Current Environmental Health Reports

, Volume 3, Issue 3, pp 188–201 | Cite as

Turing Revisited: Decoding the microRNA Messages in Brain Extracellular Vesicles for Early Detection of Neurodevelopmental Disorders

  • Virginie Gillet
  • Darel John Hunting
  • Larissa TakserEmail author
Environmental Epigenetics (A Baccarelli, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Environmental Epigenetics


The prevention of neurodevelopmental disorders (NDD) of prenatal origin suffers from the lack of objective tools for early detection of susceptible individuals and the long time lag, usually in years, between the neurotoxic exposure and the diagnosis of mental dysfunction. Human data on the effects of alcohol, lead, and mercury and experimental data from animals on developmental neurotoxins and their long-term behavioral effects have achieved a critical mass, leading to the concept of the Developmental Origin of Health and Disease (DOHaD). However, there is currently no way to evaluate the degree of brain damage early after birth. We propose that extracellular vesicles (EVs) and particularly exosomes, released by brain cells into the fetal blood, may offer us a non-invasive means of assessing brain damage by neurotoxins. We are inspired by the strategy applied by Alan Turing (a cryptanalyst working for the British government), who created a first computer to decrypt German intelligence communications during World War II. Given the growing evidence that microRNAs (miRNAs), which are among the molecules carried by EVs, are involved in cell-cell communication, we propose that decrypting messages from EVs can allow us to detect damage thus offering an opportunity to cure, reverse, or prevent the development of NDD. This review summarizes recent findings on miRNAs associated with selected environmental toxicants known to be involved in the pathophysiology of NDD.


Neurodevelopmental disorders microRNAs Extracellular vesicles Environmental exposure Biomarkers 


Compliance with Ethical standards

Conflict of Interest

Virginie Gillet, Darel John Hunting, and Larissa Takser declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. 1.
    Ratnaike R. Acute and chronic arsenic toxicity. Postgrad Med J. 2003;79(933):391–6.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Sanders AP, Claus Henn B, Wright RO. Perinatal and childhood exposure to cadmium, manganese, and metal mixtures and effects on cognition and behavior: a review of recent literature. Curr Environ Health Rep. 2015;2(3):284–94.PubMedCrossRefGoogle Scholar
  3. 3.
    Natarajan SK, Pachunka JM, Mott JL. Role of microRNAs in alcohol-induced multi-organ injury. Biomolecules. 2015;5(4):3309–38.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Froehlich TE, Anixt JS, Loe IM, et al. Update on environmental risk factors for attention-deficit/hyperactivity disorder. Curr Psych Rep. 2011;13(5):333–44.CrossRefGoogle Scholar
  5. 5.
    Doyle LR, Mattson SN. Neurobehavioral disorder associated with prenatal alcohol exposure (ND-PAE): review of evidence and guidelines for assessment. Curr Dev Disord Rep. 2015;2(3):175–86.PubMedCrossRefGoogle Scholar
  6. 6.
    Grandjean P, Weihe P, Debes F, et al. Neurotoxicity from prenatal and postnatal exposure to methylmercury. Neurotoxicol Teratol. 2014;43:39–44.PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Forns J, Fort M, Casas M, Cáceres A, Guxens M, Gascon M, et al. Exposure to metals during pregnancy and neuropsychological development at the age of 4 years. Neurotoxicology. 2014;40:16–22.PubMedCrossRefGoogle Scholar
  8. 8.•
    Vrijens K, Bollati V, Nawrot TS. MicroRNAs as potential signatures of environmental exposure or effect: a systematic review. Environ Health Perspect. 2015;123(5):399–411. This reviewed provides recent state of knowledge regarding the effects of environmental exposures on miRNAs expression. This suggested that miRNAs could be use as new biomarkers to detect environmental exposures-induced physiological changes.Google Scholar
  9. 9.
    Hou L, Wang D, Baccarelli A. Environmental chemicals and microRNAs. Mutat Res. 2011;714(1–2):105–12.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: trafficking, sorting, and function. Genomics Proteomics Bioinforma. 2015;13(1):17–24.CrossRefGoogle Scholar
  11. 11.
    Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev. 2012;13(5):358–69.CrossRefGoogle Scholar
  12. 12.
    Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014;15(8):509–24.PubMedCrossRefGoogle Scholar
  13. 13.
    Stefani G, Slack FJ. Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol. 2008;9(3):219–30.PubMedCrossRefGoogle Scholar
  14. 14.
    Simpson LJ, Ansel KM. MicroRNA regulation of lymphocyte tolerance and autoimmunity. J Clin Invest. 2015;125(6):2242–9.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Heegaard NHH, Carlsen AL, Skovgaard K, Heegaard PMH. Circulating extracellular microRNA in systemic autoimmunity. EXS. 2015;106:171–95.PubMedGoogle Scholar
  16. 16.
    Lee H-M, Nguyen DT, Lu L-F. Progress and challenge of microRNA research in immunity. Front Genet. 2014;5:178.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Zhu S, Pan W, Qian Y. MicroRNA in immunity and autoimmunity. J Mol Med Berl Ger. 2013;91(9):1039–50.CrossRefGoogle Scholar
  18. 18.
    Arunachalam G, Upadhyay R, Ding H, Triggle CR. MicroRNA signature and cardiovascular dysfunction. J Cardiovasc Pharmacol. 2015;65(5):419–29.PubMedCrossRefGoogle Scholar
  19. 19.
    Pfeifer P, Werner N, Jansen F. Role and function of microRNAs in extracellular vesicles in cardiovascular biology. BioMed Res Int. 2015;2015:161393.PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Elia L, Condorelli G. RNA (epi)genetics in cardiovascular diseases. J Mol Cell Cardiol. 2015;89(Pt A):11–6.PubMedCrossRefGoogle Scholar
  21. 21.
    Kadamkode V, Banerjee G. Micro RNA: an epigenetic regulator of type 2 diabetes. MicroRNA Shāriqah United Arab Emir. 2014;3(2):86–97.Google Scholar
  22. 22.
    Park S-Y, Jeong H-J, Yang W-M, et al. Implications of microRNAs in the pathogenesis of diabetes. Arch Pharm Res. 2013;36(2):154–66.PubMedCrossRefGoogle Scholar
  23. 23.
    Cuellar TL, McManus MT. MicroRNAs and endocrine biology. J Endocrinol. 2005;187(3):327–32.PubMedCrossRefGoogle Scholar
  24. 24.
    Lin S, Gregory RI. MicroRNA biogenesis pathways in cancer. Nat Rev Cancer. 2015;15(6):321–33.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15:38.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Chung AC, Yu X, Lan HY. MicroRNA and nephropathy: emerging concepts. Int J Nephrol Renov Dis. 2013;6:169–79.Google Scholar
  27. 27.
    Kenny PJ. Epigenetics, microRNA, and addiction. Dialogues Clin Neurosci. 2014;16(3):335–44.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Santamaria X, Taylor H. MicroRNA and gynecological reproductive diseases. Fertil Steril. 2014;101(6):1545–51.PubMedCrossRefGoogle Scholar
  29. 29.
    Tan L, Yu J-T, Tan L. Causes and consequences of MicroRNA dysregulation in neurodegenerative diseases. Mol Neurobiol. 2015;51(3):1249–62.PubMedCrossRefGoogle Scholar
  30. 30.
    Wang C, Ji B, Cheng B, et al. Neuroprotection of microRNA in neurological disorders (review). Biomed Rep. 2014;2(5):611–9.PubMedPubMedCentralGoogle Scholar
  31. 31.
    Henshall DC. MicroRNA and epilepsy: profiling, functions and potential clinical applications. Curr Opin Neurol. 2014;27(2):199–205.PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Su W, Aloi MS, Garden GA. MicroRNAs mediating CNS inflammation: small regulators with powerful potential. Brain Behav Immun. 2015;52:1–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Xu B, Karayiorgou M, Gogos JA. MicroRNAs in psychiatric and neurodevelopmental disorders. Brain Res. 2010;1338:78–88.PubMedCrossRefGoogle Scholar
  34. 34.
    Kozomara A, Griffiths-Jones S. miRBase: integrating microRNA annotation and deep-sequencing data. Nucleic Acids Res. 2011;39(Database issue):D152–7.PubMedCrossRefGoogle Scholar
  35. 35.
