Current Environmental Health Reports

, Volume 4, Issue 4, pp 463–471 | Cite as

Towards Personal Exposures: How Technology Is Changing Air Pollution and Health Research

  • A. Larkin
  • P. HystadEmail author
Air Pollution and Health (S Adar and B Hoffmann, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Air Pollution and Health


Purpose of Review

We present a review of emerging technologies and how these can transform personal air pollution exposure assessment and subsequent health research.

Recent Findings

Estimating personal air pollution exposures is currently split broadly into methods for modeling exposures for large populations versus measuring exposures for small populations. Air pollution sensors, smartphones, and air pollution models capitalizing on big/new data sources offer tremendous opportunity for unifying these approaches and improving long-term personal exposure prediction at scales needed for population-based research. A multi-disciplinary approach is needed to combine these technologies to not only estimate personal exposures for epidemiological research but also determine drivers of these exposures and new prevention opportunities. While available technologies can revolutionize air pollution exposure research, ethical, privacy, logistical, and data science challenges must be met before widespread implementations occur.


Available technologies and related advances in data science can improve long-term personal air pollution exposure estimates at scales needed for population-based research. This will advance our ability to evaluate the impacts of air pollution on human health and develop effective prevention strategies.


Air pollution Sensors Smartphones Big data Exposure assessment Epidemiology 



Research reported in this publication was supported by the Office of the Director, National Institutes of Health, under Award Number DP5OD019850. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. We would also like to acknowledge the reviewers’ contributions to refining the messages presented in this article.

Compliance With Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All epidemiological studies cited by the authors were in accordance with the ethics standards of Oregon State University.


Papers of particular interest, published recently, have been highlighted as • Of importance

