Skip to main content

Advertisement

Log in

Use of Pathogen-Specific Antibody Biomarkers to Estimate Waterborne Infections in Population-Based Settings

Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Purpose of review

This review discusses the utility of pathogen-specific antibody biomarkers for improving estimates of the population burden of waterborne infections, assessing the fraction of infections that can be prevented by specific water treatments, and understanding transmission routes and the natural history and ecology of disease in different populations (including asymptomatic infection rates).

Recent findings

We review recent literature on the application of pathogen-specific antibody response data to estimate incidence and prevalence of acute infections and their utility to assess the contributions of waterborne transmission pathways. Advantages and technical challenges associated with the use of serum versus minimally invasive salivary antibody biomarkers in cross-sectional and prospective surveys are discussed.

Summary

We highlight recent advances and challenges and outline future directions for research, development, and application of antibody-based and other immunological biomarkers of waterborne infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Organization, W.H., UN-Water global annual assessment of sanitation and drinking-water (GLAAS) 2012 report: the challenge of extending and sustaining services. 2012.

  2. Ali SI. Alternatives for safe water provision in urban and peri-urban slums. J Water Health. 2010;8(4):720–34.

    Article  PubMed  Google Scholar 

  3. Shortridge JE, Guikema SD. Public health and pipe breaks in water distribution systems: analysis with internet search volume as a proxy. Water Res. 2014;53:26–34.

    Article  CAS  PubMed  Google Scholar 

  4. Gargano JW et al. Acute gastrointestinal illness following a prolonged community-wide water emergency. Epidemiol Infect. 2015;143(13):2766–76.

    Article  CAS  PubMed  Google Scholar 

  5. Blackburn BG et al. Surveillance for waterborne-disease outbreaks associated with drinking water—United States, 2001-2002. Morb Mortal Wkly Rep Surveill Summ. 2004;53(SS-8):23–45.

    Google Scholar 

  6. World Health Organization. Guidelines for drinking-water quality: recommendations. Vol. 1. 2004, Geneva: World Health Organization.

  7. Roy SL, Scallan E, Beach MJ. The rate of acute gastrointestinal illness in developed countries. J Water Health. 2006;4(Suppl 2):31–69.

    Article  PubMed  Google Scholar 

  8. Colford Jr JM et al. The Sonoma water evaluation trial: a randomized drinking water intervention trial to reduce gastrointestinal illness in older adults. Am J Public Health. 2009;99(11):1988–95.

    Article  PubMed  PubMed Central  Google Scholar 

  9. DeFelice NB, Johnston JE, Gibson JM. Acute gastrointestinal illness risks in North Carolina community water systems: a methodological comparison. Environ Sci Technol. 2015;49(16):10019–27.

    Article  CAS  PubMed  Google Scholar 

  10. Wymer LJ, Wade TJ, Dufour AP. Equivalency of risk for a modified health endpoint: a case from recreational water epidemiology studies. BMC Public Health. 2013;13:459.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vitral CL et al. Hepatitis A and E seroprevalence and associated risk factors: a community-based cross-sectional survey in rural Amazonia. BMC Infect Dis. 2014;14:458.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Esiobu N et al. High numbers of Staphylococcus aureus at three bathing beaches in South Florida. Int J Environ Health Res. 2013;23(1):46–57.

    Article  PubMed  Google Scholar 

  13. Ashbolt NJ. Microbial contamination of drinking water and human health from community water systems. Curr Environ Health Rep. 2015;2(1):95–106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Falkinham 3rd JO et al. Epidemiology and ecology of opportunistic premise plumbing pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. Environ Health Perspect. 2015;123(8):749–58.

    PubMed  PubMed Central  Google Scholar 

  15. World Health Organization. Biomarkers in risk assessment: Validity and validation, in Environmental Health Criteria. 2001, Geneva: World Health Organization.

  16. Beer KD et al. Surveillance for waterborne disease outbreaks associated with drinking waterUnited States, 2011-2012. MMWR Morb Mortal Wkly Rep. 2015;64(31):842–8.

    Article  PubMed  Google Scholar 

  17. Kotloff KL et al. Burden and aetiology of diarrhoeal disease in infants and young children in developing countries (the Global Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet. 2013;382(9888):209–22.

    Article  PubMed  Google Scholar 

  18. Platts-Mills JA et al. Pathogen-specific burdens of community diarrhoea in developing countries: a multisite birth cohort study (MAL-ED). Lancet Glob Health. 2015;3(9):e564–75.

