Advertisement

Current Environmental Health Reports

, Volume 4, Issue 4, pp 491–503 | Cite as

Urban Form, Air Pollution, and Health

  • Steve HankeyEmail author
  • Julian D. Marshall
Air Pollution and Health (S Adar and B Hoffmann, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Air Pollution and Health

Abstract

Purpose of Review

Urban form can impact air pollution and public health. We reviewed health-related articles that assessed (1) the relationships among urban form, air pollution, and health as well as (2) aspects of the urban environment (i.e., green space, noise, physical activity) that may modify those relationships.

Recent Findings

Simulation and empirical studies demonstrate an association between compact growth, improved regional air quality, and health. Most studies are cross-sectional and focus on connections between transportation emissions and land use. The physical and mental health impacts of green space, public spaces that promote physical activity, and noise are well-studied aspects of the urban environment and there is evidence that these factors may modify the relationship between air pollution and health.

Summary

Urban form can support efforts to design clean, health-promoting cities. More work is needed to operationalize specific strategies and to elucidate the causal pathways connecting various aspects of health.

Keywords

Urban planning Built environment Sprawl Walkability 

Notes

Acknowledgments

This article was developed in part under Assistance Agreement no. RD83587301 awarded by the US Environmental Protection Agency (EPA). This article has not been formally reviewed by the US EPA. The views expressed in this document are solely those of the authors and do not necessarily reflect those of the agency. The US EPA does not endorse any products or commercial services mentioned in this publication.

