Skip to main content

Advertisement

Log in

New Opportunities in Exposure Assessment of Occupational Epidemiology: Use of Measurements to Aid Exposure Reconstruction in Population-Based Studies

  • Occupational Health (LT Stayner and P Demers, Section Editors)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Exposure assessment efforts in population-based studies are increasingly incorporating measurements. The published literature was reviewed to identify the measurement sources and the approaches used to incorporate measurements into these efforts.

Recent Findings

The variety of occupations and industries in these studies made collecting participant-specific measurements impractical. Thus, the starting point was often the compilation of large databases of measurements from inspections, published literature, and other exposure surveys. These measurements usually represented multiple occupations, industries, and worksites, and spanned multiple decades. Measurements were used both qualitatively and quantitatively, dependent on the coverage and quality of the data. Increasingly, statistical models were used to derive job-, industry-, time period-, and other determinant-specific exposure concentrations.

Summary

Quantitative measurement-based approaches are increasingly replacing expert judgment, which facilitates the development of quantitative exposure-response associations. Evaluations of potential biases in these measurement sources, and their representativeness of typical exposure situations, warrant additional examination.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Friesen MC, Lavoue J, Van Tongeren M. Occupational exposure assessment in industry- and population-based epidemiological studies. In: Nieuwenhuijsen M, editor. Exposure assessment in environmental epidemiology. 2nd ed. Oxford: Oxford University Press; 2015.

    Google Scholar 

  2. Kromhout H, Vermeulen R. Application of job-exposure matrices in studies of the general population: some clues to their performance. Eur Respir Rev. 2001;11(80):80–90.

    Google Scholar 

  3. Bowman JD, Touchstone JA, Yost MG. A population-based job exposure matrix for power-frequency magnetic fields. J Occup Environ Hyg. 2007;4(9):715–28. doi:10.1080/15459620701528001.

    Article  PubMed  Google Scholar 

  4. Fevotte J, Dananche B, Delabre L, Ducamp S, Garras L, Houot M, et al. Matgene: a program to develop job-exposure matrices in the general population in France. Ann Occup Hyg. 2011;55(8):865–78. doi:10.1093/annhyg/mer067.

    Article  PubMed  Google Scholar 

  5. Friesen MC, Coble JB, Lu W, Shu XO, Ji BT, Xue S, et al. Combining a job-exposure matrix with exposure measurements to assess occupational exposure to benzene in a population cohort in shanghai, china. Ann Occup Hyg. 2012;56(1):80–91. doi:10.1093/annhyg/mer080.

    Article  PubMed  CAS  Google Scholar 

  6. • Garcia AM, Gonzalez-Galarzo MC, Kauppinen T, Delclos GL, Benavides FG. A job-exposure matrix for research and surveillance of occupational health and safety in Spanish workers: MatEmESp. Am J Ind Med. 2013;56(10):1226–38. doi:10.1002/ajim.22213. This study describes adapting FINJEM estimates with readily available Spanish sources, including surveys, registries, and local studies

    Article  PubMed  Google Scholar 

  7. Hamm MP, Burstyn I. Estimating occupational beryllium exposure from compliance monitoring data. Arch Environ Occup Health. 2011;66(2):75–86. doi:10.1080/19338244.2010.511309.

    Article  PubMed  CAS  Google Scholar 

  8. Kauppinen T, Toikkanen J, Pukkala E. From cross-tabulations to multipurpose exposure information systems: a new job-exposure matrix. Am J Ind Med. 1998;33(4):409–17.

    Article  PubMed  CAS  Google Scholar 

  9. Kauppinen T, Uuksulainen S, Saalo A, Makinen I, Pukkala E. Use of the Finnish Information System on Occupational Exposure (FINJEM) in epidemiologic, surveillance, and other applications. Ann Occup Hyg. 2014;58(3):380–96. doi:10.1093/annhyg/met074.