    Article  PubMed  Google Scholar 

  19. Ishii K et al. Epidemiological and genetic analysis of a 2014 outbreak of hepatitis A in Japan. Vaccine. 2015;33(45):6029–36.

    Article  PubMed  Google Scholar 

  20. Hoofnagle JH, Nelson KE, Purcell RH. Hepatitis E. N Engl J Med. 2012;367(13):1237–44.

    Article  CAS  PubMed  Google Scholar 

  21. Leclerc H, Schwartzbrod L, Dei-Cas E. Microbial agents associated with waterborne diseases. Crit Rev Microbiol. 2002;28(4):371–409.

    Article  CAS  PubMed  Google Scholar 

  22. Kubota K et al. The human health burden of foodborne infections caused by Campylobacter, Salmonella, and Vibrio parahaemolyticus in Miyagi Prefecture. Jpn Foodborne Pathog Dis. 2008;5(5):641–8.

    Article  Google Scholar 

  23. Hunter PR et al. Self-reported diarrhea in a control group: a strong association with reporting of low-pressure events in tap water. Clin Infect Dis. 2005;40(4):e32–4.

    Article  PubMed  Google Scholar 

  24. Hlavsa MC et al. Outbreaks of illness associated with recreational water—United States, 2011-2012. MMWR Morb Mortal Wkly Rep. 2015;64(24):668–72.

    PubMed  Google Scholar 

  25. Johnson AM et al. UV inactivation of Cryptosporidium hominis as measured in cell culture. Appl Environ Microbiol. 2005;71(5):2800–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Borchardt MA et al. Viruses in nondisinfected drinking water from municipal wells and community incidence of acute gastrointestinal illness. Environ Health Perspect. 2012;120(9):1272–9.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Schuster CJ et al. Infectious disease outbreaks related to drinking water in Canada, 1974-2001. Can J Public Health. 2005;96(4):254–8.

    PubMed  Google Scholar 

  28. Risebro HL et al. Fault tree analysis of the causes of waterborne outbreaks. J Water Health. 2007;5(Suppl 1):1–18.

    Article  PubMed  Google Scholar 

  29. Stafford R et al. A community outbreak of Cryptosporidium infection associated with a swimming pool complex. Commun Dis Intell. 2000;24(8):236–9.

    CAS  PubMed  Google Scholar 

  30. Cope JR et al. Preventing community-wide transmission of Cryptosporidium: a proactive public health response to a swimming pool-associated outbreak—Auglaize County, Ohio. USA Epidemiol Infect. 2015;143(16):3459–67.

    Article  CAS  PubMed  Google Scholar 

  31. Schoen ME, Soller JA, Ashbolt NJ. Evaluating the importance of faecal sources in human-impacted waters. Water Res. 2011;45(8):2670–80.

    Article  CAS  PubMed  Google Scholar 

  32. Damania B, Dittmer DP. What lies within: coinfections and immunity. Cell Host Microbe. 2014;16(2):145–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Casemore D. Towards a US national estimate of the risk of endemic waterborne disease—sero-epidemiologic studies. J Water Health. 2006;4(Suppl 2):121–63.

    Article  PubMed  CAS  Google Scholar 

  34. Chalmers RM, Giles M. Zoonotic cryptosporidiosis in the UK—challenges for control. J Appl Microbiol. 2010;109(5):1487–97.

    Article  CAS  PubMed  Google Scholar 

  35. Locas A et al. Virus occurrence in municipal groundwater sources in Quebec Canada. Can J Microbiol. 2007;53(6):688–94.

    Article  CAS  PubMed  Google Scholar 

  36. Krain LJ, Nelson KE, Labrique AB. Host immune status and response to hepatitis E virus infection. Clin Microbiol Rev. 2014;27(1):139–65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Cong W et al. Seroprevalence of hepatitis E virus among pregnant women and control subjects in China. J Med Virol. 2015;87(3):446–50.

    Article  CAS  PubMed  Google Scholar 

  38. Wu WC et al. Application of serologic assays for diagnosing acute hepatitis E in national surveillance of a nonendemic area. J Med Virol. 2014;86(4):720–8.

    Article  CAS  PubMed  Google Scholar 

  39. Monroe SS et al. Detection of antibody to recombinant Norwalk virus antigen in specimens from outbreaks of gastroenteritis. J Clin Microbiol. 1993;31(11):2866–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Moe CL et al. Diagnosis of norwalk virus infection by indirect enzyme immunoassay detection of salivary antibodies to recombinant norwalk virus antigen. Clin Diagn Lab Immunol. 2004;11(6):1028–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Leon J et al. Immunology of norovirus infection, in immunity against mucosal pathogens. In: Vajdy M, editor. . Netherlands: Springer; 2008. p. 219–62.