Compliance with Ethical Standards

Conflict of Interest

Steve Hankey and Julian D. Marshall declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Ewing R, Pendall R, Chen D. Measuring sprawl and its transportation impacts. Transp Res Rec. 1831;2003:175–83.  https://doi.org/10.3141/1831-20.Google Scholar
  2. 2.
    Ewing R, Cervero R. Travel and the built environment. J Am Plan Assoc. 2010;76(3):265–94.  https://doi.org/10.1080/01944361003766766.CrossRefGoogle Scholar
  3. 3.
    Foley J, DeFries R, Asner G, Barford C, Bonan G, Carpenter S, et al. Global consequences of land use. Science. 2005;309(5734):570–4.  https://doi.org/10.1126/science.1111772.PubMedCrossRefGoogle Scholar
  4. 4.
    Hoek G, Beelen R, de Hoogh K, Vienneau D, Gulliver J, Fischer P, et al. A review of land-use regression models to assess spatial variation of outdoor air pollution. Atmos Environ. 2008;42(33):7561–78.  https://doi.org/10.1016/j.atmosenv.2008.05.057.CrossRefGoogle Scholar
  5. 5.
    Leyden KM. Social capital and the built environment: the importance of walkable neighborhoods. Am J Public Health. 2003;93(9):1546–51.  https://doi.org/10.2105/AJPH.93.9.1546.PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Jackson R, Dannenberg AL, Frumkin H. Health and the built environment: 10 years after. Am J Public Health. 2013;103(9):1542–4.  https://doi.org/10.2105/AJPH.2013.301482.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Fecht D, Fortunato L, Morley D, Hansell AL, Gulliver J. Associations between urban metrics and mortality rates in England. Environ Health. 2016;15(Suppl 1):34.  https://doi.org/10.1186/s12940-016-0106-3.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Williams K. Urban form and infrastructure: a morphological review. London: Government Office for Science. June 2014. Report No.: URN GS/14/808Google Scholar
  9. 9.
    Batty M. The size, scale, and shape of cities. Science. 2008;319(5864):769–71.  https://doi.org/10.1126/science.1151419.PubMedCrossRefGoogle Scholar
  10. 10.
    Prasad A, Gray CB, Ross A, Kano M. Metrics in urban health: current developments and future prospects. Annu Rev Public Health. 2016;37:113–33.  https://doi.org/10.1146/annurev-publhealth-032315-021749.PubMedCrossRefGoogle Scholar
  11. 11.
    Jakubowski B, Frumkin H. Environmental metrics for community health improvement. Prev Chronic Dis. 2010;7(4):1–10.Google Scholar
  12. 12.
    Giles-Corti B, Vernez-Moudon A, Reis R, Turrell G, Dannenberg AL, Badland H, et al. City planning and population health: a global challenge. Lancet. 2016;388(10062):2912–24.  https://doi.org/10.1016/s0140-6736(16)30066-6.PubMedCrossRefGoogle Scholar
  13. 13.
    Nieuwenhuijsen MJ, Khreis H. Car free cities: pathway to healthy urban living. Environ Int. 2016;94:251–62.  https://doi.org/10.1016/j.envint.2016.05.032.PubMedCrossRefGoogle Scholar
  14. 14.
    Frank LD. Multiple impacts of the built environment on public health: walkable places and exposure to air pollution. Int Reg Sci Rev. 2005;28(2):193–216.  https://doi.org/10.1177/0160017604273853.CrossRefGoogle Scholar
  15. 15.
    Younger M, Morrow-Almeida HR, Vindigni SM, Dannenberg AL. The built environment, climate change, and health: opportunities for co-benefits. Am J Prev Med. 2008;35(5):517–26.  https://doi.org/10.1016/j.amepre.2008.08.017.PubMedCrossRefGoogle Scholar
  16. 16.
    Pope CA, Ezzati M, Dockery DW. Fine-particulate air pollution and life expectancy in the United States. New Engl J Med. 2009;360(4):376–86.  https://doi.org/10.1056/NEJMsa0805646.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389(10082):1907–18.  https://doi.org/10.1016/s0140-6736(17)30505-6.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224–60.  https://doi.org/10.1016/S0140-6736(12)61766-8.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Miller KA, Siscovick DS, Sheppard L, Shepherd K, Sullivan JH, Anderson GL, et al. Long-term exposure to air pollution and incidence of cardiovascular events in women. New Engl J Med. 2007;356(5):447–58.  https://doi.org/10.1056/NEJMoa054409.PubMedCrossRefGoogle Scholar
  20. 20.
    Marshall J. Energy efficient urban form. Environ Sci Technol. 2008;42(9):3133–7.  https://doi.org/10.1021/es087047l.PubMedCrossRefGoogle Scholar
  21. 21.
    Hankey S, Marshall JD. Impacts of urban form on future US passenger-vehicle greenhouse gas emissions. Energ Policy. 2010;38(9):4880–7.  https://doi.org/10.1016/j.enpol.2009.07.005.CrossRefGoogle Scholar
  22. 22.
    Hankey S, Lindsey G, Marshall JD. Population-level exposure to particulate air pollution during active travel: planning for low-exposure, health-promoting cities. Environ Health Perspect. 2016;125(4):527–34.  https://doi.org/10.1289/EHP442.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    de Nazelle A, Nieuwenhuijsen MJ, Anto JM, Brauer M, Briggs D, Braun-Fahrlander C, et al. Improving health through policies that promote active travel: a review of evidence to support integrated health impact assessment. Environ Int. 2011;37(4):766–77.  https://doi.org/10.1016/j.envint.2011.02.003.PubMedCrossRefGoogle Scholar
  24. 24.
    Gascon M, Vrijheid M, Nieuwenhuijsen MJ. The built environment and child health: an overview of current evidence. Curr Environ Health Rep. 2016;3(3):250–7.  https://doi.org/10.1007/s40572-016-0094-z.PubMedCrossRefGoogle Scholar
