Current Environmental Health Reports

, Volume 4, Issue 4, pp 385–391 | Cite as

Sex-Specific Epigenetics: Implications for Environmental Studies of Brain and Behavior

  • Marija Kundakovic
Synthetic Chemicals and Health (J Herbstman and T James-Todd, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Synthetic Chemicals and Health


Purpose of Review

This review discusses the current state of knowledge on sex differences in the epigenetic regulation in the brain and highlights its relevance for the environmental studies of brain and behavior.

Recent Findings

Recent evidence shows that epigenetic mechanisms are involved in the control of brain sexual differentiation and in memory-enhancing effects of estradiol in females. In addition, several studies have implicated epigenetic dysregulation as an underlying mechanism for sex-specific neurobehavioral effects of environmental exposures.


The area of sex-specific neurepigenetics has a great potential to improve our understanding of brain function in health and disease. Future neuropigenetic studies will require the inclusion of males and females and would ideally account for the fluctuating hormonal status in females which is likely to affect the epigenome. The implementation of cutting-edge methods that include epigenomic characterization of specific cell types using latest next-generation sequencing approaches will further advance the area.


Epigenetics Sex-specific Environmental exposures Sexual differentiation Sex hormones Brain disorders 


Compliance with Ethical Standards

Conflict of Interest

Marija Kundakovic declares that there are no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. 1.
    McCarthy MM, Arnold AP. Reframing sexual differentiation of the brain. Nat Neurosci. 2011;14(6):677–83.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    McEwen BS. Introduction: the end of sex as we once knew it. Physiol Behav. 2009;97(2):143–5.CrossRefPubMedGoogle Scholar
  3. 3.
    Marrocco J, McEwen BS. Sex in the brain: hormones and sex differences. Dialogues Clin Neurosci. 2016;18(4):373–83.PubMedPubMedCentralGoogle Scholar
  4. 4.
    McCarthy MM. Sex differences in the developing brain as a source of inherent risk. Dialogues Clin Neurosci. 2016;18(4):361–72.PubMedPubMedCentralGoogle Scholar
  5. 5.
    Deecher D, Andree TH, Sloan D, Schechter LE. From menarche to menopause: exploring the underlying biology of depression in women experiencing hormonal changes. Psychoneuroendocrinology. 2008;33(1):3–17.CrossRefPubMedGoogle Scholar
  6. 6.
    Norman RE, Byambaa M, De R, Butchart A, Scott J, Vos T. The long-term health consequences of child physical abuse, emotional abuse, and neglect: a systematic review and meta-analysis. PLoS Med. 2012;9(11):e1001349.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Heim C, Nemeroff CB. The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry. 2001;49(12):1023–39.CrossRefPubMedGoogle Scholar
  8. 8.
    Brown AS, Susser ES. Prenatal nutritional deficiency and risk of adult schizophrenia. Schizophr Bull. 2008;34(6):1054–63.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Brown AS, Derkits EJ. Prenatal infection and schizophrenia: a review of epidemiologic and translational studies. Am J Psychiatry. 2010;167(3):261–80.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Perera F, Herbstman J. Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol. 2011;31(3):363–73.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature. 2008;455(7215):894–902.CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Bisson JI, Cosgrove S, Lewis C, Robert NP. Post-traumatic stress disorder. BMJ. 2015;351:h6161.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Nestler EJ, Pena CJ, Kundakovic M, Mitchell A, Akbarian S. Epigenetic basis of mental illness. Neurosci : Rev J Neurobiol Neurol Psychiatry. 2016;22(5):447–63.Google Scholar
  14. 14.
    Kundakovic M, Jaric I. The epigenetic link between prenatal adverse environments and neurodevelopmental disorders. Genes. 2017;8(3):104.Google Scholar
  15. 15.
    McCarthy MM, Auger AP, Bale TL, De Vries GJ, Dunn GA, Forger NG, et al. The epigenetics of sex differences in the brain. J Neurosci : Off J Soc Neurosci. 2009;29(41):12815–23.CrossRefGoogle Scholar
  16. 16.
    Menger Y, Bettscheider M, Murgatroyd C, Spengler D. Sex differences in brain epigenetics. Epigenomics. 2010;2(6):807–21.CrossRefPubMedGoogle Scholar
  17. 17.
    Kundakovic M, Gudsnuk K, Franks B, Madrid J, Miller RL, Perera FP, et al. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci U S A. 2013;110(24):9956–61.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    •• Kundakovic M, Gudsnuk K, Herbstman JB, Tang D, Perera FP, Champagne FA. DNA methylation of BDNF as a biomarker of early-life adversity. Proc Natl Acad Sci U S A. 2015;112(22):6807–13. This study shows that prenatal exposure to a widely used plasticizer, bisphenol A, is associated with sex-specific epigenetic changes in rodents and humans. In rodents, prenatally induced epigenetic alterations are linked to changes in brain gene expression and behavior in the adulthood CrossRefPubMedGoogle Scholar