    Chapter  Google Scholar 

  42. Emmons W. Accuracy of oral specimen testing for human immunodeficiency virus. Am J Med. 1997;102(4 A):15–20.

    Article  CAS  PubMed  Google Scholar 

  43. De Melker HE et al. Non-participation in a population-based seroprevalence study of vaccine-preventable diseases. Epidemiol Infect. 2000;124(2):255–62.

  44. Sethi D et al. A study of infectious intestinal disease in England: plan and methods of data collection. Commun Dis Public Health. 1999;2(2):101–7.

    CAS  PubMed  Google Scholar 

  45. McMurtry CM et al. Far fromjust a poke”: common painful needle procedures and the development of needle fear. Clin J Pain. 2015;31(10 Suppl):S3–S11.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Osborne K et al. Ten years of serological surveillance in England and Wales: methods, results, implications and action. Int J Epidemiol. 2000;29(2):362–8.

    Article  CAS  PubMed  Google Scholar 

  47. Frost, F.J., et al., Serological responses to Cryptosporidium antigens among users of surface- vs ground water sources. Epidemiol Infect, 2003. 131(3): p. 1131–1138.

  48. Priest JW et al. Longitudinal analysis of cryptosporidium species-specific immunoglobulin G antibody responses in Peruvian children. Clin Vaccine Immunol. 2006;13(1):123–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Morris-Cunnington MC et al. A population-based seroprevalence study of hepatitis a virus using oral fluid in England and Wales. Am J Epidemiol. 2004;159(8):786–94 .One of the first population-based surveillance studies involving self-collection and postal return of oral fluids samples.

    Article  CAS  PubMed  Google Scholar 

  50. Brandtzaeg P. Do salivary antibodies reliably reflect both mucosal and systemic immunity? Ann N Y Acad Sci. 2007;1098:288–311.

    Article  CAS  PubMed  Google Scholar 

  51. McKie A, Vyse A, Maple C. Novel methods for the detection of microbial antibodies in oral fluid. Lancet Infect Dis. 2002;2(1):18–24.

    Article  CAS  PubMed  Google Scholar 

  52. Griffin SM et al. Development of a multiplex microsphere immunoassay for the quantitation of salivary antibody responses to selected waterborne pathogens. J Immunol Methods. 2011;364(1–2):83–93 .This study provides the first stage of a pilot, proof-of-concept project to develop a non-invasive salivary antibody technique for surveillance of waterborne infections.

    Article  CAS  PubMed  Google Scholar 

  53. Griffin SM et al. Application of salivary antibody immunoassays for the detection of incident infections with Norwalk virus in a group of volunteers. J Immunol Methods. 2015;424:53–63 .This study demonstrated that the use of salivary antibodies in conjunction with recombinant Norwalk virus P particles may enable inexpensive and non-invasive surveillance of incident Norwalk virus infections in prospective epidemiological studies.

    Article  CAS  PubMed  Google Scholar 

  54. Zaka-ur-Rab Z et al. Evaluation of salivary anti-Salmonella typhi lipopolysaccharide IgA ELISA for serodiagnosis of typhoid fever in children. Arch Dis Child. 2012;97(3):236–8.

    Article  PubMed  Google Scholar 

  55. Augustine, S.A., et al., Development and application of a salivary antibody 6-plex immunoassay to determine human exposure to environmental pathogens, in American Chemical Society 250th National Meeting and Exposition 2015: Boston, MA.

  56. Dimitriou L, Sharp NC, Doherty M. Circadian effects on the acute responses of salivary cortisol and IgA in well trained swimmers. Br J Sports Med. 2002;36(4):260–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sandin A et al. High salivary secretory IgA antibody levels are associated with less late-onset wheezing in IgE-sensitized infants. Pediatr Allergy Immunol. 2011;22(5):477–81.

    Article  PubMed  Google Scholar 

  58. Lindesmith L et al. Cellular and humoral immunity following Snow Mountain virus challenge. J Virol. 2005;79(5):2900–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Lindesmith L et al. Human susceptibility and resistance to Norwalk virus infection. Nat Med. 2003;9(5):548–53.

    Article  CAS  PubMed  Google Scholar 

  60. Chappell CL et al. Cryptosporidium hominis: experimental challenge of healthy adults. Am J Trop Med Hyg. 2006;75(5):851–7.