  25. 25.
    Schulz M, Romppel M, Grande G. Built environment and health: a systematic review of studies in Germany. J Public Health (Oxf). 2016;  https://doi.org/10.1093/pubmed/fdw141.
  26. 26.
    Gallagher J, Baldauf R, Fuller CH, Kumar P, Gill LW, McNabola A. Passive methods for improving air quality in the built environment: a review of porous and solid barriers. Atmos Environ. 2015;120:61–70.  https://doi.org/10.1016/j.atmosenv.2015.08.075.CrossRefGoogle Scholar
  27. 27.
    Karner AA, Eisinger DS, Niemeier DA. Near-roadway air quality: synthesizing the findings from real-world data. Environ Sci Technol. 2010;44(14):5334–44.  https://doi.org/10.1021/es100008x.PubMedCrossRefGoogle Scholar
  28. 28.
    Oja P, Titze S, Bauman A, de Geus B, Krenn P, Reger-Nash B, et al. Health benefits of cycling: a systematic review. Scand J Med Sci Sports. 2011;21(4):496–509.  https://doi.org/10.1111/j.1600-0838.2011.01299.x.PubMedCrossRefGoogle Scholar
  29. 29.
    Saelens BE, Handy SL. Built environment correlates of walking: a review. Med Sci Sports Exerc. 2008;40(7 Suppl):S550–66.  https://doi.org/10.1249/MSS.0b013e31817c67a4.PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Ferdinand AO, Sen B, Rahurkar S, Engler S, Menachemi N. The relationship between built environments and physical activity: a systematic review. Am J Public Health. 2012;102(10):e7–e13.  https://doi.org/10.2105/AJPH.2012.300740.PubMedCrossRefGoogle Scholar
  31. 31.
    Day K. Built environmental correlates of physical activity in China: a review. Prev Med Rep. 2016;3:303–16.  https://doi.org/10.1016/j.pmedr.2016.03.007.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Marshall JD, McKone TE, Deakin E, Nazaroff WW. Inhalation of motor vehicle emissions: effects of urban population and land area. Atmos Environ. 2005;39(2):283–95.  https://doi.org/10.1016/j.atmosenv.2004.09.059.CrossRefGoogle Scholar
  33. 33.
    Song J, Webb A, Parmenter B, Allen D, Mcdonald-Buller E. The impacts of urbanization on emissions and air quality: comparison of four visions of Austin, Texas. Environ Sci Technol. 2008;42(19):7294–300.  https://doi.org/10.1021/es800645j.PubMedCrossRefGoogle Scholar
  34. 34.
    Schindler M, Caruso G. Urban compactness and the trade-off between air pollution emission and exposure: lessons from a spatially explicit theoretical model. Comput Environ Urban. 2014;45:13–23.  https://doi.org/10.1016/j.compenvurbsys.2014.01.004.CrossRefGoogle Scholar
  35. 35.
    Kahyaoğlu-Koračin J, Bassett SD, Mouat DA, Gertler AW. Application of a scenario-based modeling system to evaluate the air quality impacts of future growth. Atmos Environ. 2009;43(5):1021–8.  https://doi.org/10.1016/j.atmosenv.2008.04.004.CrossRefGoogle Scholar
  36. 36.
    Mansfield TJ, Rodriguez DA, Huegy J, Gibson JM. The effects of urban form on ambient air pollution and public health risk: a case study in Raleigh, North Carolina. Risk Anal. 2015;35(5):901–18.  https://doi.org/10.1111/risa.12317.PubMedCrossRefGoogle Scholar
  37. 37.
    de Nazelle A, Rodriguez DA, Crawford-Brown D. The built environment and health: impacts of pedestrian-friendly designs on air pollution exposure. Sci Total Environ. 2009;407(8):2525–35.  https://doi.org/10.1016/j.scitotenv.2009.01.006.PubMedCrossRefGoogle Scholar
  38. 38.
    Stone B, Mednick AC, Holloway T, Spak SN. Is compact growth good for air quality? J Am Plan Assoc. 2007;73(4):404–18.  https://doi.org/10.1080/01944360708978521.CrossRefGoogle Scholar
  39. 39.
    Maizlish N, Woodcock J, Co S, Ostro B, Fanai A, Fairley D. Health cobenefits and transportation-related reductions in greenhouse gas emissions in the San Francisco Bay area. Am J Public Health. 2013;103(4):703–9.  https://doi.org/10.2105/AJPH.2012.300939.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Perez L, Trueb S, Cowie H, Keuken MP, Mudu P, Ragettli MS, et al. Transport-related measures to mitigate climate change in Basel, Switzerland: a health-effectiveness comparison study. Environ Int. 2015;85:111–9.  https://doi.org/10.1016/j.envint.2015.08.002.PubMedCrossRefGoogle Scholar
  41. 41.
    Lindsay G, Macmillan A, Woodward A. Moving urban trips from cars to bicycles: impact on health and emissions. Aust N Z J Public Health. 2011;35(1):54–60.  https://doi.org/10.1111/j.1753-6405.2010.00621.x.PubMedCrossRefGoogle Scholar
  42. 42.
    • Macmillan A, Connor J, Witten K, Kearns R, Rees D, Woodward A. The societal costs and benefits of commuter bicycling: simulating the effects of specific policies using system dynamics modeling. Environ Health Perspect. 2014;122(4):335–44.  https://doi.org/10.1289/ehp.1307250. This paper modeled the impacts of specific policy interventions rather than of development patterns. PubMedPubMedCentralGoogle Scholar
  43. 43.
    Yu H, Stuart AL. Impacts of compact growth and electric vehicles on future air quality and urban exposures may be mixed. Sci Total Environ. 2017;576:148–58.  https://doi.org/10.1016/j.scitotenv.2016.10.079.PubMedCrossRefGoogle Scholar
  44. 44.