  19. 19.
    Kundakovic M, Lim S, Gudsnuk K, Champagne FA. Sex-specific and strain-dependent effects of early life adversity on behavioral and epigenetic outcomes. Frontiers in psychiatry. 2013;4:78.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kundakovic M, Champagne FA. Early-life experience, epigenetics, and the developing brain. Neuropsychopharmacology. 2015;40(1):141–53.Google Scholar
  21. 21.
    Klose RJ, Bird AP. Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci. 2006;31(2):89–97.CrossRefPubMedGoogle Scholar
  22. 22.
    Verdin E, Ott M. 50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond. Nat Rev Mol Cell Biol. 2015;16(4):258–64.CrossRefPubMedGoogle Scholar
  23. 23.
    Greer EL, Shi Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet. 2012;13(5):343–57.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Goldberg AD, Allis CD, Bernstein E. Epigenetics: a landscape takes shape. Cell. 2007;128(4):635–8.CrossRefPubMedGoogle Scholar
  25. 25.
    Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–95.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Magnani L, Lupien M. Chromatin and epigenetic determinants of estrogen receptor alpha (ESR1) signaling. Mol Cell Endocrinol. 2014;382(1):633–41.CrossRefPubMedGoogle Scholar
  27. 27.
    Lappalainen T, Greally JM. Associating cellular epigenetic models with human phenotypes. Nat Rev Genet. 2017;18(7):441–51.CrossRefPubMedGoogle Scholar
  28. 28.
    Arnold AP, McCarthy MM. Sexual differentiation of the brain and behavior: a primer. In: Pfaff DW, Volkow ND, editors. Neuroscience in the 21st century: from basic to clinical. New York, NY: Springer New York; 2016. p. 2139–68.Google Scholar
  29. 29.
    Bakker J, De Mees C, Douhard Q, Balthazart J, Gabant P, Szpirer J, et al. Alpha-fetoprotein protects the developing female mouse brain from masculinization and defeminization by estrogens. Nat Neurosci. 2006;9(2):220–6.CrossRefPubMedGoogle Scholar
  30. 30.
    Puts D, Motta-Mena NV. Is human brain masculinization estrogen receptor-mediated? Reply to Luoto and Rantala. Horm Behav. 2018;97:3–4.CrossRefGoogle Scholar
  31. 31.
    Nishino K, Hattori N, Tanaka S, Shiota K. DNA methylation-mediated control of Sry gene expression in mouse gonadal development. J Biol Chem. 2004;279(21):22306–13.CrossRefPubMedGoogle Scholar
  32. 32.
    Kuroki S, Matoba S, Akiyoshi M, Matsumura Y, Miyachi H, Mise N, et al. Epigenetic regulation of mouse sex determination by the histone demethylase Jmjd1a. Science. 2013;341(6150):1106–9.CrossRefPubMedGoogle Scholar
  33. 33.
    •• Nugent BM, Wright CL, Shetty AC, Hodes GE, Lenz KM, Mahurkar A, et al. Brain feminization requires active repression of masculinization via DNA methylation. Nat Neurosci. 2015;18(5):690–7. This study provides evidence that epigenetic mechanisms regulate sexual differentiation of the brain and behavior. It also opens a new possibility that brain feminization is an active process requiring DNA methylation-mediated suppression of brain masculinization CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Murray EK, Hien A, de Vries GJ, Forger NG. Epigenetic control of sexual differentiation of the bed nucleus of the stria terminalis. Endocrinology. 2009;150(9):4241–7.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Matsuda KI, Mori H, Nugent BM, Pfaff DW, McCarthy MM, Kawata M. Histone deacetylation during brain development is essential for permanent masculinization of sexual behavior. Endocrinology. 2011;152(7):2760–7.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lomniczi A, Loche A, Castellano JM, Ronnekleiv OK, Bosch M, Kaidar G, et al. Epigenetic control of female puberty. Nat Neurosci. 2013;16(3):281–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sundstrom Poromaa I, Gingnell M. Menstrual cycle influence on cognitive function and emotion processing—from a reproductive perspective. Front Neurosci. 2014;8:380.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Yonkers KA, O'Brien PS, Eriksson E. Premenstrual syndrome. Lancet. 2008;371(9619):1200–10.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Halbreich U, Borenstein J, Pearlstein T, Kahn LS. The prevalence, impairment, impact, and burden of premenstrual dysphoric disorder (PMS/PMDD). Psychoneuroendocrinology. 2003;28(Suppl 3):1–23.Google Scholar
  40. 40.
    Koss WA, Frick KM. Sex differences in hippocampal function. J Neurosci Res. 2017;95(1–2):539–62.CrossRefPubMedGoogle Scholar
  41. 41.
    Woolley CS, Gould E, Frankfurt M, McEwen BS. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci. 1990;10(12):4035–9.Google Scholar
  42. 42.
    Woolley CS, McEwen BS. Estradiol mediates fluctuation in hippocampal synapse density during the estrous cycle in the adult rat. J Neurosci. 1992;12(7):2549–54.Google Scholar