    Article  PubMed  Google Scholar 

  10. Kauppinen T, Heikkila P, Plato N, Woldbaek T, Lenvik K, Hansen J, et al. Construction of job-exposure matrices for the Nordic Occupational Cancer Study (NOCCA). Acta Oncol. 2009;48(5):791–800. doi:10.1080/02841860902718747.

    Article  PubMed  CAS  Google Scholar 

  11. Koh DH, Bhatti P, Coble JB, Stewart PA, Lu W, Shu XO, et al. Calibrating a population-based job-exposure matrix using inspection measurements to estimate historical occupational exposure to lead for a population-based cohort in Shanghai, China. J Expo Sci Environ Epidemiol. 2014;24(1):9–16. doi:10.1038/jes.2012.86.

    Article  PubMed  Google Scholar 

  12. • Lee DG, Lavoue J, Spinelli JJ, Burstyn I. Statistical modeling of occupational exposure to polycyclic aromatic hydrocarbons using OSHA data. J Occup Environ Hyg. 2015;12(10):729–42. doi:10.1080/15459624.2015.1043049. This study describes the use of OSHA inspection measurements to develop measurement-based exposure estimates for a PAH JEM. Of note, the authors modeled the probability of a job or industry exceeding the permissible exposure limit, rather than modeling exposure concentration

    Article  PubMed  CAS  Google Scholar 

  13. Peters S, Vermeulen R, Olsson A, Van Gelder R, Kendzia B, Vincent R, et al. Development of an exposure measurement database on five lung carcinogens (ExpoSYN) for quantitative retrospective occupational exposure assessment. Ann Occup Hyg. 2012;56(1):70–9. doi:10.1093/annhyg/mer081.

    Article  PubMed  CAS  Google Scholar 

  14. Peters S, Vermeulen R, Portengen L, Olsson A, Kendzia B, Vincent R, et al. Modelling of occupational respirable crystalline silica exposure for quantitative exposure assessment in community-based case-control studies. J Environ Monit. 2011;13(11):3262–8. doi:10.1039/c1em10628g.

    Article  PubMed  CAS  Google Scholar 

  15. •• Peters S, Vermeulen R, Portengen L, Olsson A, Kendzia B, Vincent R, et al. SYN-JEM: A quantitative job-exposure matrix for five lung carcinogens. Ann Occup Hyg. 2016;60(7):795–811. doi:10.1093/annhyg/mew034. This study describes the agent-specific variations in the ability to calibrate expert-based JEM estimates with measurements for five chemical agents

    Article  PubMed  CAS  Google Scholar 

  16. Sjostrom M, Lewne M, Alderling M, Willix P, Berg P, Gustavsson P, et al. A job-exposure matrix for occupational noise: development and validation. Ann Occup Hyg. 2013;57(6):774–83. doi:10.1093/annhyg/met001.

    Article  PubMed  Google Scholar 

  17. t Mannetje AM, McLean DJ, Eng AJ, Kromhout H, Kauppinen T, Fevotte J, et al. Developing a general population job-exposure matrix in the absence of sufficient exposure monitoring data. Ann Occup Hyg. 2011;55(8):879–85. doi:10.1093/annhyg/mer045.

    Article  Google Scholar 

  18. Turner MC, Benke G, Bowman JD, Figuerola J, Fleming S, Hours M, et al. Occupational exposure to extremely low-frequency magnetic fields and brain tumor risks in the INTEROCC study. Cancer Epidemiol Biomark Prev. 2014;23(9):1863–72. doi:10.1158/1055-9965.EPI-14-0102.

    Article  CAS  Google Scholar 

  19. Vila J, Bowman JD, Richardson L, Kincl L, Conover DL, McLean D, et al. A source-based measurement database for occupational exposure assessment of electromagnetic fields in the INTEROCC study: a literature review approach. Ann Occup Hyg. 2016a;60(2):184–204. doi:10.1093/annhyg/mev076.