    de Nazelle A, Rodríguez DA. Tradeoffs in incremental changes towards pedestrian-friendly environments: physical activity and pollution exposure. Transp Res D-Tr E. 2009;14(4):255–63.  https://doi.org/10.1016/j.trd.2009.02.002.CrossRefGoogle Scholar
  45. 45.
    Gurram S, Stuart AL, Pinjari AR. Impacts of travel activity and urbanicity on exposures to ambient oxides of nitrogen and on exposure disparities. Air Qual Atmos Health. 2015;8(1):97–114.  https://doi.org/10.1007/s11869-014-0275-6.PubMedCrossRefGoogle Scholar
  46. 46.
    Woodcock J, Givoni M, Morgan AS. Health impact modelling of active travel visions for England and Wales using an Integrated Transport and Health Impact Modelling Tool (ITHIM). PLoS One. 2013;8(1):e51462.  https://doi.org/10.1371/journal.pone.0051462.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Stone B Jr. Urban sprawl and air quality in large US cities. J Environ Manag. 2008;86(4):688–98.  https://doi.org/10.1016/j.jenvman.2006.12.034.CrossRefGoogle Scholar
  48. 48.
    Schweitzer L, Zhou J. Neighborhood air quality, respiratory health, and vulnerable populations in compact and sprawled regions. J Am Plan Assoc. 2010;76(3):363–71.  https://doi.org/10.1080/01944363.2010.486623.CrossRefGoogle Scholar
  49. 49.
    Bechle MJ, Millet DB, Marshall JD. Effects of income and urban form on urban NO2: global evidence from satellites. Environ Sci Technol. 2011;45(11):4914–9.  https://doi.org/10.1021/es103866b.PubMedCrossRefGoogle Scholar
  50. 50.
    Clark LP, Millet DB, Marshall JD. Air quality and urban form in U.S. urban areas: evidence from regulatory monitors. Environ Sci Technol. 2011;45(16):7028–35.  https://doi.org/10.1021/es2006786.PubMedCrossRefGoogle Scholar
  51. 51.
    Lu C, Liu Y. Effects of China's urban form on urban air quality. Urban Stud. 2015;53(12):2607–23.  https://doi.org/10.1177/0042098015594080.CrossRefGoogle Scholar
  52. 52.
    Bechle MJ, Millet DB, Marshall J. Does urban form affect urban NO2? Satellite-based evidence for more than 1,200 cities. Environ Sci Technol.  https://doi.org/10.1021/acs.est.7b01194.
  53. 53.
    Bereitschaft B, Debbage K. Urban form, air pollution, and CO2 emissions in large U.S. metropolitan areas. Prof Geogr. 2013;65(4):612–35.  https://doi.org/10.1080/00330124.2013.799991.CrossRefGoogle Scholar
  54. 54.
    • Kashem SB, Irawan A, Wilson B. Evaluating the dynamic impacts of urban form on transportation and environmental outcomes in US cities. Int J Environ Sci Tech. 2014;11(8):2233–44.  https://doi.org/10.1007/s13762-014-0630-z. This paper is one of two available articles that use a longitudinal, empirical approach to assess urban form and air quality; it focuses on the United States. CrossRefGoogle Scholar
  55. 55.
    • Larkin A, van Donkelaar A, Geddes JA, Martin RV, Hystad P. Relationships between changes in urban characteristics and air quality in East Asia from 2000 to 2010. Environ Sci Technol. 2016;50(17):9142–9.  https://doi.org/10.1021/acs.est.6b02549. This paper is one of two available articles that use a longitudinal, empirical approach to assess urban form and air quality; it focuses on East Asia. PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    James P, Hart JE, Laden F. Neighborhood walkability and particulate air pollution in a nationwide cohort of women. Environ Res. 2015;142:703–11.  https://doi.org/10.1016/j.envres.2015.09.005.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    McCarty J, Kaza N. Urban form and air quality in the United States. Landsc Urban Plan. 2015;139:168–79.  https://doi.org/10.1016/j.landurbplan.2015.03.008.CrossRefGoogle Scholar
  58. 58.
    Su JG, Apte JS, Lipsitt J, Garcia-Gonzales DA, Beckerman BS, de Nazelle A, et al. Populations potentially exposed to traffic-related air pollution in seven world cities. Environ Int. 2015;78:82–9.  https://doi.org/10.1016/j.envint.2014.12.007.PubMedCrossRefGoogle Scholar
  59. 59.
    Marshall JD, Brauer M, Frank LD. Healthy neighborhoods: walkability and air pollution. Environ Health Perspect. 2009;117(11):1752–9.  https://doi.org/10.1289/ehp.0900595.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Hankey S, Marshall JD, Brauer M. Health impacts of the built environment: within-urban variability in physical inactivity, air pollution, and ischemic heart disease mortality. Environ Health Perspect. 2012;120(2):247–53.  https://doi.org/10.1289/ehp.1103806.PubMedCrossRefGoogle Scholar
  61. 61.
    Cowie CT, Ding D, Rolfe MI, Mayne DJ, Jalaludin B, Bauman A, et al. Neighbourhood walkability, road density and socio-economic status in Sydney, Australia. Environ Health. 2016;15:58.  https://doi.org/10.1186/s12940-016-0135-y.PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    King K. Neighborhood walkable urban form and C-reactive protein. Prev Med. 2013;57(6):850–4.  https://doi.org/10.1016/j.ypmed.2013.09.019.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Shekarrizfard M, Faghih-Imani A, Crouse DL, Goldberg M, Ross N, Eluru N, et al. Individual exposure to traffic related air pollution across land-use clusters. Transp Res D-Tr E. 2016;46:339–50.  https://doi.org/10.1016/j.trd.2016.04.010.CrossRefGoogle Scholar
  64. 64.
    Weichenthal S, Farrell W, Goldberg M, Joseph L, Hatzopoulou M. Characterizing the impact of traffic and the built environment on near-road ultrafine particle and black carbon concentrations. Environ Res. 2014;132:305–10.  https://doi.org/10.1016/j.envres.2014.04.007.PubMedCrossRefGoogle Scholar