  1. 1.
    Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet. 2017;389:1907–18.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Wild CP. Complementing the genome with an “exposome”: the outstanding challenge of environmental exposure measurement in molecular epidemiology. Cancer Epidemiol Prev Biomark. 2005;14:1847–50.CrossRefGoogle Scholar
  3. 3.
    Neveu V, Moussy A, Rouaix H, Wedekind R, Pon A, Knox C, et al. Exposome-explorer: a manually-curated database on biomarkers of exposure to dietary and environmental factors. Nucleic Acids Res. 2017;45:D979–84.CrossRefPubMedGoogle Scholar
  4. 4.
    Özkaynak H, Baxter LK, Dionisio KL, Burke J. Air pollution exposure prediction approaches used in air pollution epidemiology studies. J Expo Sci Environ Epidemiol. 2013;23:566–72.CrossRefPubMedGoogle Scholar
  5. 5.
    • Nieuwenhuijsen MJ, Donaire-Gonzalez D, Foraster M, Martinez D, Cisneros A. Using personal sensors to assess the exposome and acute health effects. Int J Environ Res Public Health. 2014;11:7805–19. This study provides a thorough review of how personal sensors can measure multiple exposures and acute health effects.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Jerrett M, Arain A, Kanaroglou P, Beckerman B, Potoglou D, Sahsuvaroglu T, et al. A review and evaluation of intraurban air pollution exposure models. J Expo Anal Environ Epidemiol. 2005;15:185–204.CrossRefPubMedGoogle Scholar
  7. 7.
    Zou B, Gaines Wilson J, Benjamin Zhan F, Zeng Y. Air pollution exposure assessment methods utilized in epidemiological studies. J Environ Monit. 2009;11:475–90.CrossRefPubMedGoogle Scholar
  8. 8.
    • Turner MC, Nieuwenhuijsen M, Anderson K, Balshaw D, Cui Y, Dunton G, et al. Assessing the exposome with external measures: commentary on the state of the science and research recommendations. Annu Rev Public Health. 2017;38:215–39. This commentary highlights how the external exposome can be quantified using modeling and measurement methods.CrossRefPubMedGoogle Scholar
  9. 9.
    • Thompson JE. Crowd-sourced air quality studies: a review of the literature & portable sensors. Trends Environ Anal Chem. 2016;11:23–34. This study provides a review of the relatively low-cost air pollution sensors that are currently available for air pollution research as well as citizen science initiatives.CrossRefGoogle Scholar
  10. 10.
    Wang A, Brauer M. Review of next generation air monitors for air pollution. 2014 [cited 2017 Apr 30]; Available from:
  11. 11.
    Snyder EG, Watkins TH, Solomon PA, Thoma ED, Williams RW, Hagler GSW, et al. The changing paradigm of air pollution monitoring. Environ Sci Technol. 2013;47:11369–77.CrossRefPubMedGoogle Scholar
  12. 12.
    Loh M, Sarigiannis D, Gotti A, Karakitsios S, Pronk A, Kuijpers E, et al. How sensors might help define the external exposome. Int J Environ Res Public Health. 2017;14:434.CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Harrison R, Thornton C, Lawrence R, Mark D, Kinnersley R, Ayres J. Personal exposure monitoring of particulate matter, nitrogen dioxide, and carbon monoxide, including susceptible groups. Occup Environ Med. 2002;59:671–9.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Steinle S, Reis S, Sabel CE, Semple S, Twigg MM, Braban CF, et al. Personal exposure monitoring of PM2.5 in indoor and outdoor microenvironments. Sci Total Environ. 2015;508:383–94.CrossRefPubMedGoogle Scholar
  15. 15.
    Nieuwenhuijsen MJ, Donaire-Gonzalez D, Rivas I, de Castro M, Cirach M, Hoek G, et al. Variability in and agreement between modeled and personal continuously measured black carbon levels using novel smartphone and sensor technologies. Environ Sci Technol. 2015;49:2977–82.CrossRefPubMedGoogle Scholar
  16. 16.
    Nethery E, Leckie SE, Teschke K, Brauer M. From measures to models: an evaluation of air pollution exposure assessment for epidemiological studies of pregnant women. Occup Environ Med. 2008;65:579–86.CrossRefPubMedGoogle Scholar
  17. 17.
    Carvalho MA, Bernardes LS, Hettfleisch K, Pastro LDM, Vieira SE, Saldiva SRDM, et al. Associations of maternal personal exposure to air pollution on fetal weight and fetoplacental Doppler: a prospective cohort study. Reprod Toxicol. 2016;62:9–17.CrossRefPubMedGoogle Scholar
  18. 18.
    Lewis A, Edwards P. Validate personal air-pollution sensors. Nat News. 2016;535:29.CrossRefGoogle Scholar
  19. 19.
