Urban Form, Air Pollution, and Health
- 1.2k Downloads
- 16 Citations
Abstract
Purpose of Review
Urban form can impact air pollution and public health. We reviewed health-related articles that assessed (1) the relationships among urban form, air pollution, and health as well as (2) aspects of the urban environment (i.e., green space, noise, physical activity) that may modify those relationships.
Recent Findings
Simulation and empirical studies demonstrate an association between compact growth, improved regional air quality, and health. Most studies are cross-sectional and focus on connections between transportation emissions and land use. The physical and mental health impacts of green space, public spaces that promote physical activity, and noise are well-studied aspects of the urban environment and there is evidence that these factors may modify the relationship between air pollution and health.
Summary
Urban form can support efforts to design clean, health-promoting cities. More work is needed to operationalize specific strategies and to elucidate the causal pathways connecting various aspects of health.
Keywords
Urban planning Built environment Sprawl WalkabilityNotes
Acknowledgments
This article was developed in part under Assistance Agreement no. RD83587301 awarded by the US Environmental Protection Agency (EPA). This article has not been formally reviewed by the US EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the agency. The US EPA does not endorse any products or commercial services mentioned in this publication.
Compliance with Ethical Standards
Conflict of Interest
Steve Hankey and Julian D. Marshall declare that they have no conflict of interest.
Human and Animal Rights and Informed Consent
This article does not contain any studies with human or animal subjects performed by any of the authors.
References
Papers of particular interest, published recently, have been highlighted as: • Of importance
- 1.Ewing R, Pendall R, Chen D. Measuring sprawl and its transportation impacts. Transp Res Rec. 1831;2003:175–83. https://doi.org/10.3141/1831-20.Google Scholar
- 2.Ewing R, Cervero R. Travel and the built environment. J Am Plan Assoc. 2010;76(3):265–94. https://doi.org/10.1080/01944361003766766.CrossRefGoogle Scholar
- 3.Foley J, DeFries R, Asner G, Barford C, Bonan G, Carpenter S, et al. Global consequences of land use. Science. 2005;309(5734):570–4. https://doi.org/10.1126/science.1111772.PubMedCrossRefGoogle Scholar
- 4.Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, et al. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ. 2008;42(33):7561–78. https://doi.org/10.1016/j.atmosenv.2008.05.057.CrossRefGoogle Scholar
- 5.Leyden KM. Social capital and the built environment: the importance of walkable neighborhoods. Am J Public Health. 2003;93(9):1546–51. https://doi.org/10.2105/AJPH.93.9.1546.PubMedPubMedCentralCrossRefGoogle Scholar
- 6.Jackson R, Dannenberg AL, Frumkin H. Health and the built environment: 10 years after. Am J Public Health. 2013;103(9):1542–4. https://doi.org/10.2105/AJPH.2013.301482.PubMedPubMedCentralCrossRefGoogle Scholar
- 7.Fecht D, Fortunato L, Morley D, Hansell AL, Gulliver J. Associations between urban metrics and mortality rates in England. Environ Health. 2016;15(Suppl 1):34. https://doi.org/10.1186/s12940-016-0106-3.PubMedPubMedCentralCrossRefGoogle Scholar
- 8.Williams K. Urban form and infrastructure: a morphological review. London: Government Office for Science. June 2014. Report No.: URN GS/14/808Google Scholar
- 9.Batty M. The size, scale, and shape of cities. Science. 2008;319(5864):769–71. https://doi.org/10.1126/science.1151419.PubMedCrossRefGoogle Scholar
- 10.Prasad A, Gray CB, Ross A, Kano M. Metrics in urban health: current developments and future prospects. Annu Rev Public Health. 2016;37:113–33. https://doi.org/10.1146/annurev-publhealth-032315-021749.PubMedCrossRefGoogle Scholar
- 11.Jakubowski B, Frumkin H. Environmental metrics for community health improvement. Prev Chronic Dis. 2010;7(4):1–10.Google Scholar
- 12.Giles-Corti B, Vernez-Moudon A, Reis R, Turrell G, Dannenberg AL, Badland H, et al. City planning and population health: a global challenge. Lancet. 2016;388(10062):2912–24. https://doi.org/10.1016/s0140-6736(16)30066-6.PubMedCrossRefGoogle Scholar
- 13.Nieuwenhuijsen MJ, Khreis H. Car free cities: pathway to healthy urban living. Environ Int. 2016;94:251–62. https://doi.org/10.1016/j.envint.2016.05.032.PubMedCrossRefGoogle Scholar