  43. 43.
    Warren SG, Humphreys AG, Juraska JM, Greenough WT. LTP varies across the estrous cycle: enhanced synaptic plasticity in proestrus rats. Brain Res. 1995;703(1–2):26–30.CrossRefPubMedGoogle Scholar
  44. 44.
    Tanapat P, Hastings NB, Reeves AJ, Gould E. Estrogen stimulates a transient increase in the number of new neurons in the dentate gyrus of the adult female rat. J Neurosci. 1999;19(14):5792–801.Google Scholar
  45. 45.
    Duclot F, Kabbaj M. The estrous cycle surpasses sex differences in regulating the transcriptome in the rat medial prefrontal cortex and reveals an underlying role of early growth response 1. Genome Biol. 2015;16(1):256.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    •• Zhao Z, Fan L, Frick KM. Epigenetic alterations regulate estradiol-induced enhancement of memory consolidation. Proc Natl Acad Sci U S A. 2010;107(12):5605–10. This study shows that the epigenomes of adult hippocampal cells are responsive to estrogen and that epigenetic mechanisms are involved in memory-enhancing effects of estradiol CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhao Z, Fan L, Fortress AM, Boulware MI, Frick KM. Hippocampal histone acetylation regulates object recognition and the estradiol-induced enhancement of object recognition. J Neurosci. 2012;32(7):2344–51.Google Scholar
  48. 48.
    Jaric I, Rocks D, Greally JM, Suzuki M, Kundakovic M. Dynamic changes in neuronal chromatin organization across the estrous cycle are linked to anxiety-related phenotypes. Program No. 74.09. 2017 Neuroscience Meeting Planner. Washington, DC; Society for Neuroscience, 2017. Online.Google Scholar
  49. 49.
    Perera F, Vishnevetsky J, Herbstman JB, Calafat AM, Xiong W, Rauh V, et al. Prenatal bisphenol a exposure and child behavior in an inner-city cohort. Environ Health Perspect. 2012;120(8):1190–4.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Braun JM, Yolton K, Dietrich KN, Hornung R, Ye X, Calafat AM, et al. Prenatal bisphenol A exposure and early childhood behavior. Environ Health Perspect. 2009;117(12):1945–52.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Tobi EW, Lumey LH, Talens RP, Kremer D, Putter H, Stein AD, et al. DNA methylation differences after exposure to prenatal famine are common and timing- and sex-specific. Hum Mol Genet. 2009;18(21):4046–53.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Mueller BR, Bale TL. Sex-specific programming of offspring emotionality after stress early in pregnancy. J Neurosci. 2008;28(36):9055–65.Google Scholar
  53. 53.
    Kundakovic M. In utero bisphenol a exposure and epigenetic programming of neurobehavioral outcomes. In: Hollar D, editors. Epigenetics, the environment, and children’s health across lifespans: Springer; 2016. p. 67–92.Google Scholar
  54. 54.
    Jirtle RL, Skinner MK. Environmental epigenomics and disease susceptibility. Nat Rev Genet. 2007;8(4):253–62.CrossRefPubMedGoogle Scholar
  55. 55.
    Kundakovic M, Champagne FA. Epigenetic perspective on the developmental effects of bisphenol A. Brain Behav Immun. 2011;25(6):1084–93.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Patisaul HB, Fortino AE, Polston EK. Neonatal genistein or bisphenol-A exposure alters sexual differentiation of the AVPV. Neurotoxicol Teratol. 2006;28(1):111–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Tetel MJ, Pfaff DW. Contributions of estrogen receptor-alpha and estrogen receptor-ss to the regulation of behavior. Biochim Biophys Acta. 2010;1800(10):1084–9.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Boulle F, van den Hove DL, Jakob SB, Rutten BP, Hamon M, van Os J, et al. Epigenetic regulation of the BDNF gene: implications for psychiatric disorders. Mol Psychiatry. 2012;17(6):584–96.CrossRefPubMedGoogle Scholar
  59. 59.
    Blaze J, Scheuing L, Roth TL. Differential methylation of genes in the medial prefrontal cortex of developing and adult rats following exposure to maltreatment or nurturing care during infancy. Dev Neurosci. 2013;35(4):306–16.CrossRefPubMedGoogle Scholar
  60. 60.
    Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE, Champagne FA. Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics. 2015;10(5):408–17.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Hodes GE, Pfau ML, Purushothaman I, Ahn HF, Golden SA, Christoffel DJ, et al. Sex differences in nucleus accumbens transcriptome profiles associated with susceptibility versus resilience to subchronic variable stress. J Neurosci. 2015;35(50):16362–76.Google Scholar
  62. 62.
    Kundakovic M, Jiang Y, Kavanagh DH, Dincer A, Brown L, Pothula V, et al. Practical guidelines for high-resolution epigenomic profiling of nucleosomal histones in postmortem human brain tissue. Biol Psychiatry. 2017;81(2):162–70.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Biological SciencesFordham UniversityBronxUSA

Personalised recommendations