    CAS  PubMed  Google Scholar 

  61. Nash TE et al. Antigenic variation of Giardia Lamblia in experimental human infections. J Immunol. 1990;144(11):4362–9.

    CAS  PubMed  Google Scholar 

  62. Nash TE et al. Experimental human infections with Giardia Lamblia. J Infect Dis. 1987;156(6):974–84.

    Article  CAS  PubMed  Google Scholar 

  63. Kotloff KL et al. A modified Shigella volunteer challenge model in which the inoculum is administered with bicarbonate buffer: clinical experience and implications for Shigella infectivity. Vaccine. 1995;13(16):1488–94.

    Article  CAS  PubMed  Google Scholar 

  64. Erdman DD, Gary GW, Anderson LJ. Serum immunoglobulin a response to Norwalk virus infection. J Clin Microbiol. 1989;27(6):1417–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Platts-Mills JA, Liu J, Houpt ER. New concepts in diagnostics for infectious diarrhea. Mucosal Immunol. 2013;6(5):876–85.

    Article  CAS  PubMed  Google Scholar 

  66. Priest JW et al. Multiplex assay detection of immunoglobulin G antibodies that recognize Giardia intestinalis and Cryptosporidium Parvum antigens. Clin Vaccine Immunol: CVI. 2010;17(11):1695–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Priest JW et al. Seroepidemiology of Toxoplasma in a coastal region of Haiti: multiplex bead assay detection of immunoglobulin G antibodies that recognize the SAG2A antigen. Epidemiol Infect. 2015;143(3):618–30.

    Article  CAS  PubMed  Google Scholar 

  68. Moss DM et al. Longitudinal evaluation of enteric protozoa in Haitian children by stool exam and multiplex serologic assay. Am J Trop Med Hyg. 2014;90(4):653–60.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Moss DM et al. Detection of cryptosporidium antibodies in sera and oral fluids using multiplex bead assay. J Parasitol. 2004;90(2):397–404.

    Article  CAS  PubMed  Google Scholar 

  70. Krueger WS et al. Drinking water source and human Toxoplasma gondii infection in the United States: a cross-sectional analysis of NHANES data. BMC Public Health. 2014;14:711.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Krueger WS et al. Environmental risk factors associated with Helicobacter pylori seroprevalence in the United States: a cross-sectional analysis of NHANES data. Epidemiol Infect. 2015;143(12):2520–31.

    Article  CAS  PubMed  Google Scholar 

  72. Farkas K et al. Serological responses to cryptosporidium antigens in inhabitants of Hungary using conventionally filtered surface water and riverbank filtered drinking water. Epidemiol Infect. 2015;143(13):2743–7.

  73. Frost FJ et al. Analysis of serological responses to cryptosporidium antigen among NHANES III participants. Ann Epidemiol. 2004;14(7):473–8.

    Article  PubMed  Google Scholar 

  74. Kozisek F et al. Serological responses to cryptosporidium-specific antigens in Czech populations with different water sources. Epidemiol Infect. 2008;136(2):279–86.

    Article  CAS  PubMed  Google Scholar 

  75. Tollestrup K et al. Cryptosporidium infection, onsite wastewater systems and private wells in the arid Southwest. J Water Health. 2014;12(1):161–72.

    Article  PubMed  Google Scholar 

  76. Messner M et al. An approach for developing a national estimate of waterborne disease due to drinking water and a national estimate model application. J Water Health. 2006;4(Suppl 2):201–40.

    Article  PubMed  Google Scholar 

  77. McDonald AC et al. Cryptosporidium Parvum-specific antibody responses among children residing in Milwaukee during the 1993 waterborne outbreak. J Infect Dis. 2001;183(9):1373–9.

    Article  CAS  PubMed  Google Scholar 

  78. Mac Kenzie WR et al. A massive outbreak in Milwaukee of cryptosporidium infection transmitted through the public water supply. N Engl J Med. 1994;331(3):161–7.

    Article  CAS  PubMed  Google Scholar 

  79. Teunis PF et al. Campylobacter seroconversion rates in selected countries in the European Union. Epidemiol Infect. 2013;141(10):2051–7.

    Article  CAS  PubMed  Google Scholar 

  80. Frost F et al. Serological responses to Cryptosporidium antigens among women using riverbank-filtered water, conventionally filtered surface water and groundwater in Hungary. J Water Health. 2005;3(1):77–82.