- 14.Frank LD. Multiple impacts of the built environment on public health: walkable places and exposure to air pollution. Int Reg Sci Rev. 2005;28(2):193–216. https://doi.org/10.1177/0160017604273853.CrossRefGoogle Scholar
- 15.Younger M, Morrow-Almeida HR, Vindigni SM, Dannenberg AL. The built environment, climate change, and health: opportunities for co-benefits. Am J Prev Med. 2008;35(5):517–26. https://doi.org/10.1016/j.amepre.2008.08.017.PubMedCrossRefGoogle Scholar
- 16.Pope CA, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. New Engl J Med. 2009;360(4):376–86. https://doi.org/10.1056/NEJMsa0805646.PubMedPubMedCentralCrossRefGoogle Scholar
- 17.Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389(10082):1907–18. https://doi.org/10.1016/s0140-6736(17)30505-6.PubMedPubMedCentralCrossRefGoogle Scholar
- 18.Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224–60. https://doi.org/10.1016/S0140-6736(12)61766-8.PubMedPubMedCentralCrossRefGoogle Scholar
- 19.Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women. New Engl J Med. 2007;356(5):447–58. https://doi.org/10.1056/NEJMoa054409.PubMedCrossRefGoogle Scholar
- 20.Marshall J. Energy efficient urban form. Environ Sci Technol. 2008;42(9):3133–7. https://doi.org/10.1021/es087047l.PubMedCrossRefGoogle Scholar
- 21.Hankey S, Marshall JD. Impacts of urban form on future US passenger-vehicle greenhouse gas emissions. Energ Policy. 2010;38(9):4880–7. https://doi.org/10.1016/j.enpol.2009.07.005.CrossRefGoogle Scholar
- 22.Hankey S, Lindsey G, Marshall JD. Population-level exposure to particulate air pollution during active travel: planning for low-exposure, health-promoting cities. Environ Health Perspect. 2016;125(4):527–34. https://doi.org/10.1289/EHP442.PubMedPubMedCentralCrossRefGoogle Scholar
- 23.de Nazelle A, Nieuwenhuijsen MJ, Anto JM, Brauer M, Briggs D, Braun-Fahrlander C, et al. Improving health through policies that promote active travel: a review of evidence to support integrated health impact assessment. Environ Int. 2011;37(4):766–77. https://doi.org/10.1016/j.envint.2011.02.003.PubMedCrossRefGoogle Scholar
- 24.Gascon M, Vrijheid M, Nieuwenhuijsen MJ. The built environment and child health: an overview of current evidence. Curr Environ Health Rep. 2016;3(3):250–7. https://doi.org/10.1007/s40572-016-0094-z.PubMedCrossRefGoogle Scholar
- 25.Schulz M, Romppel M, Grande G. Built environment and health: a systematic review of studies in Germany. J Public Health (Oxf). 2016; https://doi.org/10.1093/pubmed/fdw141.
- 26.Gallagher J, Baldauf R, Fuller CH, Kumar P, Gill LW, McNabola A. Passive methods for improving air quality in the built environment: a review of porous and solid barriers. Atmos Environ. 2015;120:61–70. https://doi.org/10.1016/j.atmosenv.2015.08.075.CrossRefGoogle Scholar
- 27.Karner AA, Eisinger DS, Niemeier DA. Near-roadway air quality: synthesizing the findings from real-world data. Environ Sci Technol. 2010;44(14):5334–44. https://doi.org/10.1021/es100008x.PubMedCrossRefGoogle Scholar
- 28.Oja P, Titze S, Bauman A, de Geus B, Krenn P, Reger-Nash B, et al. Health benefits of cycling: a systematic review. Scand J Med Sci Sports. 2011;21(4):496–509. https://doi.org/10.1111/j.1600-0838.2011.01299.x.PubMedCrossRefGoogle Scholar
- 29.Saelens BE, Handy SL. Built environment correlates of walking: a review. Med Sci Sports Exerc. 2008;40(7 Suppl):S550–66. https://doi.org/10.1249/MSS.0b013e31817c67a4.PubMedPubMedCentralCrossRefGoogle Scholar
- 30.Ferdinand AO, Sen B, Rahurkar S, Engler S, Menachemi N. The relationship between built environments and physical activity: a systematic review. Am J Public Health. 2012;102(10):e7–e13. https://doi.org/10.2105/AJPH.2012.300740.PubMedCrossRefGoogle Scholar
- 31.Day K. Built environmental correlates of physical activity in China: a review. Prev Med Rep. 2016;3:303–16. https://doi.org/10.1016/j.pmedr.2016.03.007.PubMedPubMedCentralCrossRefGoogle Scholar
- 32.Marshall JD, McKone TE, Deakin E, Nazaroff WW. Inhalation of motor vehicle emissions: effects of urban population and land area. Atmos Environ. 2005;39(2):283–95. https://doi.org/10.1016/j.atmosenv.2004.09.059.CrossRefGoogle Scholar
- 33.Song J, Webb A, Parmenter B, Allen D, Mcdonald-Buller E. The impacts of urbanization on emissions and air quality: comparison of four visions of Austin, Texas. Environ Sci Technol. 2008;42(19):7294–300. https://doi.org/10.1021/es800645j.PubMedCrossRefGoogle Scholar
- 34.Schindler M, Caruso G. Urban compactness and the trade-off between air pollution emission and exposure: lessons from a spatially explicit theoretical model. Comput Environ Urban. 2014;45:13–23. https://doi.org/10.1016/j.compenvurbsys.2014.01.004.CrossRefGoogle Scholar
