Scholar 

  73. 73.

    Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP. An assessment of the effectiveness of a random forest classifier for land-cover classification. Isprs J Photogramm. 2012;67:93–104. https://doi.org/10.1016/j.isprsjprs.2011.11.002.

    Article  Google Scholar 

  74. 74.

    Diaz-Uriarte R, de Andres SA. Gene selection and classification of microarray data using random forest. BMC Bioinf. 2006;7. https://doi.org/10.1186/1471-2105-7-3.

  75. 75.

    Hansen LK, Salamon P. Neural network ensembles. Ieee T Pattern Anal. 1990;12(10):993–1001. https://doi.org/10.1109/34.58871.

    Article  Google Scholar 

  76. 76.

    LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–44. https://doi.org/10.1038/nature14539.

    CAS  Article  PubMed  Google Scholar 

  77. 77.

    Cangelosi D, Pelassa S, Morini M, Conte M, Bosco MC, Eva A, et al. Artificial neural network classifier predicts neuroblastoma patients’ outcome. BMC Bioinformatics. 2016;17(Suppl 12):347. https://doi.org/10.1186/s12859-016-1194-3.

    Article  PubMed  Google Scholar 

  78. 78.

    Inthachot M, Boonjing V, Intakosum S. Artificial neural network and genetic algorithm hybrid intelligence for predicting Thai stock price index trend. Comput Intell Neurosci. 2016;2016:3045254.

    Article  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Rowley HA, Baluja S, Kanade T. Neural network-based face detection. Ieee T Pattern Anal. 1998;20(1):23–38. https://doi.org/10.1109/34.655647.

    Article  Google Scholar 

  80. 80.

    Zhang Q. Credit risk model based on artificial neural network for financial market. J Investig Med. 2014;62(8):S110–S1.

    Google Scholar 

  81. 81.

    Lugade V, Lin V, Farley A, Chou LS. An artificial neural network estimation of gait balance control in the elderly using clinical evaluations. PLoS One. 2014;9(5):e97595. https://doi.org/10.1371/journal.pone.0097595.

    Article  PubMed  PubMed Central  Google Scholar 

  82. 82.

    Bivand R, Pebesma EJ, Gómez-Rubio V. Applied spatial data analysis with R. Second edition. ed. New York: Springer; 2013. xviii. p. 405. https://doi.org/10.1007/978-1-4614-7618-4.

    Google Scholar 

  83. 83.

    Gelman A, Hill J. Data analysis using regression and multilevel/hierarchical models. Cambridge: Cambridge University Press; 2007. xxii. p. 625.

    Google Scholar 

  84. 84.

    Maas C, Hox J. Sufficient sample sizes for multilevel modeling. Methodology. 2005;1(3):86–92. https://doi.org/10.1027/1614-2241.1.3.86.

    Article  Google Scholar 

  85. 85.

    Bell SM, Edwards SW. Identification and prioritization of relationships between environmental stressors and adverse human health impacts. Environ Health Persp. 2015;123(11):1193–9.

    Article  Google Scholar 

  86. 86.

    Kapraun DF, Wambaugh JF, Ring CL, Tornero-Velez R, Setzer RW. A method for identifying prevalent chemical combinations in the U.S. population. Environ Health Persp. 2017;125(8):087017. https://doi.org/10.1289/EHP1265.

    Article  Google Scholar 

  87. 87.

    Gronlund CJ, Berrocal VJ, White-Newsome JL, Conlon KC, O’Neill MS. Vulnerability to extreme heat by socio-demographic characteristics and area green space among the elderly in Michigan, 1990–2007. Environ Res. 2015;136:449–61. https://doi.org/10.1016/j.envres.2014.08.042.

    CAS  Article  PubMed  Google Scholar 

  88. 88.

    van der Lely S, Frey S, Garbazza C, Wirz-Justice A, Jenni OG, Steiner R, et al. Blue blocker glasses as a countermeasure for alerting effects of evening light-emitting diode screen exposure in male teenagers. J Adolesc Health. 2015;56(1):113–9. https://doi.org/10.1016/j.jadohealth.2014.08.002.

    Article  PubMed  Google Scholar 

  89. 89.

    Dumont E, Johnson AC, Keller VDJ, Williams RJ. Nano silver and nano zinc-oxide in surface waters—exposure estimation for Europe at high spatial and temporal resolution. Environ Pollut. 2015;196:341–9. https://doi.org/10.1016/j.envpol.2014.10.022.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  90. 90.

    Wang A, Padula A, Sirota M, Woodruff TJ. Environmental influences on reproductive health: the importance of chemical exposures. Fertil Steril. 2016;106(4):905–29. https://doi.org/10.1016/j.fertnstert.2016.07.1076.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Drs. Marc Weisskopf and Zeyan Liew for their comments and suggestions.

Funding

This work is supported in part by the NIEHS grants R00ES021470 (AP, HH), P01ES022841, and R01ES027051, the US EPA grants RD-83564301 and RD-83543301 (TJW, RMF, AW), NLM grant K01LM012381 (MS, HH, and AW), Preterm Birth Initiative at UCSF (TJW, AP, MS, and HH), the March of Dimes Prematurity Research Center at Stanford (MS and AW), and Burroughs Wellcome Fund (MS).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hongtai Huang.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Susceptibility Factors in Environmental Health

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Wang, A., Morello-Frosch, R. et al. Cumulative Risk and Impact Modeling on Environmental Chemical and Social Stressors. Curr Envir Health Rpt 5, 88–99 (2018). https://doi.org/10.1007/s40572-018-0180-5

Download citation

Keywords

  • Cumulative risk
  • Combined effects
  • Environmental stressors
  • Non-chemical stressors
  • Social stressors
  • Quantitative modeling