    PubMed  Google Scholar 

  81. Teunis PF et al. Biomarker dynamics: estimating infection rates from serological data. Stat Med. 2012;31(20):2240–8.

    Article  CAS  PubMed  Google Scholar 

  82. Falkenhorst G et al. Serological cross-sectional studies on salmonella incidence in eight European countries: no correlation with incidence of reported cases. BMC Public Health. 2012;12:523.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Nogareda F et al. Incidence and prevalence of Toxoplasma gondii infection in women in France, 1980-2020: model-based estimation. Epidemiol Infect. 2014;142(8):1661–70.

    Article  CAS  PubMed  Google Scholar 

  84. Goeyvaerts N et al. Estimating vaccination coverage for the trivalent measles-mumps-rubella vaccine from trivariate serological data. Stat Med. 2012;31(14):1432–49.

    Article  PubMed  Google Scholar 

  85. Arnold BF et al. Serological measures of malaria transmission in Haiti: comparison of longitudinal and cross-sectional methods. PLoS One. 2014;9(4):e93684.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Nations, U. 2030 Agenda: Sustainable Development Goal 6 to ensure availability and sustainable management of water and sanitation for all. 2015; Available from: https://sustainabledevelopment.un.org/topics/waterandsanitation.

  87. Kaminski RW et al. Multiplexed immunoassay to assess Shigella-specific antibody responses. J Immunol Methods. 2013;393(1–2):18–29.

    Article  CAS  PubMed  Google Scholar 

  88. Armah, G., et al., A randomized, controlled trial of the impact of alternative dosing schedules on the immune response to human rotavirus vaccine in rural Ghanaian infants. J Infect Dis. 2016.

  89. Qadri F et al. Peru-15, a live attenuated oral cholera vaccine, is safe and immunogenic in Bangladeshi toddlers and infants. Vaccine. 2007;25(2):231–8.

    Article  CAS  PubMed  Google Scholar 

  90. Qadri F et al. Randomized, controlled study of the safety and immunogenicity of Peru-15, a live attenuated oral vaccine candidate for cholera, in adult volunteers in Bangladesh. J Infect Dis. 2005;192(4):573–9.

    Article  CAS  PubMed  Google Scholar 

  91. Lemon SM. Immunologic approaches to assessing the response to inactivated hepatitis a vaccine. J Hepatol. 1993;18(Suppl 2):S15–9.

    Article  PubMed  Google Scholar 

  92. Zhang J et al. Protection against hepatitis E virus infection by naturally acquired and vaccine-induced immunity. Clin Microbiol Infect. 2014;20(6):O397–405.

    Article  CAS  PubMed  Google Scholar 

  93. Ang CW et al. Seroepidemiological studies indicate frequent and repeated exposure to campylobacter spp. during childhood. Epidemiol Infect. 2011;139(9):1361–8.

    Article  CAS  PubMed  Google Scholar 

  94. Mogensen TH, Paludan SR. Molecular pathways in virus-induced cytokine production. Microbiol Mol Biol Rev. 2001;65(1):131–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Newman KL et al. Human norovirus infection and the acute serum cytokine response. Clin Exp Immunol. 2015;182(2):195–203.

    Article  CAS  PubMed  Google Scholar 

  96. Brandtzaeg P. Gate-keeper function of the intestinal epithelium. Benefic Microbes. 2013;4(1):67–82.

    Article  CAS  Google Scholar 

  97. Cao AT et al. Th17 cells upregulate polymeric Ig receptor and intestinal IgA and contribute to intestinal homeostasis. J Immunol. 2012;189(9):4666–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Corthesy B. Role of secretory immunoglobulin a and secretory component in the protection of mucosal surfaces. Future Microbiol. 2010;5(5):817–29.

    Article  CAS  PubMed  Google Scholar 

  99. Riis JL et al. Salivary cytokines as a minimally-invasive measure of immune functioning in young children: correlates of individual differences and sensitivity to laboratory stress. Dev Psychobiol. 2015;57(2):167.

    Article  CAS  Google Scholar 

  100. JJaedicke KM, Preshaw PM, Taylor JJ. Salivary cytokines as biomarkers of periodontal diseases. Periodontol 2000. 2016;70(1):164–83.

  101. Baqui AA et al. Enhanced interleukin 1 beta, interleukin 6 and tumor necrosis factor alpha in gingival crevicular fluid from periodontal pockets of patients infected with human immunodeficiency virus 1. Oral Microbiol Immunol. 2000;15(2):67–73.