- 35.Kahyaoğlu-Koračin J, Bassett SD, Mouat DA, Gertler AW. Application of a scenario-based modeling system to evaluate the air quality impacts of future growth. Atmos Environ. 2009;43(5):1021–8. https://doi.org/10.1016/j.atmosenv.2008.04.004.CrossRefGoogle Scholar
- 36.Mansfield TJ, Rodriguez DA, Huegy J, Gibson JM. The effects of urban form on ambient air pollution and public health risk: a case study in Raleigh, North Carolina. Risk Anal. 2015;35(5):901–18. https://doi.org/10.1111/risa.12317.PubMedCrossRefGoogle Scholar
- 37.de Nazelle A, Rodriguez DA, Crawford-Brown D. The built environment and health: impacts of pedestrian-friendly designs on air pollution exposure. Sci Total Environ. 2009;407(8):2525–35. https://doi.org/10.1016/j.scitotenv.2009.01.006.PubMedCrossRefGoogle Scholar
- 38.Stone B, Mednick AC, Holloway T, Spak SN. Is compact growth good for air quality? J Am Plan Assoc. 2007;73(4):404–18. https://doi.org/10.1080/01944360708978521.CrossRefGoogle Scholar
- 39.Maizlish N, Woodcock J, Co S, Ostro B, Fanai A, Fairley D. Health cobenefits and transportation-related reductions in greenhouse gas emissions in the San Francisco Bay area. Am J Public Health. 2013;103(4):703–9. https://doi.org/10.2105/AJPH.2012.300939.PubMedPubMedCentralCrossRefGoogle Scholar
- 40.Perez L, Trueb S, Cowie H, Keuken MP, Mudu P, Ragettli MS, et al. Transport-related measures to mitigate climate change in Basel, Switzerland: a health-effectiveness comparison study. Environ Int. 2015;85:111–9. https://doi.org/10.1016/j.envint.2015.08.002.PubMedCrossRefGoogle Scholar
- 41.Lindsay G, Macmillan A, Woodward A. Moving urban trips from cars to bicycles: impact on health and emissions. Aust N Z J Public Health. 2011;35(1):54–60. https://doi.org/10.1111/j.1753-6405.2010.00621.x.PubMedCrossRefGoogle Scholar
- 42.• Macmillan A, Connor J, Witten K, Kearns R, Rees D, Woodward A. The societal costs and benefits of commuter bicycling: simulating the effects of specific policies using system dynamics modeling. Environ Health Perspect. 2014;122(4):335–44. https://doi.org/10.1289/ehp.1307250. This paper modeled the impacts of specific policy interventions rather than of development patterns. PubMedPubMedCentralGoogle Scholar
- 43.Yu H, Stuart AL. Impacts of compact growth and electric vehicles on future air quality and urban exposures may be mixed. Sci Total Environ. 2017;576:148–58. https://doi.org/10.1016/j.scitotenv.2016.10.079.PubMedCrossRefGoogle Scholar
- 44.de Nazelle A, Rodríguez DA. Tradeoffs in incremental changes towards pedestrian-friendly environments: physical activity and pollution exposure. Transp Res D-Tr E. 2009;14(4):255–63. https://doi.org/10.1016/j.trd.2009.02.002.CrossRefGoogle Scholar
- 45.Gurram S, Stuart AL, Pinjari AR. Impacts of travel activity and urbanicity on exposures to ambient oxides of nitrogen and on exposure disparities. Air Qual Atmos Health. 2015;8(1):97–114. https://doi.org/10.1007/s11869-014-0275-6.PubMedCrossRefGoogle Scholar
- 46.Woodcock J, Givoni M, Morgan AS. Health impact modelling of active travel visions for England and Wales using an Integrated Transport and Health Impact Modelling Tool (ITHIM). PLoS One. 2013;8(1):e51462. https://doi.org/10.1371/journal.pone.0051462.PubMedPubMedCentralCrossRefGoogle Scholar
- 47.Stone B Jr. Urban sprawl and air quality in large US cities. J Environ Manag. 2008;86(4):688–98. https://doi.org/10.1016/j.jenvman.2006.12.034.CrossRefGoogle Scholar
- 48.Schweitzer L, Zhou J. Neighborhood air quality, respiratory health, and vulnerable populations in compact and sprawled regions. J Am Plan Assoc. 2010;76(3):363–71. https://doi.org/10.1080/01944363.2010.486623.CrossRefGoogle Scholar
- 49.Bechle MJ, Millet DB, Marshall JD. Effects of income and urban form on urban NO2: global evidence from satellites. Environ Sci Technol. 2011;45(11):4914–9. https://doi.org/10.1021/es103866b.PubMedCrossRefGoogle Scholar
- 50.Clark LP, Millet DB, Marshall JD. Air quality and urban form in U.S. urban areas: evidence from regulatory monitors. Environ Sci Technol. 2011;45(16):7028–35. https://doi.org/10.1021/es2006786.PubMedCrossRefGoogle Scholar
- 51.Lu C, Liu Y. Effects of China's urban form on urban air quality. Urban Stud. 2015;53(12):2607–23. https://doi.org/10.1177/0042098015594080.CrossRefGoogle Scholar
- 52.Bechle MJ, Millet DB, Marshall J. Does urban form affect urban NO2? Satellite-based evidence for more than 1,200 cities. Environ Sci Technol. https://doi.org/10.1021/acs.est.7b01194.