    Article  PubMed  Google Scholar 

  20. •• Vila J, Bowman JD, Figuerola J, Morina D, Kincl L, Richardson L, et al. Development of a source-exposure matrix for occupational exposure assessment of electromagnetic fields in the INTEROCC study. J Expo Sci Environ Epidemiol. 2016b; doi:10.1038/jes.2016.60. This study describes the development of an EMF source-specific JEM that was derived primarily from exposure measurements. The authors combined measurements from many sources, weighting those sources by an expert-based evaluation of the confidence in the estimates

  21. Lavoue J, Gerin M, Vincent R. Comparison of formaldehyde exposure levels in two multi-industry occupational exposure databanks using multimodel inference. J Occup Environ Hyg. 2011;8(1):38–48. doi:10.1080/15459624.2010.515553.

    Article  PubMed  CAS  Google Scholar 

  22. Caldwell DJ, Armstrong TW, Barone NJ, Suder JA, Evans MJ. Hydrocarbon solvent exposure data: compilation and analysis of the literature. AIHAJ. 2000;61(6):881–94.

    Article  PubMed  CAS  Google Scholar 

  23. Vincent R, Jeandel B. COLCHIC-occupational exposure to chemical agents database: current content and development perspectives. Appl Occup Environ Hyg. 2001;16(2):115–21. doi:10.1080/104732201460190.

    Article  PubMed  CAS  Google Scholar 

  24. Stamm R. MEGA-database: one million data since 1972. Appl Occup Environ Hyg. 2001;16(2):159–63. doi:10.1080/104732201460262.

    Article  PubMed  CAS  Google Scholar 

  25. Floderus B, Persson T, Stenlund C. Magnetic-field exposures in the workplace: reference distribution and exposures in occupational groups. Int J Occup Environ Health. 1996;2(3):226–38. doi:10.1179/oeh.1996.2.3.226.

    Article  PubMed  CAS  Google Scholar 

  26. Peters S, Vermeulen R, Portengen L, Olsson A, Straif K, Kromhout H. Quantitative exposure assessment in community-based studies: the case for respirable crystalline silica and lung cancer. In: Peters S. Quantitative exposure assessment in community-based studies. Utrecht, The Netherlands: Thesis Utrecht University; 2012.

  27. •• Friesen MC, Bassig BA, Vermeulen R, Shu X-O, Purdue MP, Stewart PA, et al. Evaluating exposure–response associations for non-Hodgkin lymphoma with varying methods of assigning cumulative benzene exposure in the Shanghai Women’s Health Study. The Annals of Occupational Hygiene. 2017;61(1):56–66. doi:10.1093/annweh/wxw009. This study describes the impact of measurement-based JEM estimates on exposure-response associations

    Article  Google Scholar 

  28. Bhatti P, Stewart PA, Hutchinson A, Rothman N, Linet MS, Inskip PD, et al. Lead exposure, polymorphisms in genes related to oxidative stress, and risk of adult brain tumors. Cancer Epidemiol Biomark Prev. 2009;18(6):1841–8. doi:10.1158/1055-9965.EPI-09-0197.

    Article  CAS  Google Scholar 

  29. Park D, Stewart PA, Coble JB. A comprehensive review of the literature on exposure to metalworking fluids. J Occup Environ Hyg. 2009;6(9):530–41. doi:10.1080/15459620903065984.

    Article  PubMed  CAS  Google Scholar 

  30. Park D, Stewart PA, Coble JB. Determinants of exposure to metalworking fluid aerosols: a literature review and analysis of reported measurements. Ann Occup Hyg. 2009;53(3):271–88. doi:10.1093/annhyg/mep005.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Pronk A, Coble J, Stewart PA. Occupational exposure to diesel engine exhaust: a literature review. J Expo Sci Environ Epidemiol. 2009;19(5):443–57. doi:10.1038/jes.2009.21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Bakke B, Stewart PA, Waters MA. Uses of and exposure to trichloroethylene in U.S. industry: a systematic literature review. J Occup Environ Hyg. 2007;4(5):375–90. doi:10.1080/15459620701301763.

    Article  PubMed  CAS  Google Scholar 

  33. van Wijngaarden E, Stewart PA. Critical literature review of determinants and levels of occupational benzene exposure for United States community-based case-control studies. Appl Occup Environ Hyg. 2003;18(9):678–93. doi:10.1080/10473220301376.