  65. 65.
    Bigazzi AY, Figliozzi MA. Review of urban bicyclists’ intake and uptake of traffic-related air pollution. Transp Rev. 2014;34(2):221–45.  https://doi.org/10.1080/01441647.2014.897772.CrossRefGoogle Scholar
  66. 66.
    Dons E, Int Panis L, Van Poppel M, Theunis J, Wets G. Personal exposure to black carbon in transport microenvironments. Atmos Environ. 2012;55:392–8.  https://doi.org/10.1016/j.atmosenv.2012.03.020.CrossRefGoogle Scholar
  67. 67.
    Zuurbier M, Hoek G, Oldenwening M, Lenters V, Meliefste K, van den Hazel P, et al. Commuters’ exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route. Environ Health Perspect. 2010;118(6):783–9.  https://doi.org/10.1289/ehp.0901622.PubMedPubMedCentralCrossRefGoogle Scholar
  68. 68.
    Int Panis L, de Geus B, Vandenbulcke G, Willems H, Degraeuwe B, Bleux N, et al. Exposure to particulate matter in traffic: a comparison of cyclists and car passengers. Atmos Environ. 2010;44(19):2263–70.  https://doi.org/10.1016/j.atmosenv.2010.04.028.CrossRefGoogle Scholar
  69. 69.
    Farrell W, Weichenthal S, Goldberg M, Valois MF, Shekarrizfard M, Hatzopoulou M. Near roadway air pollution across a spatially extensive road and cycling network. Environ Pollut. 2016;212:498–507.  https://doi.org/10.1016/j.envpol.2016.02.041.PubMedCrossRefGoogle Scholar
  70. 70.
    Hankey S, Marshall JD. On-bicycle exposure to particulate air pollution: particle number, black carbon, PM2.5, and particle size. Atmos Environ. 2015;122:65–73.  https://doi.org/10.1016/j.atmosenv.2015.09.025.CrossRefGoogle Scholar
  71. 71.
    Hatzopoulou M, Weichenthal S, Dugum H, Pickett G, Miranda-Moreno L, Kulka R, et al. The impact of traffic volume, composition, and road geometry on personal air pollution exposures among cyclists in Montreal, Canada. J Expo Sci Environ Epidemiol. 2013;23(1):46–51.  https://doi.org/10.1038/jes.2012.85.PubMedCrossRefGoogle Scholar
  72. 72.
    Hertel O, Hvidberg M, Ketzel M, Storm L, Stausgaard L. A proper choice of route significantly reduces air pollution exposure—a study on bicycle and bus trips in urban streets. Sci Total Environ. 2008;389(1):58–70.  https://doi.org/10.1016/j.scitotenv.2007.08.058.PubMedCrossRefGoogle Scholar
  73. 73.
    Park HY, Gilbreath S, Barakatt E. Respiratory outcomes of ultrafine particulate matter (UFPM) as a surrogate measure of near-roadway exposures among bicyclists. Environ Health. 2017;16:6.  https://doi.org/10.1186/s12940-017-0212-x.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Franco JF, Segura JF, Mura I. Air pollution alongside bike-paths in Bogotá-Colombia. Front Environ Sci. 2016;4:77.  https://doi.org/10.3389/fenvs.2016.00077.CrossRefGoogle Scholar
  75. 75.
    Dons E, Temmerman P, Van Poppel M, Bellemans T, Wets G, Int PL. Street characteristics and traffic factors determining road users’ exposure to black carbon. Sci Total Environ. 2013;447:72–9.  https://doi.org/10.1016/j.scitotenv.2012.12.076.PubMedCrossRefGoogle Scholar
  76. 76.
    Evans G. The built environment and mental health. J Urban Health. 2003;80(4):536–55.  https://doi.org/10.1093/jurban/jtg063.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    • Dadvand P, Nieuwenhuijsen MJ, Esnaola M, Forns J, Basagana X, Alvarez-Pedrerol M, et al. Green spaces and cognitive development in primary schoolchildren. Proc Natl Acad Sci. 2015;112(26):7937–42.  https://doi.org/10.1073/pnas.1503402112. This study was the first to assess exposure to greenness (and mediation from air pollution) on cognitive development in school children. PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Zijlema WL, Triguero-Mas M, Smith G, Cirach M, Martinez D, Dadvand P, et al. The relationship between natural outdoor environments and cognitive functioning and its mediators. Environ Res. 2017;155:268–75.  https://doi.org/10.1016/j.envres.2017.02.017.PubMedCrossRefGoogle Scholar
  79. 79.
    Hartig T, Evans GW, Jamner LD, Davis DS, Gärling T. Tracking restoration in natural and urban field settings. J Environ Psychol. 2003;23(2):109–23.  https://doi.org/10.1016/s0272-4944(02)00109-3.CrossRefGoogle Scholar
  80. 80.
    Gascon M, Triguero-Mas M, Martinez D, Dadvand P, Forns J, Plasencia A, et al. Mental health benefits of long-term exposure to residential green and blue spaces: a systematic review. Int J Environ Res Public Health. 2015;12(4):4354–79.  https://doi.org/10.3390/ijerph120404354.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Boniface S, Scantlebury R, Watkins SJ, Mindell JS. Health implications of transport: evidence of effects of transport on social interactions. J Transp Health. 2015;2(3):441–6.  https://doi.org/10.1016/j.jth.2015.05.005.CrossRefGoogle Scholar
  82. 82.
    Morris EA, Guerra E. Mood and mode: does how we travel affect how we feel? Transportation. 2014;42(1):25–43.  https://doi.org/10.1007/s11116-014-9521-x.CrossRefGoogle Scholar
  83. 83.
    Gatersleben B, Uzzell D. Affective appraisals of the daily commute: comparing perceptions of drivers, cyclists, walkers, and users of public transport. Environ Behav. 2007;39(3):416–31.  https://doi.org/10.1177/0013916506294032.CrossRefGoogle Scholar