- 53.Bereitschaft B, Debbage K. Urban form, air pollution, and CO2 emissions in large U.S. metropolitan areas. Prof Geogr. 2013;65(4):612–35. https://doi.org/10.1080/00330124.2013.799991.CrossRefGoogle Scholar
- 54.• Kashem SB, Irawan A, Wilson B. Evaluating the dynamic impacts of urban form on transportation and environmental outcomes in US cities. Int J Environ Sci Tech. 2014;11(8):2233–44. https://doi.org/10.1007/s13762-014-0630-z. This paper is one of two available articles that use a longitudinal, empirical approach to assess urban form and air quality; it focuses on the United States. CrossRefGoogle Scholar
- 55.• Larkin A, van Donkelaar A, Geddes JA, Martin RV, Hystad P. Relationships between changes in urban characteristics and air quality in East Asia from 2000 to 2010. Environ Sci Technol. 2016;50(17):9142–9. https://doi.org/10.1021/acs.est.6b02549. This paper is one of two available articles that use a longitudinal, empirical approach to assess urban form and air quality; it focuses on East Asia. PubMedPubMedCentralCrossRefGoogle Scholar
- 56.James P, Hart JE, Laden F. Neighborhood walkability and particulate air pollution in a nationwide cohort of women. Environ Res. 2015;142:703–11. https://doi.org/10.1016/j.envres.2015.09.005.PubMedPubMedCentralCrossRefGoogle Scholar
- 57.McCarty J, Kaza N. Urban form and air quality in the United States. Landsc Urban Plan. 2015;139:168–79. https://doi.org/10.1016/j.landurbplan.2015.03.008.CrossRefGoogle Scholar
- 58.Su JG, Apte JS, Lipsitt J, Garcia-Gonzales DA, Beckerman BS, de Nazelle A, et al. Populations potentially exposed to traffic-related air pollution in seven world cities. Environ Int. 2015;78:82–9. https://doi.org/10.1016/j.envint.2014.12.007.PubMedCrossRefGoogle Scholar
- 59.Marshall JD, Brauer M, Frank LD. Healthy neighborhoods: walkability and air pollution. Environ Health Perspect. 2009;117(11):1752–9. https://doi.org/10.1289/ehp.0900595.PubMedPubMedCentralCrossRefGoogle Scholar
- 60.Hankey S, Marshall JD, Brauer M. Health impacts of the built environment: within-urban variability in physical inactivity, air pollution, and ischemic heart disease mortality. Environ Health Perspect. 2012;120(2):247–53. https://doi.org/10.1289/ehp.1103806.PubMedCrossRefGoogle Scholar
- 61.Cowie CT, Ding D, Rolfe MI, Mayne DJ, Jalaludin B, Bauman A, et al. Neighbourhood walkability, road density and socio-economic status in Sydney, Australia. Environ Health. 2016;15:58. https://doi.org/10.1186/s12940-016-0135-y.PubMedPubMedCentralCrossRefGoogle Scholar
- 62.King K. Neighborhood walkable urban form and C-reactive protein. Prev Med. 2013;57(6):850–4. https://doi.org/10.1016/j.ypmed.2013.09.019.PubMedPubMedCentralCrossRefGoogle Scholar
- 63.Shekarrizfard M, Faghih-Imani A, Crouse DL, Goldberg M, Ross N, Eluru N, et al. Individual exposure to traffic related air pollution across land-use clusters. Transp Res D-Tr E. 2016;46:339–50. https://doi.org/10.1016/j.trd.2016.04.010.CrossRefGoogle Scholar
- 64.Weichenthal S, Farrell W, Goldberg M, Joseph L, Hatzopoulou M. Characterizing the impact of traffic and the built environment on near-road ultrafine particle and black carbon concentrations. Environ Res. 2014;132:305–10. https://doi.org/10.1016/j.envres.2014.04.007.PubMedCrossRefGoogle Scholar
- 65.Bigazzi AY, Figliozzi MA. Review of urban bicyclists’ intake and uptake of traffic-related air pollution. Transp Rev. 2014;34(2):221–45. https://doi.org/10.1080/01441647.2014.897772.CrossRefGoogle Scholar
- 66.Dons E, Int Panis L, Van Poppel M, Theunis J, Wets G. Personal exposure to black carbon in transport microenvironments. Atmos Environ. 2012;55:392–8. https://doi.org/10.1016/j.atmosenv.2012.03.020.CrossRefGoogle Scholar
- 67.Zuurbier M, Hoek G, Oldenwening M, Lenters V, Meliefste K, van den Hazel P, et al. Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect. 2010;118(6):783–9. https://doi.org/10.1289/ehp.0901622.PubMedPubMedCentralCrossRefGoogle Scholar
- 68.Int Panis L, de Geus B, Vandenbulcke G, Willems H, Degraeuwe B, Bleux N, et al. Exposure to particulate matter in traffic: a comparison of cyclists and car passengers. Atmos Environ. 2010;44(19):2263–70. https://doi.org/10.1016/j.atmosenv.2010.04.028.CrossRefGoogle Scholar
- 69.Farrell W, Weichenthal S, Goldberg M, Valois MF, Shekarrizfard M, Hatzopoulou M. Near roadway air pollution across a spatially extensive road and cycling network. Environ Pollut. 2016;212:498–507. https://doi.org/10.1016/j.envpol.2016.02.041.PubMedCrossRefGoogle Scholar