    Article  PubMed  Google Scholar 

  34. Gold LS, De Roos AJ, Waters M, Stewart P. Systematic literature review of uses and levels of occupational exposure to tetrachloroethylene. J Occup Environ Hyg. 2008;5(12):807–39. doi:10.1080/15459620802510866.

    Article  PubMed  CAS  Google Scholar 

  35. Koh DH, Locke SJ, Chen YC, Purdue MP, Friesen MC. Lead exposure in US worksites: a literature review and development of an occupational lead exposure database from the published literature. Am J Ind Med. 2015;58(6):605–16. doi:10.1002/ajim.22448.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Hein MJ, Waters MA, Ruder AM, Stenzel MR, Blair A, Stewart PA. Statistical modeling of occupational chlorinated solvent exposures for case-control studies using a literature-based database. Ann Occup Hyg. 2010;54(4):459–72. doi:10.1093/annhyg/meq027.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Hein MJ, Waters MA, van Wijngaarden E, Deddens JA, Stewart PA. Issues when modeling benzene, toluene, and xylene exposures using a literature database. J Occup Environ Hyg. 2008;5(1):36–47. doi:10.1080/15459620701763947.

    Article  PubMed  Google Scholar 

  38. • Friesen MC, Park DU, Colt JS, Baris D, Schwenn M, Karagas MR, et al. Developing estimates of frequency and intensity of exposure to three types of metalworking fluids in a population-based case-control study of bladder cancer. Am J Ind Med. 2014;57(8):915–27. doi:10.1002/ajim.22328. This study describes the development and use of measurement-based and data-driven estimates of exposure that were linked to participants’ occupational responses in a case-control study

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lavoue J, Begin D, Beaudry C, Gerin M. Monte Carlo simulation to reconstruct formaldehyde exposure levels from summary parameters reported in the literature. Ann Occup Hyg. 2007;51(2):161–72. doi:10.1093/annhyg/mel068.

    Article  PubMed  CAS  Google Scholar 

  40. Koh DH, Nam JM, Graubard BI, Chen YC, Locke SJ, Friesen MC. Evaluating temporal trends from occupational lead exposure data reported in the published literature using meta-regression. Ann Occup Hyg. 2014;58(9):1111–25. doi:10.1093/annhyg/meu061.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. •• Locke SJ, Deziel NC, Koh DH, Graubard BI, Purdue MP, Friesen MC. Evaluating predictors of lead exposure for activities disturbing materials painted with or containing lead using historic published data from U.S. workplaces. Am J Ind Med. 2017;60(2):189–97. doi:10.1002/ajim.22679. This study describes the use of mixed-effects meta-regression models on summary data reported in the published literature to derive job, industry, and time-specific estimates of lead exposure that will be linked to participants’ occupational responses in a case-control study

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Neta G, Stewart PA, Rajaraman P, Hein MJ, Waters MA, Purdue MP, et al. Occupational exposure to chlorinated solvents and risks of glioma and meningioma in adults. Occup Environ Med. 2012;69(11):793–801. doi:10.1136/oemed-2012-100742.

    Article  PubMed  CAS  Google Scholar 

  43. Purdue MP, Stewart PA, Friesen MC, Colt JS, Locke SJ, Hein MJ, et al. Occupational exposure to chlorinated solvents and kidney cancer: a case-control study. Occup Environ Med. 2016; doi:10.1136/oemed-2016-103849.

  44. Silverman DT, Koutros S, Figueroa JD, Prokunina-Olsson L, Rothman N. Bladder cancer. In: Thun M, editor. Cancer epidemiology and prevention. 4th ed. New York: Oxford Press. In Press.