  84. 84.
    • James P, Hart JE, Banay RF, Laden F, Signorello LB. Built environment and depression in low-income african americans and whites. Am J Prev Med. 2017;52(1):74–84.  https://doi.org/10.1016/j.amepre.2016.08.022. This paper found that environmental and social stressors could mediate benefits of walkable neighborhoods in certain cases. PubMedCrossRefGoogle Scholar
  85. 85.
    Maantay J, Maroko A. ‘At-risk’ places: inequities in the distribution of environmental stressors and prescription rates of mental health medications in Glasgow, Scotland. Environ Res Lett. 2015;10(11):115003.  https://doi.org/10.1088/1748-9326/10/11/115003.CrossRefGoogle Scholar
  86. 86.
    Tzivian L, Jokisch M, Winkler A, Weimar C, Hennig F, Sugiri D, et al. Associations of long-term exposure to air pollution and road traffic noise with cognitive function—an analysis of effect measure modification. Environ Int. 2017;103:30–8.  https://doi.org/10.1016/j.envint.2017.03.018.PubMedCrossRefGoogle Scholar
  87. 87.
    Kirchner TR, Shiffman S. Spatio-temporal determinants of mental health and well-being: advances in geographically-explicit ecological momentary assessment (GEMA). Soc Psychiatry Psychiatr Epidemiol. 2016;51(9):1211–23.  https://doi.org/10.1007/s00127-016-1277-5.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Cole-Hunter T, Donaire-Gonzalez D, Curto A, Ambros A, Valentin A, Garcia-Aymerich J, et al. Objective correlates and determinants of bicycle commuting propensity in an urban environment. Transp Res D-Tr E. 2015;40:132–43.  https://doi.org/10.1016/j.trd.2015.07.004.CrossRefGoogle Scholar
  89. 89.
    Honold J, Beyer R, Lakes T, van der Meer E. Multiple environmental burdens and neighborhood-related health of city residents. J Environ Psychol. 2012;32(4):305–17.  https://doi.org/10.1016/j.jenvp.2012.05.002.CrossRefGoogle Scholar
  90. 90.
    Chum A, O'Campo P. Cross-sectional associations between residential environmental exposures and cardiovascular diseases. BMC Public Health. 2015;15:438.  https://doi.org/10.1186/s12889-015-1788-0.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Kabisch N, Haase D. Green spaces of European cities revisited for 1990–2006. Landsc Urban Plan. 2013;110:113–22.  https://doi.org/10.1016/j.landurbplan.2012.10.017.CrossRefGoogle Scholar
  92. 92.
    De Ridder K, Adamec V, Banuelos A, Bruse M, Burger M, Damsgaard O, et al. An integrated methodology to assess the benefits of urban green space. Sci Total Environ. 2004;334-335:489–97.  https://doi.org/10.1016/j.scitotenv.2004.04.054.PubMedCrossRefGoogle Scholar
  93. 93.
    Wolch JR, Byrne J, Newell JP. Urban green space, public health, and environmental justice: the challenge of making cities ‘just green enough’. Landsc Urban Plan. 2014;125:234–44.  https://doi.org/10.1016/j.landurbplan.2014.01.017.CrossRefGoogle Scholar
  94. 94.
    Su JG, Jerrett M, de Nazelle A, Wolch J. Does exposure to air pollution in urban parks have socioeconomic, racial or ethnic gradients? Environ Res. 2011;111(3):319–28.  https://doi.org/10.1016/j.envres.2011.01.002.PubMedCrossRefGoogle Scholar
  95. 95.
    Hystad P, Davies HW, Frank L, Van Loon J, Gehring U, Tamburic L, et al. Residential greenness and birth outcomes: evaluating the influence of spatially correlated built-environment factors. Environ Health Perspect. 2014;122(10):1095–102.  https://doi.org/10.1289/ehp.1308049.PubMedPubMedCentralGoogle Scholar
  96. 96.
    Casey JA, James P, Rudolph KE, Wu CD, Schwartz BS. Greenness and birth outcomes in a range of Pennsylvania communities. Int J Environ Res Public Health. 2016;13(3):E311.  https://doi.org/10.3390/ijerph13030311.PubMedCrossRefGoogle Scholar
  97. 97.
    Ebisu K, Holford TR, Bell ML. Association between greenness, urbanicity, and birth weight. Sci Total Environ. 2016;542(Pt A):750–6.  https://doi.org/10.1016/j.scitotenv.2015.10.111.PubMedCrossRefGoogle Scholar
  98. 98.
    Demoury C, Thierry B, Richard H, Sigler B, Kestens Y, Parent ME. Residential greenness and risk of prostate cancer: a case-control study in Montreal, Canada. Environ Int. 2017;98:129–36.  https://doi.org/10.1016/j.envint.2016.10.024.PubMedCrossRefGoogle Scholar
  99. 99.
    • James P, Hart JE, Banay RF, Laden F. Exposure to greenness and mortality in a nationwide prospective cohort study of women. Environ Health Perspect. 2016;124(9):1344–52.  https://doi.org/10.1289/ehp.1510363. This paper assessed association between greenness and all-cause mortality with a mediation analysis for other potential factors (e.g., physical activity, air pollution, mental health). PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Villeneuve PJ, Jerrett M, Su JG, Burnett RT, Chen H, Wheeler AJ, et al. A cohort study relating urban green space with mortality in Ontario, Canada. Environ Res. 2012;115:51–8.  https://doi.org/10.1016/j.envres.2012.03.003.PubMedCrossRefGoogle Scholar
  101. 101.
    Dadvand P, Sunyer J, Alvarez-Pedrerol M, Dalmau-Bueno A, Esnaola M, Gascon M, et al. Green spaces and spectacles use in schoolchildren in Barcelona. Environ Res. 2017;152:256–62.  https://doi.org/10.1016/j.envres.2016.10.026.PubMedCrossRefGoogle Scholar
  102. 102.