- 70.Hankey S, Marshall JD. On-bicycle exposure to particulate air pollution: particle number, black carbon, PM2.5, and particle size. Atmos Environ. 2015;122:65–73. https://doi.org/10.1016/j.atmosenv.2015.09.025.CrossRefGoogle Scholar
- 71.Hatzopoulou M, Weichenthal S, Dugum H, Pickett G, Miranda-Moreno L, Kulka R, et al. The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada. J Expo Sci Environ Epidemiol. 2013;23(1):46–51. https://doi.org/10.1038/jes.2012.85.PubMedCrossRefGoogle Scholar
- 72.Hertel O, Hvidberg M, Ketzel M, Storm L, Stausgaard L. A proper choice of route significantly reduces air pollution exposure—a study on bicycle and bus trips in urban streets. Sci Total Environ. 2008;389(1):58–70. https://doi.org/10.1016/j.scitotenv.2007.08.058.PubMedCrossRefGoogle Scholar
- 73.Park HY, Gilbreath S, Barakatt E. Respiratory outcomes of ultrafine particulate matter (UFPM) as a surrogate measure of near-roadway exposures among bicyclists. Environ Health. 2017;16:6. https://doi.org/10.1186/s12940-017-0212-x.PubMedPubMedCentralCrossRefGoogle Scholar
- 74.Franco JF, Segura JF, Mura I. Air pollution alongside bike-paths in Bogotá-Colombia. Front Environ Sci. 2016;4:77. https://doi.org/10.3389/fenvs.2016.00077.CrossRefGoogle Scholar
- 75.Dons E, Temmerman P, Van Poppel M, Bellemans T, Wets G, Int PL. Street characteristics and traffic factors determining road users’ exposure to black carbon. Sci Total Environ. 2013;447:72–9. https://doi.org/10.1016/j.scitotenv.2012.12.076.PubMedCrossRefGoogle Scholar
- 76.Evans G. The built environment and mental health. J Urban Health. 2003;80(4):536–55. https://doi.org/10.1093/jurban/jtg063.PubMedPubMedCentralCrossRefGoogle Scholar
- 77.• Dadvand P, Nieuwenhuijsen MJ, Esnaola M, Forns J, Basagana X, Alvarez-Pedrerol M, et al. Green spaces and cognitive development in primary schoolchildren. Proc Natl Acad Sci. 2015;112(26):7937–42. https://doi.org/10.1073/pnas.1503402112. This study was the first to assess exposure to greenness (and mediation from air pollution) on cognitive development in school children. PubMedPubMedCentralCrossRefGoogle Scholar
- 78.Zijlema WL, Triguero-Mas M, Smith G, Cirach M, Martinez D, Dadvand P, et al. The relationship between natural outdoor environments and cognitive functioning and its mediators. Environ Res. 2017;155:268–75. https://doi.org/10.1016/j.envres.2017.02.017.PubMedCrossRefGoogle Scholar
- 79.Hartig T, Evans GW, Jamner LD, Davis DS, Gärling T. Tracking restoration in natural and urban field settings. J Environ Psychol. 2003;23(2):109–23. https://doi.org/10.1016/s0272-4944(02)00109-3.CrossRefGoogle Scholar
- 80.Gascon M, Triguero-Mas M, Martinez D, Dadvand P, Forns J, Plasencia A, et al. Mental health benefits of long-term exposure to residential green and blue spaces: a systematic review. Int J Environ Res Public Health. 2015;12(4):4354–79. https://doi.org/10.3390/ijerph120404354.PubMedPubMedCentralCrossRefGoogle Scholar
- 81.Boniface S, Scantlebury R, Watkins SJ, Mindell JS. Health implications of transport: evidence of effects of transport on social interactions. J Transp Health. 2015;2(3):441–6. https://doi.org/10.1016/j.jth.2015.05.005.CrossRefGoogle Scholar
- 82.Morris EA, Guerra E. Mood and mode: does how we travel affect how we feel? Transportation. 2014;42(1):25–43. https://doi.org/10.1007/s11116-014-9521-x.CrossRefGoogle Scholar
- 83.Gatersleben B, Uzzell D. Affective appraisals of the daily commute: comparing perceptions of drivers, cyclists, walkers, and users of public transport. Environ Behav. 2007;39(3):416–31. https://doi.org/10.1177/0013916506294032.CrossRefGoogle Scholar
- 84.• James P, Hart JE, Banay RF, Laden F, Signorello LB. Built environment and depression in low-income african americans and whites. Am J Prev Med. 2017;52(1):74–84. https://doi.org/10.1016/j.amepre.2016.08.022. This paper found that environmental and social stressors could mediate benefits of walkable neighborhoods in certain cases. PubMedCrossRefGoogle Scholar
- 85.Maantay J, Maroko A. ‘At-risk’ places: inequities in the distribution of environmental stressors and prescription rates of mental health medications in Glasgow, Scotland. Environ Res Lett. 2015;10(11):115003. https://doi.org/10.1088/1748-9326/10/11/115003.CrossRefGoogle Scholar
- 86.Tzivian L, Jokisch M, Winkler A, Weimar C, Hennig F, Sugiri D, et al. Associations of long-term exposure to air pollution and road traffic noise with cognitive function—an analysis of effect measure modification. Environ Int. 2017;103:30–8. https://doi.org/10.1016/j.envint.2017.03.018.PubMedCrossRefGoogle Scholar