    Friedman RC, Farh KK-H, Burge CB, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Lee RC, Feinbaum RL, Ambros V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell. 1993;75(5):843–54.PubMedCrossRefGoogle Scholar
  37. 37.••
    Yáñez-Mó M, Siljander PR-M, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. J Extracell Vesicles. 2015;4:27066. This recent reviewed written by experts in the field of EVs provides a thorough description of EVs, about their properties, functions, and current or ongoing research for clinical utilization.Google Scholar
  38. 38.
    Cocucci E, Meldolesi J. Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends Cell Biol. 2015;25(6):364–72.PubMedCrossRefGoogle Scholar
  39. 39.
    Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol. 2014;30:255–89.PubMedCrossRefGoogle Scholar
  40. 40.
    Thery C. Exosomes: secreted vesicles and intercellular communications. F1000 Biol Rep. 2011;3(Journal Article):15–5.Google Scholar
  41. 41.
    Vlassov AV, Magdaleno S, Setterquist R, et al. Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochim Biophys Acta. 2012;1820(7):940–8.PubMedCrossRefGoogle Scholar
  42. 42.
    Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.PubMedCrossRefGoogle Scholar
  43. 43.
    Nolte-’t Hoen ENM, Buermans HPJ, Waasdorp M, et al. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 2012;40(18):9272–85.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, et al. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat Commun. 2011;2:282.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Batagov AO, Kuznetsov VA, Kurochkin IV. Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles. BMC Genomics. 2011;12 Suppl 3:S18.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Kalra H, Simpson RJ, Ji H, et al. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLoS Biol. 2012;10(12):e1001450.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Mathivanan S, Fahner CJ, Reid GE, et al. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 2012;40(Database issue):D1241–4.PubMedCrossRefGoogle Scholar
  48. 48.
    D.-K. Kim, B. Kang, O. Y. Kim, et al. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J Extracell Vesicles 2013;2.Google Scholar
  49. 49.
    Lopez-Ramirez MA, Nicoli S. Role of miRNAs and epigenetics in neural stem cell fate determination. Epigenetics. 2014;9(1):90–100.PubMedCrossRefGoogle Scholar
  50. 50.
    Stappert L, Roese-Koerner B, Brüstle O. The role of microRNAs in human neural stem cells, neuronal differentiation and subtype specification. Cell Tissue Res. 2015;359(1):47–64.PubMedCrossRefGoogle Scholar
  51. 51.
    Chivet M, Javalet C, Hemming F, et al. Exosomes as a novel way of interneuronal communication. Biochem Soc Trans. 2013;41(1):241–4.PubMedCrossRefGoogle Scholar
  52. 52.
    Frühbeis C, Fröhlich D, Kuo WP, et al. Extracellular vesicles as mediators of neuron-glia communication. Front Cell Neurosci. 2013;7:182.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Sharma P, Schiapparelli L, Cline HT. Exosomes function in cell-cell communication during brain circuit development. Curr Opin Neurobiol. 2013;23(Journal Article):997–1004.PubMedCrossRefGoogle Scholar
  54. 54.
    Rajendran L, Bali J, Barr MM, et al. Emerging roles of extracellular vesicles in the nervous system. J Neurosci Off J Soc Neurosci. 2014;34(46):15482–9.CrossRefGoogle Scholar
  55. 55.
    Banigan MG, Kao PF, Kozubek JA, et al. Differential expression of exosomal microRNAs in prefrontal cortices of schizophrenia and bipolar disorder patients. PLoS ONE. 2013;8(1):e48814.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Joshi P, Benussi L, Furlan R, et al. Extracellular vesicles in Alzheimer’s disease: friends or foes? Focus on aβ-vesicle interaction. Int J Mol Sci. 2015;16(3):4800–13.PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Grandjean P, Landrigan PJ. Neurobehavioural effects of developmental toxicity. Lancet Neurol. 2014;13(3):330–8.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Grandjean P, Landrigan PJ. Developmental neurotoxicity of industrial chemicals. Lancet Lond Engl. 2006;368(9553):2167–78.CrossRefGoogle Scholar
  59. 59.