    Kioumourtzoglou M, Schwartz J, James P, Dominici F, Zanobetti A. PM2.5 and mortality in 2017 US cities modification by temperature and city characteristics. Epidemiology. 2016;27(2):221–7.  https://doi.org/10.1097/EDE.0000000000000422.PubMedPubMedCentralGoogle Scholar
  103. 103.
    Lovasi GS, O'Neil-Dunne JP, Lu JW, Sheehan D, Perzanowski MS, Macfaden SW, et al. Urban tree canopy and asthma, wheeze, rhinitis, and allergic sensitization to tree pollen in a New York City birth cohort. Environ Health Perspect. 2013;121(4):494–500.  https://doi.org/10.1289/ehp.1205513.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Lee AC, Maheswaran R. The health benefits of urban green spaces: a review of the evidence. J Public Health (Oxf). 2011;33(2):212–22.  https://doi.org/10.1093/pubmed/fdq068.CrossRefGoogle Scholar
  105. 105.
    Russell R, Guerry AD, Balvanera P, Gould RK, Basurto X, Chan KMA, et al. Humans and nature: how knowing and experiencing nature affect well-being. Annu Rev Environ Resour. 2013;38(1):473–502.  https://doi.org/10.1146/annurev-environ-012312-110838.CrossRefGoogle Scholar
  106. 106.
    de Keijzer C, Gascon M, Nieuwenhuijsen MJ, Dadvand P. Long-term green space exposure and cognition across the life course: a systematic review. Curr Environ Health Rep. 2016;3(4):468–77.  https://doi.org/10.1007/s40572-016-0116-x.PubMedCrossRefGoogle Scholar
  107. 107.
    Rey Gozalo G, Barrigón Morillas JM, Trujillo Carmona J, Montes González D, Atanasio Moraga P, Gómez Escobar V, et al. Study on the relation between urban planning and noise level. Appl Acoust. 2016;111:143–7.  https://doi.org/10.1016/j.apacoust.2016.04.018.CrossRefGoogle Scholar
  108. 108.
    Weber N, Haase D, Franck U. Traffic-induced noise levels in residential urban structures using landscape metrics as indicators. Ecol Indic. 2014;45:611–21.  https://doi.org/10.1016/j.ecolind.2014.05.004.CrossRefGoogle Scholar
  109. 109.
    Weber N, Haase D, Franck U. Assessing modelled outdoor traffic-induced noise and air pollution around urban structures using the concept of landscape metrics. Landsc Urban Plan. 2014;125:105–16.  https://doi.org/10.1016/j.landurbplan.2014.02.018.CrossRefGoogle Scholar
  110. 110.
    Tang UW, Wang ZS. Influences of urban forms on traffic-induced noise and air pollution: Results from a modelling system. Environ Model Softw. 2007;22(12):1750–64.  https://doi.org/10.1016/j.envsoft.2007.02.003.CrossRefGoogle Scholar
  111. 111.
    Curran JH, Ward HD, Shum M, Davies HW. Reducing cardiovascular health impacts from traffic-related noise and air pollution: intervention strategies. Environ Health Rev. 2013;56(02):31–8.  https://doi.org/10.5864/d2013-011.CrossRefGoogle Scholar
  112. 112.
    Chum A, O'Campo P, Matheson F. The impact of urban land uses on sleep duration and sleep problems. Can Geogr-Geogr Can. 2015;59(4):404–18.  https://doi.org/10.1111/cag.12202.CrossRefGoogle Scholar
  113. 113.
    Gehring U, Tamburic L, Sbihi H, Davies HW, Brauer M. Impact of noise and air pollution on pregnancy outcomes. Epidemiology. 2014;25(3):351–8.  https://doi.org/10.1097/EDE.0000000000000073.PubMedCrossRefGoogle Scholar
  114. 114.
    van Kamp I, Davies H. Noise and health in vulnerable groups: a review. Noise Health. 2013;15(64):153–9.  https://doi.org/10.4103/1463-1741.112361.PubMedCrossRefGoogle Scholar
  115. 115.
    Giles LV, Koehle MS. The health effects of exercising in air pollution. Sports Med. 2014;44(2):223–49.  https://doi.org/10.1007/s40279-013-0108-z.PubMedCrossRefGoogle Scholar
  116. 116.
    de Hartog JJ, Boogaard H, Nijland H, Hoek G. Do the health benefits of cycling outweigh the risks? Environ Health Perspect. 2010;118(8):1109–16.  https://doi.org/10.1289/ehp.0901747.PubMedCentralCrossRefGoogle Scholar
  117. 117.
    Holm AL, Glumer C, Diderichsen F. Health impact assessment of increased cycling to place of work or education in Copenhagen. BMJ Open. 2012;2:e001135.  https://doi.org/10.1136/bmjopen-2012-001135.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Rabl A, de Nazelle A. Benefits of shift from car to active transport. Transp Policy. 2012;19(1):121–31.  https://doi.org/10.1016/j.tranpol.2011.09.008.CrossRefGoogle Scholar
  119. 119.
    Rojas-Rueda D, de Nazelle A, Teixido O, Nieuwenhuijsen MJ. Replacing car trips by increasing bike and public transport in the greater Barcelona metropolitan area: a health impact assessment study. Environ Int. 2012;49:100–9.  https://doi.org/10.1016/j.envint.2012.08.009.PubMedCrossRefGoogle Scholar
  120. 120.
    Tainio M, de Nazelle AJ, Gotschi T, Kahlmeier S, Rojas-Rueda D, Nieuwenhuijsen MJ, et al. Can air pollution negate the health benefits of cycling and walking? Prev Med. 2016;87:233–6.  https://doi.org/10.1016/j.ypmed.2016.02.002.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Grabow ML, Spak SN, Holloway T, Stone B, Mednick AC, Patz JA. Air quality and exercise-related health benefits from reduced car travel in the midwestern United States. Environ Health Perspect. 2012;120(1):68–76.  https://doi.org/10.1289/ehp.1103440.PubMedCrossRefGoogle Scholar
  122. 122.
    Perdue LA, Michael YL, Harris C, Heller J, Livingston C, Rader M, et al. Rapid health impact assessment of policies to reduce vehicle miles traveled in Oregon. Public Health. 2012;126(12):1063–71.  https://doi.org/10.1016/j.puhe.2011.09.026.PubMedCrossRefGoogle Scholar