- 87.Kirchner TR, Shiffman S. Spatio-temporal determinants of mental health and well-being: advances in geographically-explicit ecological momentary assessment (GEMA). Soc Psychiatry Psychiatr Epidemiol. 2016;51(9):1211–23. https://doi.org/10.1007/s00127-016-1277-5.PubMedPubMedCentralCrossRefGoogle Scholar
- 88.Cole-Hunter T, Donaire-Gonzalez D, Curto A, Ambros A, Valentin A, Garcia-Aymerich J, et al. Objective correlates and determinants of bicycle commuting propensity in an urban environment. Transp Res D-Tr E. 2015;40:132–43. https://doi.org/10.1016/j.trd.2015.07.004.CrossRefGoogle Scholar
- 89.Honold J, Beyer R, Lakes T, van der Meer E. Multiple environmental burdens and neighborhood-related health of city residents. J Environ Psychol. 2012;32(4):305–17. https://doi.org/10.1016/j.jenvp.2012.05.002.CrossRefGoogle Scholar
- 90.Chum A, O'Campo P. Cross-sectional associations between residential environmental exposures and cardiovascular diseases. BMC Public Health. 2015;15:438. https://doi.org/10.1186/s12889-015-1788-0.PubMedPubMedCentralCrossRefGoogle Scholar
- 91.Kabisch N, Haase D. Green spaces of European cities revisited for 1990–2006. Landsc Urban Plan. 2013;110:113–22. https://doi.org/10.1016/j.landurbplan.2012.10.017.CrossRefGoogle Scholar
- 92.De Ridder K, Adamec V, Banuelos A, Bruse M, Burger M, Damsgaard O, et al. An integrated methodology to assess the benefits of urban green space. Sci Total Environ. 2004;334-335:489–97. https://doi.org/10.1016/j.scitotenv.2004.04.054.PubMedCrossRefGoogle Scholar
- 93.Wolch JR, Byrne J, Newell JP. Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landsc Urban Plan. 2014;125:234–44. https://doi.org/10.1016/j.landurbplan.2014.01.017.CrossRefGoogle Scholar
- 94.Su JG, Jerrett M, de Nazelle A, Wolch J. Does exposure to air pollution in urban parks have socioeconomic, racial or ethnic gradients? Environ Res. 2011;111(3):319–28. https://doi.org/10.1016/j.envres.2011.01.002.PubMedCrossRefGoogle Scholar
- 95.Hystad P, Davies HW, Frank L, Van Loon J, Gehring U, Tamburic L, et al. Residential greenness and birth outcomes: evaluating the influence of spatially correlated built-environment factors. Environ Health Perspect. 2014;122(10):1095–102. https://doi.org/10.1289/ehp.1308049.PubMedPubMedCentralGoogle Scholar
- 96.Casey JA, James P, Rudolph KE, Wu CD, Schwartz BS. Greenness and birth outcomes in a range of Pennsylvania communities. Int J Environ Res Public Health. 2016;13(3):E311. https://doi.org/10.3390/ijerph13030311.PubMedCrossRefGoogle Scholar
- 97.Ebisu K, Holford TR, Bell ML. Association between greenness, urbanicity, and birth weight. Sci Total Environ. 2016;542(Pt A):750–6. https://doi.org/10.1016/j.scitotenv.2015.10.111.PubMedCrossRefGoogle Scholar
- 98.Demoury C, Thierry B, Richard H, Sigler B, Kestens Y, Parent ME. Residential greenness and risk of prostate cancer: a case-control study in Montreal, Canada. Environ Int. 2017;98:129–36. https://doi.org/10.1016/j.envint.2016.10.024.PubMedCrossRefGoogle Scholar
- 99.• James P, Hart JE, Banay RF, Laden F. Exposure to greenness and mortality in a nationwide prospective cohort study of women. Environ Health Perspect. 2016;124(9):1344–52. https://doi.org/10.1289/ehp.1510363. This paper assessed association between greenness and all-cause mortality with a mediation analysis for other potential factors (e.g., physical activity, air pollution, mental health). PubMedPubMedCentralCrossRefGoogle Scholar
- 100.Villeneuve PJ, Jerrett M, Su JG, Burnett RT, Chen H, Wheeler AJ, et al. A cohort study relating urban green space with mortality in Ontario, Canada. Environ Res. 2012;115:51–8. https://doi.org/10.1016/j.envres.2012.03.003.PubMedCrossRefGoogle Scholar
- 101.Dadvand P, Sunyer J, Alvarez-Pedrerol M, Dalmau-Bueno A, Esnaola M, Gascon M, et al. Green spaces and spectacles use in schoolchildren in Barcelona. Environ Res. 2017;152:256–62. https://doi.org/10.1016/j.envres.2016.10.026.PubMedCrossRefGoogle Scholar
- 102.Kioumourtzoglou M, Schwartz J, James P, Dominici F, Zanobetti A. PM2.5 and mortality in 2017 US cities modification by temperature and city characteristics. Epidemiology. 2016;27(2):221–7. https://doi.org/10.1097/EDE.0000000000000422.PubMedPubMedCentralGoogle Scholar
- 103.Lovasi GS, O'Neil-Dunne JP, Lu JW, Sheehan D, Perzanowski MS, Macfaden SW, et al. Urban tree canopy and asthma, wheeze, rhinitis, and allergic sensitization to tree pollen in a New York City birth cohort. Environ Health Perspect. 2013;121(4):494–500. https://doi.org/10.1289/ehp.1205513.PubMedPubMedCentralGoogle Scholar