  45. • Kendzia B, Pesch B, Koppisch D, Van Gelder R, Pitzke K, Zschiesche W, et al. Modelling of occupational exposure to inhalable nickel compounds. J Expo Sci Environ Epidemiol. 2017; doi:10.1038/jes.2016.80. This study described the use of a German exposure database to develop exposure profiles of inhalable nickel exposure for a variety of occupations

  46. Pesch B, Kendzia B, Hauptmann K, Van Gelder R, Stamm R, Hahn JU, et al. Airborne exposure to inhalable hexavalent chromium in welders and other occupations: estimates from the German MEGA database. Int J Hyg Environ Health. 2015;218(5):500–6. doi:10.1016/j.ijheh.2015.04.004.

    Article  PubMed  CAS  Google Scholar 

  47. Lavoue J, Vincent R, Gerin M. Statistical modelling of formaldehyde occupational exposure levels in French industries, 1986-2003. Ann Occup Hyg. 2006;50(3):305–21. doi:10.1093/annhyg/mei068.

    Article  PubMed  CAS  Google Scholar 

  48. Kauffer E, Vincent R. Occupational exposure to mineral fibres: analysis of results stored on COLCHIC database. Ann Occup Hyg. 2007;51(2):131–42. doi:10.1093/annhyg/mel063.

    Article  PubMed  CAS  Google Scholar 

  49. • Clerc F, Bertrand N, Vincent R. TEXAS: a tool for EXposure ASsessment-Statistical models for estimating occupational exposure to chemical agents. Ann Occup Hyg. 2015;59(3):277–91. doi:10.1093/annhyg/meu094. This study used a large French exposure database to develop exposure profiles based on a Bayesian network for 26 chemical agents. While primarily built for industrial hygienists to apply for current work practices, this tool may also be of use for retrospective exposure assessment

    Article  PubMed  CAS  Google Scholar 

  50. •• Lavoue J, Friesen MC, Burstyn I. Workplace measurements by the US Occupational Safety and Health Administration since 1979: descriptive analysis and potential uses for exposure assessment. Ann Occup Hyg. 2013;57(1):77–97. doi:10.1093/annhyg/mes055. errata 57(5):681–3. This study provided a thorough review of previous studies that evaluated exposure based on US OSHA inspection measurements. In addition, it is the first study to compare the similarities and differences between two sources of OSHA measurements—a laboratory database and an inspection database.

  51. Ramachandran G. Retrospective exposure assessment using Bayesian methods. Ann Occup Hyg. 2001;45(8):651–67.

    Article  PubMed  CAS  Google Scholar 

  52. Ramachandran G, Banerjee S, Vincent JH. Expert judgment and occupational hygiene: application to aerosol speciation in the nickel primary production industry. Ann Occup Hyg. 2003;47(6):461–75.

    PubMed  CAS  Google Scholar 

  53. Ramachandran G, Vincent JH. A Bayesian approach to retrospective exposure assessment. Appl Occup Environ Hyg. 1999;14(8):547–57. doi:10.1080/104732299302549.

    Article  PubMed  CAS  Google Scholar 

  54. Mater G, Paris C, Lavoue J. Descriptive analysis and comparison of two French occupational exposure databases: COLCHIC and SCOLA. Am J Ind Med. 2016;59(5):379–91. doi:10.1002/ajim.22569.

    Article  PubMed  Google Scholar 

  55. Sarazin P, Burstyn I, Kincl L, Lavoue J. Trends in OSHA compliance monitoring data 1979-2011: statistical modeling of ancillary information across 77 chemicals. Ann Occup Hyg. 2016;60(4):432–52. doi:10.1093/annhyg/mev092.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa C. Friesen.

Ethics declarations

Conflict of Interest

Pamela J. Dopart and Melissa C. Friesen declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Funding

This project was funded by the Intramural Research Programs of the Division of Cancer Epidemiology and Genetics, NCI, NIH.

Additional information

This article is part of the Topical Collection on Occupational Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dopart, P.J., Friesen, M.C. New Opportunities in Exposure Assessment of Occupational Epidemiology: Use of Measurements to Aid Exposure Reconstruction in Population-Based Studies. Curr Envir Health Rpt 4, 355–363 (2017). https://doi.org/10.1007/s40572-017-0153-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-017-0153-0

Keywords

Navigation