    Article  CAS  PubMed  Google Scholar 

  102. Desai GS, Mathews ST. Saliva as a non-invasive diagnostic tool for inflammation and insulin-resistance. World J Diabetes. 2014;5(6):730–8.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Spear GT et al. Relationship of HIV RNA and cytokines in saliva from HIV-infected individuals. FEMS Immunol Med Microbiol. 2005;45(2):129–36.

    Article  CAS  PubMed  Google Scholar 

  104. Aleksandra Nielsen A et al. Saliva interleukin-6 in patients with inflammatory bowel disease. Scand J Gastroenterol. 2005;40(12):1444–8.

    Article  PubMed  Google Scholar 

  105. Kaslow RA, Evans AS. Epidemiologic concepts and methods. In: Evans AS, Kaslow RA, editors. Viral infections of humans: epidemiology and control. New York, NY: Plenum Publishing Corporation; 1997. p. 3–58.

  106. Priest JW et al. Enzyme immunoassay detection of antigen-specific immunoglobulin g antibodies in longitudinal serum samples from patients with cryptosporidiosis. Clin Diagn Lab Immunol. 2001;8(2):415–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Crump JA et al. Comparing serologic response against enteric pathogens with reported diarrhea to assess the impact of improved household drinking water quality. Am J Trop Med Hyg. 2007;77(1):136–41.

    PubMed  Google Scholar 

  108. Sarkar R et al. Serum IgG responses and seroconversion patterns to Cryptosporidium gp15 among children in a birth cohort in South India. Clin Vaccine Immunol : CVI. 2012;19(6):849–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Becker DJ, Oloya J, Ezeamama AE. Household socioeconomic and demographic correlates of Cryptosporidium seropositivity in the United States. PLoS Negl Trop Dis. 2015;9(9):e0004080.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Checkley W et al. A review of the global burden, novel diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect Dis. 2015;15(1):85–94.

    Article  PubMed  Google Scholar 

  111. Cozon G et al. Secretory IgA antibodies to Cryptosporidium parvum in AIDS patients with chronic cryptosporidiosis. J Infect Dis. 1994;169(3):696–9.

    Article  CAS  PubMed  Google Scholar 

  112. Egorov AI et al. Recent diarrhea is associated with elevated salivary IgG responses to Cryptosporidium in residents of an eastern Massachusetts community. Infection. 2010;38(2):117–23.

    Article  CAS  PubMed  Google Scholar 

  113. Rokosz-Chudziak N, Rastawicki W. Frequency of antibodies to the recombinant protein P39 of C. jejuni in patients with gastrointestinal disorders and reactive arthritis in Poland. Med Dosw Mikrobiol. 2014;66(3–4):195–207.

    CAS  PubMed  Google Scholar 

  114. Tribble DR et al. Assessment of the duration of protection in campylobacter jejuni experimental infection in humans. Infect Immun. 2010;78(4):1750–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Islam D et al. Immune responses to Campylobacter (C. jejuni or C. coli) infections: a two-year study of US forces deployed to Thailand. APMIS. 2014;122(11):1102–13.

    CAS  PubMed  Google Scholar 

  116. Cawthraw SA et al. Long-term antibody responses following human infection with campylobacter jejuni. Clin Exp Immunol. 2002;130(1):101–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Jiménez JC et al. Antibody response in children infected with Giardia Intestinalis before and after treatment with Secnidazole. Am J Trop Med Hyg. 2009;80(1):11–5.

    PubMed  Google Scholar 

  118. Rodriguez OL et al. Secretory IgA antibody responses in Venezuelan children infected with Giardia duodenalis. J Trop Pediatr. 2004;50(2):68–72.

    Article  CAS  PubMed  Google Scholar 

  119. El-Gebaly NS et al. Saliva and sera IgA and IgG in Egyptian Giardia-infected children. Parasitol Res. 2012;111(2):571–5.

    Article  PubMed  Google Scholar 

  120. Hundekar S et al. Viral excretion and antibody titers in children infected with hepatitis a virus from an orphanage in western India. J Clin Virol. 2015;73:27–31.

    Article  PubMed  Google Scholar 

  121. Laufer DS et al. Saliva and serum as diagnostic media for antibody to hepatitis a virus in adults and in individuals who have received an inactivated hepatitis a vaccine. Clin Infect Dis. 1995;20(4):868–71.