- 104.Lee AC, Maheswaran R. The health benefits of urban green spaces: a review of the evidence. J Public Health (Oxf). 2011;33(2):212–22. https://doi.org/10.1093/pubmed/fdq068.CrossRefGoogle Scholar
- 105.Russell R, Guerry AD, Balvanera P, Gould RK, Basurto X, Chan KMA, et al. Humans and nature: how knowing and experiencing nature affect well-being. Annu Rev Environ Resour. 2013;38(1):473–502. https://doi.org/10.1146/annurev-environ-012312-110838.CrossRefGoogle Scholar
- 106.de Keijzer C, Gascon M, Nieuwenhuijsen MJ, Dadvand P. Long-term green space exposure and cognition across the life course: a systematic review. Curr Environ Health Rep. 2016;3(4):468–77. https://doi.org/10.1007/s40572-016-0116-x.PubMedCrossRefGoogle Scholar
- 107.Rey Gozalo G, Barrigón Morillas JM, Trujillo Carmona J, Montes González D, Atanasio Moraga P, Gómez Escobar V, et al. Study on the relation between urban planning and noise level. Appl Acoust. 2016;111:143–7. https://doi.org/10.1016/j.apacoust.2016.04.018.CrossRefGoogle Scholar
- 108.Weber N, Haase D, Franck U. Traffic-induced noise levels in residential urban structures using landscape metrics as indicators. Ecol Indic. 2014;45:611–21. https://doi.org/10.1016/j.ecolind.2014.05.004.CrossRefGoogle Scholar
- 109.Weber N, Haase D, Franck U. Assessing modelled outdoor traffic-induced noise and air pollution around urban structures using the concept of landscape metrics. Landsc Urban Plan. 2014;125:105–16. https://doi.org/10.1016/j.landurbplan.2014.02.018.CrossRefGoogle Scholar
- 110.Tang UW, Wang ZS. Influences of urban forms on traffic-induced noise and air pollution: Results from a modelling system. Environ Model Softw. 2007;22(12):1750–64. https://doi.org/10.1016/j.envsoft.2007.02.003.CrossRefGoogle Scholar
- 111.Curran JH, Ward HD, Shum M, Davies HW. Reducing cardiovascular health impacts from traffic-related noise and air pollution: intervention strategies. Environ Health Rev. 2013;56(02):31–8. https://doi.org/10.5864/d2013-011.CrossRefGoogle Scholar
- 112.Chum A, O'Campo P, Matheson F. The impact of urban land uses on sleep duration and sleep problems. Can Geogr-Geogr Can. 2015;59(4):404–18. https://doi.org/10.1111/cag.12202.CrossRefGoogle Scholar
- 113.Gehring U, Tamburic L, Sbihi H, Davies HW, Brauer M. Impact of noise and air pollution on pregnancy outcomes. Epidemiology. 2014;25(3):351–8. https://doi.org/10.1097/EDE.0000000000000073.PubMedCrossRefGoogle Scholar
- 114.van Kamp I, Davies H. Noise and health in vulnerable groups: a review. Noise Health. 2013;15(64):153–9. https://doi.org/10.4103/1463-1741.112361.PubMedCrossRefGoogle Scholar
- 115.Giles LV, Koehle MS. The health effects of exercising in air pollution. Sports Med. 2014;44(2):223–49. https://doi.org/10.1007/s40279-013-0108-z.PubMedCrossRefGoogle Scholar
- 116.de Hartog JJ, Boogaard H, Nijland H, Hoek G. Do the health benefits of cycling outweigh the risks? Environ Health Perspect. 2010;118(8):1109–16. https://doi.org/10.1289/ehp.0901747.PubMedCentralCrossRefGoogle Scholar
- 117.Holm AL, Glumer C, Diderichsen F. Health impact assessment of increased cycling to place of work or education in Copenhagen. BMJ Open. 2012;2:e001135. https://doi.org/10.1136/bmjopen-2012-001135.PubMedPubMedCentralCrossRefGoogle Scholar
- 118.Rabl A, de Nazelle A. Benefits of shift from car to active transport. Transp Policy. 2012;19(1):121–31. https://doi.org/10.1016/j.tranpol.2011.09.008.CrossRefGoogle Scholar
- 119.Rojas-Rueda D, de Nazelle A, Teixido O, Nieuwenhuijsen MJ. Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: a health impact assessment study. Environ Int. 2012;49:100–9. https://doi.org/10.1016/j.envint.2012.08.009.PubMedCrossRefGoogle Scholar
- 120.Tainio M, de Nazelle AJ, Gotschi T, Kahlmeier S, Rojas-Rueda D, Nieuwenhuijsen MJ, et al. Can air pollution negate the health benefits of cycling and walking? Prev Med. 2016;87:233–6. https://doi.org/10.1016/j.ypmed.2016.02.002.PubMedPubMedCentralCrossRefGoogle Scholar
- 121.Grabow ML, Spak SN, Holloway T, Stone B, Mednick AC, Patz JA. Air quality and exercise-related health benefits from reduced car travel in the midwestern United States. Environ Health Perspect. 2012;120(1):68–76. https://doi.org/10.1289/ehp.1103440.PubMedCrossRefGoogle Scholar
- 122.Perdue LA, Michael YL, Harris C, Heller J, Livingston C, Rader M, et al. Rapid health impact assessment of policies to reduce vehicle miles traveled in Oregon. Public Health. 2012;126(12):1063–71. https://doi.org/10.1016/j.puhe.2011.09.026.PubMedCrossRefGoogle Scholar