    Hill DS, Cabrera R, Wallis Schultz D, et al. Autism-like behavior and epigenetic changes associated with autism as consequences of in utero exposure to environmental pollutants in a mouse model. Behav Neurol. 2015;2015:426263.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Pallocca G, Fabbri M, Sacco MG, et al. miRNA expression profiling in a human stem cell-based model as a tool for developmental neurotoxicity testing. Cell Biol Toxicol. 2013;29(4):239–57.PubMedCrossRefGoogle Scholar
  61. 61.
    Nerini-Molteni S, Mennecozzi M, Fabbri M, et al. MicroRNA profiling as a tool for pathway analysis in a human in vitro model for neural development. Curr Med Chem. 2012;19(36):6214–23.PubMedCrossRefGoogle Scholar
  62. 62.
    Wang L, Bammler TK, Beyer RP, et al. Copper-induced deregulation of microRNA expression in the zebrafish olfactory system. Environ Sci Technol. 2013;47(13):7466–74.PubMedPubMedCentralGoogle Scholar
  63. 63.
    An J, Cai T, Che H, et al. The changes of miRNA expression in rat hippocampus following chronic lead exposure. Toxicol Lett. 2014;229(1):158–66.PubMedCrossRefGoogle Scholar
  64. 64.
    Oh J-H, Son M-Y, Choi M-S, et al. Integrative analysis of genes and miRNA alterations in human embryonic stem cells-derived neural cells after exposure to silver nanoparticles. Toxicol Appl Pharmacol. 2015;299:8–23.PubMedCrossRefGoogle Scholar
  65. 65.
    Lukiw WJ, Pogue AI. Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. J Inorg Biochem. 2007;101(9):1265–9.PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Pogue AI, Li YY, Cui J-G, et al. Characterization of an NF-kappaB-regulated, miRNA-146a-mediated down-regulation of complement factor H (CFH) in metal-sulfate-stressed human brain cells. J Inorg Biochem. 2009;103(11):1591–5.PubMedCrossRefGoogle Scholar
  67. 67.
    Wang L-L, Zhang Z, Li Q, et al. Ethanol exposure induces differential microRNA and target gene expression and teratogenic effects which can be suppressed by folic acid supplementation. Hum Reprod. 2009;24(3):562–79.PubMedCrossRefGoogle Scholar
  68. 68.
    Sathyan P, Golden HB, Miranda RC. Competing interactions between micro-RNAs determine neural progenitor survival and proliferation after ethanol exposure: evidence from an ex vivo model of the fetal cerebral cortical neuroepithelium. J Neurosci Off J Soc Neurosci. 2007;27(32):8546–57.CrossRefGoogle Scholar
  69. 69.
    Tsai P-C, Bake S, Balaraman S, et al. MiR-153 targets the nuclear factor-1 family and protects against teratogenic effects of ethanol exposure in fetal neural stem cells. Biol Open. 2014;3(8):741–58.PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Qi Y, Zhang M, Li H, et al. MicroRNA-29b regulates ethanol-induced neuronal apoptosis in the developing cerebellum through SP1/RAX/PKR cascade. J Biol Chem. 2014;289(14):10201–10.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Lippai D, Bala S, Catalano D, et al. Micro-RNA-155 deficiency prevents alcohol-induced serum endotoxin increase and small bowel inflammation in mice. Alcohol Clin Exp Res. 2014;38(8):2217–24.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Pietrzykowski AZ, Friesen RM, Martin GE, et al. Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron. 2008;59(2):274–87.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Pappalardo-Carter DL, Balaraman S, Sathyan P, et al. Suppression and epigenetic regulation of MiR-9 contributes to ethanol teratology: evidence from zebrafish and murine fetal neural stem cell models. Alcohol Clin Exp Res. 2013;37(10):1657–67.PubMedPubMedCentralGoogle Scholar
  74. 74.
    Lewohl JM, Nunez YO, Dodd PR, et al. Up-regulation of microRNAs in brain of human alcoholics. Alcohol Clin Exp Res. 2011;35(11):1928–37.PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Yadav S, Pandey A, Shukla A, et al. miR-497 and miR-302b regulate ethanol-induced neuronal cell death through BCL2 protein and cyclin D2. J Biol Chem. 2011;286(43):37347–57.PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Smirnova L, Block K, Sittka A, et al. MicroRNA profiling as tool for in vitro developmental neurotoxicity testing: the case of sodium valproate. PLoS One. 2014;9(6):e98892.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Aluru N, Deak K, Jenny MJ, et al. Developmental exposure to valproic acid alters the expression of microRNAs involved in neurodevelopment in zebrafish. Neurotoxicol Teratol. 2013;40:46–58.PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Chen C-L, Liu H, Guan X. Changes in microRNA expression profile in hippocampus during the acquisition and extinction of cocaine-induced conditioned place preference in rats. J Biomed Sci. 2013;20:96.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Avissar-Whiting M, Veiga KR, Uhl KM, et al. Bisphenol A exposure leads to specific microRNA alterations in placental cells. Reprod Toxicol Elmsford N. 2010;29(4):401–6.CrossRefGoogle Scholar
  80. 80.