    Article  CAS  PubMed  Google Scholar 

  122. Ochnio JJ et al. New, ultrasensitive enzyme immunoassay for detecting vaccine- and disease-induced hepatitis A virus-specific immunoglobulin G in saliva. J Clin Microbiol. 1997;35(1):98–101.

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Tourinho RS et al. Cross-sectional study of hepatitis A virus infection in the Pantanal population before vaccine implementation in Brazil: usage of non-invasive specimen collection. Int J Environ Res Public Health. 2015;12(7):7357–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Adjei AA et al. Hepatitis E virus infection is highly prevalent among pregnant women in Accra Ghana. Virol J. 2009;6:108.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Pas SD et al. Diagnostic performance of selected commercial HEV IgM and IgG ELISAs for immunocompromised and immunocompetent patients. J Clin Virol. 2013;58(4):629–34.

    Article  CAS  PubMed  Google Scholar 

  126. Kumar A et al. Association of cytokines in hepatitis E with pregnancy outcome. Cytokine. 2014;65(1):95–104.

    Article  CAS  PubMed  Google Scholar 

  127. Gu G et al. Hepatitis E virus seroprevalence in pregnant women in Jiangsu, China, and postpartum evolution during six years. BMC Infect Dis. 2015;15(1):560.

    Article  PubMed  PubMed Central  Google Scholar 

  128. Heaney CD et al. Arsenic exposure and hepatitis E virus infection during pregnancy. Environ Res. 2015;142:273–80.

    Article  CAS  PubMed  Google Scholar 

  129. Kmush BL et al. The association of cytokines and micronutrients with hepatitis E virus infection during pregnancy and the postpartum period in rural Bangladesh. Am J Trop Med Hyg. 2016;94(1):203–11.

    Article  CAS  PubMed  Google Scholar 

  130. Iritani N et al. Humoral immune responses against norovirus infections of children. J Med Virol. 2007;79(8):1187–93.

    Article  CAS  PubMed  Google Scholar 

  131. Ramani S et al. Mucosal and cellular immune responses to Norwalk virus. J Infect Dis. 2015;212(3):397–405.

    Article  PubMed  Google Scholar 

  132. Grimwood K et al. Comparison of serum and mucosal antibody responses following severe acute rotavirus gastroenteritis in young children. J Clin Microbiol. 1988;26(4):732–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  133. Azim T et al. Rotavirus-specific subclass antibody and cytokine responses in Bangladeshi children with rotavirus diarrhoea. J Med Virol. 2003;69(2):286–95.

    Article  PubMed  Google Scholar 

  134. Xu J et al. Serum antibody responses in children with rotavirus diarrhea can serve as proxy for protection. Clin Diagn Lab Immunol. 2005;12(2):273–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  135. Premkumar P et al. Association of serum antibodies with protection against rotavirus infection and disease in south Indian children. Vaccine. 2014;32(Supplement 1):A55–61.

    Article  PubMed  Google Scholar 

  136. Sindhu KN et al. Immune response and intestinal permeability in children with acute gastroenteritis treated with Lactobacillus rhamnosus GG: a randomized, double-blind, placebo-controlled trial. Clin Infect Dis. 2014;58(8):1107–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Moon, SS et al. Prevaccination rotavirus serum IgG and IgA are associated with lower immunogenicity of live, oral human rotavirus vaccine in south African infants. Clin Infect Dis. 2016;62(2):157–65.

  138. Stals F, Walther FJ, Bruggeman CA. Faecal and pharyngeal shedding of rotavirus and rotavirus IgA in children with diarrhoea. J Med Virol. 1984;14(4):333–9.

  139. Aiyar J et al. Rotavirus-specific antibody response in saliva of infants with rotavirus diarrhea. J Infect Dis. 1990;162(6):1383–4.

    Article  CAS  PubMed  Google Scholar 

  140. Friedman MG et al. Subclasses of IgA antibodies in serum and saliva samples of newborns and infants immunized against rotavirus. Clin Exp Immunol. 1996;103(2):206–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ludwig K et al. Antibody response to Shiga toxins Stx2 and Stx1 in children with enteropathic hemolytic-uremic syndrome. J Clin Microbiol. 2001;39(6):2272–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Kulkarni H et al. Escherichia coliOgroup serological responses and clinical correlations in epidemic HUS patients. Comp Immunol Microbiol Infect Dis. 2002;25(4):249–68.

    Article  PubMed  Google Scholar 

  143. Fernández-Brando RJ et al. Antibody response to Shiga toxins in Argentinean children with Enteropathic hemolytic uremic syndrome at acute and long-term follow-up periods. PLoS One. 2011;6(4):1–7.