- 123.Stevenson M, Thompson J, de Sá TH, Ewing R, Mohan D, McClure R, et al. Land use, transport, and population health: estimating the health benefits of compact cities. Lancet. 2016;388(10062):2925–35. https://doi.org/10.1016/s0140-6736(16)30067-8.PubMedPubMedCentralCrossRefGoogle Scholar
- 124.An R, Xiang X. Ambient fine particulate matter air pollution and leisure-time physical inactivity among US adults. Public Health. 2015;129(12):1637–44. https://doi.org/10.1016/j.puhe.2015.07.017.PubMedCrossRefGoogle Scholar
- 125.Roberts JD, Voss JD, Knight B. The association of ambient air pollution and physical inactivity in the United States. PLoS One. 2014;9(3):e90143. https://doi.org/10.1371/journal.pone.0090143.PubMedPubMedCentralCrossRefGoogle Scholar
- 126.Jerrett M, McConnell R, Chang CC, Wolch J, Reynolds K, Lurmann F, et al. Automobile traffic around the home and attained body mass index: a longitudinal cohort study of children aged 10-18 years. Prev Med. 2010;50(Suppl 1):S50–8. https://doi.org/10.1016/j.ypmed.2009.09.026.PubMedCrossRefGoogle Scholar
- 127.Fisher J, Loft S, Ulrik C, Raaschou-Nielsen O, Hertel O, Tjønneland A, et al. Physical activity, air pollution, and the risk of asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2016;194(7):855–63. https://doi.org/10.1164/rccm.201510-2036OC.PubMedCrossRefGoogle Scholar
- 128.• Andersen ZJ, de Nazelle A, Mendez MA, Garcia-Aymerich J, Hertel O, Tjonneland A, et al. A study of the combined effects of physical activity and air pollution on mortality in elderly urban residents: the Danish Diet, Cancer, and Health Cohort. Environ Health Perspect. 2015;123(6):557–63. https://doi.org/10.1289/ehp.1408698. This cohort study assesses whether chronic exposure to air pollution modifies benefits from physical activity. PubMedPubMedCentralGoogle Scholar
- 129.Wong CM, Ou CQ, Thach TQ, Chau YK, Chan KP, Ho SY, et al. Does regular exercise protect against air pollution-associated mortality? Prev Med. 2007;44(5):386–92. https://doi.org/10.1016/j.ypmed.2006.12.012.PubMedCrossRefGoogle Scholar
- 130.McConnell R, Berhane K, Gilliland F, London SJ, Islam T, Gauderman WJ, et al. Asthma in exercising children exposed to ozone: a cohort study. Lancet. 2002;359(9304):386–91. https://doi.org/10.1016/s0140-6736(02)07597-9.PubMedCrossRefGoogle Scholar
- 131.Bos I, Jacobs L, Nawrot TS, de Geus B, Torfs R, Int Panis L, et al. No exercise-induced increase in serum BDNF after cycling near a major traffic road. Neurosci Lett. 2011;500(2):129–32. https://doi.org/10.1016/j.neulet.2011.06.019.PubMedCrossRefGoogle Scholar
- 132.Weichenthal S, Kulka R, Dubeau A, Martin C, Wang D, Dales R. Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environ Health Perspect. 2011;119(10):1373–8. https://doi.org/10.1289/ehp.1003321.PubMedPubMedCentralCrossRefGoogle Scholar
- 133.Weichenthal S, Hatzopoulou M, Goldberg MS. Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: a cross-over study. Part Fibre Toxicol. 2014;11(1):1–16. https://doi.org/10.1186/s12989-014-0070-4.CrossRefGoogle Scholar
- 134.Kubesch N, De Nazelle A, Guerra S, Westerdahl D, Martinez D, Bouso L, et al. Arterial blood pressure responses to short-term exposure to low and high traffic-related air pollution with and without moderate physical activity. Eur J Prev Cardiol. 2015;22(5):548–57. https://doi.org/10.1177/2047487314555602.PubMedCrossRefGoogle Scholar
- 135.Kubesch NJ, de Nazelle A, Westerdahl D, Martinez D, Carrasco-Turigas G, Bouso L, et al. Respiratory and inflammatory responses to short-term exposure to traffic-related air pollution with and without moderate physical activity. Occup Environ Med. 2015;72(4):284–93. https://doi.org/10.1136/oemed-2014-102106.PubMedCrossRefGoogle Scholar
- 136.Jacobs L, Nawrot TS, de Geus B, Meeusen R, Degraeuwe B, Bernard A, et al. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: an intervention study. Environ Health. 2010;9:64. https://doi.org/10.1186/1476-069X-9-64.PubMedPubMedCentralCrossRefGoogle Scholar
- 137.Jarjour S, Jerrett M, Westerdahl D, de Nazelle A, Hanning C, Daly L, et al. Cyclist route choice, traffic-related air pollution, and lung function: a scripted exposure study. Environ Health. 2013;12(1):1–12. https://doi.org/10.1186/1476-069X-12-14.CrossRefGoogle Scholar
- 138.Strak M, Boogaard H, Meliefste K, Oldenwening M, Zuurbier M, Brunekreef B, et al. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup Environ Med. 2010;67(2):118–24. https://doi.org/10.1136/oem.2009.046847.PubMedCrossRefGoogle Scholar