    Castell N, Dauge FR, Schneider P, Vogt M, Lerner U, Fishbain B, et al. Can commercial low-cost sensor platforms contribute to air quality monitoring and exposure estimates? Environ Int. 2017;99:293–302.CrossRefPubMedGoogle Scholar
  20. 20.
    Fishbain B, Lerner U, Castell N, Cole-Hunter T, Popoola O, Broday DM, et al. An evaluation tool kit of air quality micro-sensing units. Sci Total Environ. 2017;575:639–48.CrossRefPubMedGoogle Scholar
  21. 21.
    Reis S, Cowie H, Riddell K, Semple S, Steinle S, Apsley A, et al. Urban air quality citizen science. Phase 1: review of methods and projects. 2013 [cited 2017 Apr 30]. Available from:
  22. 22.
    Nikzad N, Verma N, Ziftci C, Bales E, Quick N, Zappi P, et al. CitiSense: improving geospatial environmental assessment of air quality using a wireless personal exposure monitoring system. Proc Conf Wirel Health New York, NY, USA. 2012 [cited 2017 Apr 30]. p. 11:1–11:8. Available from:
  23. 23.
    Snik F, Rietjens JHH, Apituley A, Volten H, Mijling B, Di Noia A, et al. Mapping atmospheric aerosols with a citizen science network of smartphone spectropolarimeters. Geophys Res Lett. 2014;41:2014GL061462.CrossRefGoogle Scholar
  24. 24.
    Ericsson. 5G subscriptions to reach half a billion in 2022: Ericsson Mobility Report [Internet]. 2016 [cited 2017 Apr 28]. Available from:
  25. 25.
    Purcell K. Half of adult cell phone owners have apps on their phones [Internet]. Pew Res Cent Internet Sci Tech. 2011 [cited 2017 Apr 28]. Available from:
  26. 26.
    Swan M. Health 2050: the realization of personalized medicine through crowdsourcing, the quantified self, and the participatory biocitizen. J Pers Med. 2012;2:93–118.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Bank of America. Trends in consumer mobility report [Internet]. 2015. Available from:
  28. 28.
    Steinle S, Reis S, Sabel CE. Quantifying human exposure to air pollution—moving from static monitoring to spatio-temporally resolved personal exposure assessment. Sci Total Environ. 2013;443:184–93.CrossRefPubMedGoogle Scholar
  29. 29.
    Glasgow ML, Rudra CB, Yoo E-H, Demirbas M, Merriman J, Nayak P, et al. Using smartphones to collect time–activity data for long-term personal-level air pollution exposure assessment. J Expo Sci Environ Epidemiol. 2016;26:356–64.CrossRefPubMedGoogle Scholar
  30. 30.
    Hu M, Li W, Li L, Houston D, Wu J. Refining time-activity classification of human subjects using the global positioning system. PLoS One. 2016;11:e0148875.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    González MC, Hidalgo CA, Barabási A-L. Understanding individual human mobility patterns. Nature. 2008;453:779–82.CrossRefPubMedGoogle Scholar
  32. 32.
    Collins FS, Varmus H. A new initiative on precision medicine. N Engl J Med. 2015;372:793–5.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Chan Y-FY, Wang P, Rogers L, Tignor N, Zweig M, Hershman SG, et al. The Asthma Mobile Health Study, a large-scale clinical observational study using ResearchKit. Nat Biotechnol. 2017;35:354–62.CrossRefPubMedGoogle Scholar
  34. 34.
    van Donkelaar A, Martin RV, Brauer M, Hsu NC, Kahn RA, Levy RC, et al. Global estimates of fine particulate matter using a combined geophysical-statistical method with information from satellites, models, and monitors. Environ Sci Technol. 2016;50:3762–72.CrossRefPubMedGoogle Scholar
  35. 35.
    Larkin A, Geddes JA, Martin RV, Xiao Q, Liu Y, Marshall JD, et al. Global land use regression model for nitrogen dioxide air pollution. Environ Sci Technol. 2017;51:6957–64.CrossRefPubMedGoogle Scholar
  36. 36.
    Lary DJ, Lary T, Sattler B. Using machine learning to estimate global PM2.5 for environmental health studies. Environ Health Insights. 2015;9:41–52.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Li X, Peng L, Hu Y, Shao J, Chi T. Deep learning architecture for air quality predictions. Environ Sci Pollut Res Int. 2016;23:22408–17.CrossRefPubMedGoogle Scholar
  38. 38.
    Zhang C, Yan J, Li C, Rui X, Liu L, Bie R. On estimating air pollution from photos using convolutional neural network. Proc. 2016 ACM Multimed. Conf. [Internet]. New York, NY, USA: ACM; 2016 [cited 2017 Sep 8]. p. 297–301. Available from:
  39. 39.
    Jean N, Burke M, Xie M, Davis WM, Lobell DB, Ermon S. Combining satellite imagery and machine learning to predict poverty. Science. 2016;353:790–4.CrossRefPubMedGoogle Scholar
  40. 40.