    Article  CAS  Google Scholar 

  144. Guirro M et al. Humoral immune response to Shiga toxin 2 (Stx2) among Brazilian urban children with hemolytic uremic syndrome and healthy controls. BMC Infect Dis. 2014;14:320.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  145. Ludwig K et al. Saliva IgM and IgA are a sensitive indicator of the humoral immune response to Escherichia coli O157 lipopolysaccharide in children with enteropathic hemolytic uremic syndrome. Pediatr Res. 2002;52(2):307–13.

    Article  CAS  PubMed  Google Scholar 

  146. Chart H et al. Analysis of saliva for antibodies to the LIPS of Escherichia coli O157 in patients with serum antibodies to E-coli O157 LIPS. J Med Microbiol. 2003;52(7):569–72.

    Article  PubMed  Google Scholar 

  147. Van De Verg LL et al. Cross-reactivity of Shigella flexneri serotype 2a O antigen antibodies following immunization or infection. Vaccine. 1996;14(11):1062–8.

    Article  Google Scholar 

  148. Raqib R et al. A systemic downregulation of gamma interferon production is associated with acute shigellosis. Infect Immun. 1997;65(12):5338–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Rasolofo-Razanamparany V et al. Predominance of serotype-specific mucosal antibody response in Shigella flexneri-infected humans living in an area of endemicity. Infect Immun. 2001;69(9):5230–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Levine MM et al. Clinical trials of Shigella vaccines: two steps forward and one step back on a long, hard road. Nat Rev Microbiol. 2007;5(7):540–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Muhsen K et al. Age-dependent association among helicobacter pylori infection, serum pepsinogen levels and immune response of children to live oral cholera vaccine CVD 103-HgR. PLoS One. 2014;9(1):e83999.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Thompson CN et al. A cohort study to define the age-specific incidence and risk factors of Shigella diarrhoeal infections in Vietnamese children: a study protocol. BMC Public Health. 2014;14:1289.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Azim T et al. Cytokines in the stools of children with complicated shigellosis. Clin Diagn Lab Immunol. 1995;2(4):492–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Schultsz C et al. Shigella-specific IgA in saliva of children with bacillary dysentery. FEMS Microbiol Immunol. 1992;4(2):65–72.

    Article  CAS  PubMed  Google Scholar 

  155. Chowdhury F et al. A comparison of clinical and immunologic features in children and older patients hospitalized with severe cholera in Bangladesh. Pediatr Infect Dis J. 2008;27(11):986–92.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Johnson RA et al. Comparison of immune responses to the O-specific polysaccharide and lipopolysaccharide of Vibrio cholerae O1 in Bangladeshi adult patients with cholera. Clin Vaccine Immunol: CVI. 2012;19(11):1712–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Fujii Y et al. Serological surveillance development for tropical infectious diseases using simultaneous microsphere-based multiplex assays and finite mixture models. PLoS Negl Trop Dis. 2014;8(7):1–15.

    Article  CAS  Google Scholar 

  158. Khan AI et al. Cholera in pregnancy: clinical and immunological aspects. Int J Infect Dis. 2015;39:20–4.

    Article  PubMed  Google Scholar 

  159. Qadri F et al. Antigen-specific immunoglobulin A antibodies secreted from circulating B cells are an effective marker for recent local immune responses in patients with cholera: comparison to antibody-secreting cell responses and other immunological markers. Infect Immun. 2003;71(8):4808–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jertborn M, Svennerholm AM, Holmgren J. Saliva, breast milk, and serum antibody responses as indirect measures of intestinal immunity after oral cholera vaccination or natural disease. J Clin Microbiol. 1986;24(2):203–9.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher D. Heaney.

Ethics declarations

Conflict of Interest

Douglas A. Granger is the founder and chief scientific and strategy advisor at Salimetrics LLC and SalivaBio LLC, and these relationships are managed by the policies of the committees on conflict of interest at the Johns Hopkins University School of Medicine and the University of California at Irvine. All other authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This is a review article which does not report new results of human or animal subjects performed by the authors.

Additional information

This article is part of the Topical Collection on Water and Health

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Exum, N.G., Pisanic, N., Granger, D.A. et al. Use of Pathogen-Specific Antibody Biomarkers to Estimate Waterborne Infections in Population-Based Settings. Curr Envir Health Rpt 3, 322–334 (2016). https://doi.org/10.1007/s40572-016-0096-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-016-0096-x

Keywords

Navigation