  123. 123.
    Stevenson M, Thompson J, de Sá TH, Ewing R, Mohan D, McClure R, et al. Land use, transport, and population health: estimating the health benefits of compact cities. Lancet. 2016;388(10062):2925–35.  https://doi.org/10.1016/s0140-6736(16)30067-8.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    An R, Xiang X. Ambient fine particulate matter air pollution and leisure-time physical inactivity among US adults. Public Health. 2015;129(12):1637–44.  https://doi.org/10.1016/j.puhe.2015.07.017.PubMedCrossRefGoogle Scholar
  125. 125.
    Roberts JD, Voss JD, Knight B. The association of ambient air pollution and physical inactivity in the United States. PLoS One. 2014;9(3):e90143.  https://doi.org/10.1371/journal.pone.0090143.PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Jerrett M, McConnell R, Chang CC, Wolch J, Reynolds K, Lurmann F, et al. Automobile traffic around the home and attained body mass index: a longitudinal cohort study of children aged 10-18 years. Prev Med. 2010;50(Suppl 1):S50–8.  https://doi.org/10.1016/j.ypmed.2009.09.026.PubMedCrossRefGoogle Scholar
  127. 127.
    Fisher J, Loft S, Ulrik C, Raaschou-Nielsen O, Hertel O, Tjønneland A, et al. Physical activity, air pollution, and the risk of asthma and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2016;194(7):855–63.  https://doi.org/10.1164/rccm.201510-2036OC.PubMedCrossRefGoogle Scholar
  128. 128.
    • Andersen ZJ, de Nazelle A, Mendez MA, Garcia-Aymerich J, Hertel O, Tjonneland A, et al. A study of the combined effects of physical activity and air pollution on mortality in elderly urban residents: the Danish Diet, Cancer, and Health Cohort. Environ Health Perspect. 2015;123(6):557–63.  https://doi.org/10.1289/ehp.1408698. This cohort study assesses whether chronic exposure to air pollution modifies benefits from physical activity. PubMedPubMedCentralGoogle Scholar
  129. 129.
    Wong CM, Ou CQ, Thach TQ, Chau YK, Chan KP, Ho SY, et al. Does regular exercise protect against air pollution-associated mortality? Prev Med. 2007;44(5):386–92.  https://doi.org/10.1016/j.ypmed.2006.12.012.PubMedCrossRefGoogle Scholar
  130. 130.
    McConnell R, Berhane K, Gilliland F, London SJ, Islam T, Gauderman WJ, et al. Asthma in exercising children exposed to ozone: a cohort study. Lancet. 2002;359(9304):386–91.  https://doi.org/10.1016/s0140-6736(02)07597-9.PubMedCrossRefGoogle Scholar
  131. 131.
    Bos I, Jacobs L, Nawrot TS, de Geus B, Torfs R, Int Panis L, et al. No exercise-induced increase in serum BDNF after cycling near a major traffic road. Neurosci Lett. 2011;500(2):129–32.  https://doi.org/10.1016/j.neulet.2011.06.019.PubMedCrossRefGoogle Scholar
  132. 132.
    Weichenthal S, Kulka R, Dubeau A, Martin C, Wang D, Dales R. Traffic-related air pollution and acute changes in heart rate variability and respiratory function in urban cyclists. Environ Health Perspect. 2011;119(10):1373–8.  https://doi.org/10.1289/ehp.1003321.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Weichenthal S, Hatzopoulou M, Goldberg MS. Exposure to traffic-related air pollution during physical activity and acute changes in blood pressure, autonomic and micro-vascular function in women: a cross-over study. Part Fibre Toxicol. 2014;11(1):1–16.  https://doi.org/10.1186/s12989-014-0070-4.CrossRefGoogle Scholar
  134. 134.
    Kubesch N, De Nazelle A, Guerra S, Westerdahl D, Martinez D, Bouso L, et al. Arterial blood pressure responses to short-term exposure to low and high traffic-related air pollution with and without moderate physical activity. Eur J Prev Cardiol. 2015;22(5):548–57.  https://doi.org/10.1177/2047487314555602.PubMedCrossRefGoogle Scholar
  135. 135.
    Kubesch NJ, de Nazelle A, Westerdahl D, Martinez D, Carrasco-Turigas G, Bouso L, et al. Respiratory and inflammatory responses to short-term exposure to traffic-related air pollution with and without moderate physical activity. Occup Environ Med. 2015;72(4):284–93.  https://doi.org/10.1136/oemed-2014-102106.PubMedCrossRefGoogle Scholar
  136. 136.
    Jacobs L, Nawrot TS, de Geus B, Meeusen R, Degraeuwe B, Bernard A, et al. Subclinical responses in healthy cyclists briefly exposed to traffic-related air pollution: an intervention study. Environ Health. 2010;9:64.  https://doi.org/10.1186/1476-069X-9-64.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Jarjour S, Jerrett M, Westerdahl D, de Nazelle A, Hanning C, Daly L, et al. Cyclist route choice, traffic-related air pollution, and lung function: a scripted exposure study. Environ Health. 2013;12(1):1–12.  https://doi.org/10.1186/1476-069X-12-14.CrossRefGoogle Scholar
  138. 138.
    Strak M, Boogaard H, Meliefste K, Oldenwening M, Zuurbier M, Brunekreef B, et al. Respiratory health effects of ultrafine and fine particle exposure in cyclists. Occup Environ Med. 2010;67(2):118–24.  https://doi.org/10.1136/oem.2009.046847.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Public and International Affairs, Virginia TechBlacksburgUSA
  2. 2.Department of Civil and Environmental EngineeringUniversity of WashingtonSeattleUSA

Personalised recommendations