    Apte JS, Messier KP, Gani S, Brauer M, Kirchstetter TW, Lunden MM, et al. High-resolution air pollution mapping with Google Street View cars: exploiting big data. Environ Sci Technol. 2017;51:6999–7008.CrossRefPubMedGoogle Scholar
  41. 41.
    • Barrett MA, Humblet O, Hiatt RA, Adler NE. Big data and disease prevention: from quantified self to quantified communities. Big Data. 2013;1:168–75. This commentary highlights the role of big data for quantifying communities and how this approach can facilitate public health.CrossRefPubMedGoogle Scholar
  42. 42.
    Albino V, Berardi U, Dangelico RM. Smart cities: definitions, dimensions, performance, and initiatives. J Urban Technol. 2015;22:3–21.CrossRefGoogle Scholar
  43. 43.
    Solanas A, Patsakis C, Conti M, Vlachos IS, Ramos V, Falcone F, et al. Smart health: a context-aware health paradigm within smart cities. IEEE Commun Mag. 2014;52:74–81.CrossRefGoogle Scholar
  44. 44.
    Gariazzo C, Pelliccioni A, Bolignano A. A dynamic urban air pollution population exposure assessment study using model and population density data derived by mobile phone traffic. Atmos Environ. 2016;131:289–300.CrossRefGoogle Scholar
  45. 45.
    Nyhan M, Grauwin S, Britter R, Misstear B, McNabola A, Laden F, et al. “Exposure track”—the impact of mobile-device-based mobility patterns on quantifying population exposure to air pollution. Environ Sci Technol. 2016;50:9671–81.CrossRefPubMedGoogle Scholar
  46. 46.
    Clougherty JE, Levy JI, Kubzansky LD, Ryan PB, Suglia SF, Canner MJ, et al. Synergistic effects of traffic-related air pollution and exposure to violence on urban asthma etiology. Environ Health Perspect. 2007;115:1140–6.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Clougherty JE, Kubzansky LD. A framework for examining social stress and susceptibility to air pollution in respiratory health. Environ Health Perspect. 2009;117:1351.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Downey L, Van Willigen M. Environmental stressors: the mental health impacts of living near industrial activity. J Health Soc Behav. 2005;46:289–305.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Volckens J, Quinn C, Leith D, Mehaffy J, Henry CS, Miller-Lionberg D. Development and evaluation of an ultrasonic personal aerosol sampler. Indoor Air. 2017;27:409–16.CrossRefPubMedGoogle Scholar
  50. 50.
    O’Connell SG, Kincl LD, Anderson KA. Silicone wristbands as personal passive samplers. Environ Sci Technol. 2014;48:3327–35.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Raghupathi W, Raghupathi V. Big data analytics in healthcare: promise and potential. Health Inf Sci Syst [Internet]. 2014 [cited 2017 Aug 4];2. Available from:
  52. 52.
    Sandve GK, Nekrutenko A, Taylor J, Hovig E. Ten simple rules for reproducible computational research. PLoS Comput Biol. 2013;9:e1003285.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Arnett DK, Claas SA. Precision medicine, genomics, and public health. Diabetes Care. 2016;39:1870–3.CrossRefPubMedGoogle Scholar
  54. 54.
    Petersen C, DeMuro P. Legal and regulatory considerations associated with use of patient-generated health data from social media and mobile health (mHealth) devices. Appl Clin Inform. 2015;6:16–26.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Vayena E, Salathé M, Madoff LC, Brownstein JS. Ethical challenges of big data in public health. PLoS Comput Biol. 2015;11:e1003904.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Clarke A, Steele R. Smartphone-based public health information systems: anonymity, privacy and intervention. J Assoc Inf Sci Technol. 2015;66:2596–608.CrossRefGoogle Scholar
  57. 57.
    Cortez NG, Cohen IG, Kesselheim AS. FDA regulation of mobile health technologies. N Engl J Med. 2014;371:372–9.CrossRefPubMedGoogle Scholar
  58. 58.
    Oscar N, Fox PA, Croucher R, Wernick R, Keune J, Hooker K. Machine learning, sentiment analysis, and tweets: an examination of Alzheimer’s disease stigma on Twitter. J Gerontol B Psychol Sci Soc Sci [Internet]. 2017 [cited 2017 Apr 30]; Available from:
  59. 59.
    Cavazos-Rehg PA, Krauss MJ, Sowles SJ, Bierut LJ. “Hey everyone, I’m drunk.” An evaluation of drinking-related Twitter chatter. J Stud Alcohol Drugs. 2015;76:635–43.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.College of Public Health and Human SciencesOregon State UniversityCorvallisUSA
  2. 2.College of Public Health and Human SciencesOregon State UniversityCorvallisUSA

Personalised recommendations