    Ogata K, Sumida K, Miyata K, et al. Circulating miR-9* and miR-384-5p as potential indicators for trimethyltin-induced neurotoxicity. Toxicol Pathol. 2015;43(2):198–208.PubMedCrossRefGoogle Scholar
  81. 81.
    Maccani MA, Avissar-Whiting M, Banister CE, et al. Maternal cigarette smoking during pregnancy is associated with downregulation of miR-16, miR-21, and miR-146a in the placenta. Epigenetics. 2010;5(7):583–9.PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Fossati S, Baccarelli A, Zanobetti A, et al. Ambient particulate air pollution and microRNAs in elderly men. Epidemiol Camb Mass. 2014;25(1):68–78.CrossRefGoogle Scholar
  83. 83.
    Laterza OF, Lim L, Garrett-Engele PW, et al. Plasma microRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem. 2009;55(11):1977–83.PubMedCrossRefGoogle Scholar
  84. 84.
    Zhang B, Pan X. DX induces aberrant expression of microRNAs in mouse brain and liver. Environ Health Perspect. 2009;117(2):231–40.PubMedCrossRefGoogle Scholar
  85. 85.
    Deng Y, Ai J, Guan X, Wang Z, et al. MicroRNA and messenger RNA profiling reveals new biomarkers and mechanisms for RDX induced neurotoxicity. BMC Genomics. 2014;15 Suppl 11:S1.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Kempf SJ, Casciati A, Buratovic S, et al. The cognitive defects of neonatally irradiated mice are accompanied by changed synaptic plasticity, adult neurogenesis and neuroinflammation. Mol Neurodegener. 2014;9:57.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    De Felice B, Manfellotto F, Palumbo A, et al. Genome-wide microRNA expression profiling in placentas from pregnant women exposed to BPA. BMC Med Genomics. 2015;8:56.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Marczylo EL, Amoako AA, Konje JC, et al. Smoking induces differential miRNA expression in human spermatozoa: a potential transgenerational epigenetic concern? Epigenetics. 2012;7(5):432–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Bai W, Chen Y, Yang J, et al. Aberrant miRNA profiles associated with chronic benzene poisoning. Exp Mol Pathol. 2014;96(3):426–30.PubMedCrossRefGoogle Scholar
  90. 90.
    Tyler CR, Allan AM. The effects of arsenic exposure on neurological and cognitive dysfunction in human and rodent studies: a review. Curr Environ Health Rep. 2014;1:132–47.PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Rager JE, Bailey KA, Smeester L, et al. Prenatal arsenic exposure and the epigenome: altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood. Environ Mol Mutagen. 2014;55(3):196–208.PubMedCrossRefGoogle Scholar
  92. 92.
    Caito S, Aschner M. Neurotoxicity of metals. Handb Clin Neurol. 2015;131:169–89.PubMedCrossRefGoogle Scholar
  93. 93.
    Mason LH, Harp JP, Han DY. Pb neurotoxicity: neuropsychological effects of lead toxicity. BioMed Res Int. 2014;2014:840547.PubMedPubMedCentralGoogle Scholar
  94. 94.
    Guilarte TR, Opler M, Pletnikov M. Is lead exposure in early life an environmental risk factor for schizophrenia? Neurobiological connections and testable hypotheses. Neurotoxicology. 2012;33(3):560–74.PubMedCrossRefGoogle Scholar
  95. 95.
    Lidsky TI, Schneider JS. Lead neurotoxicity in children: basic mechanisms and clinical correlates. Brain J Neurol. 2003;126(Pt 1):5–19.CrossRefGoogle Scholar
  96. 96.
    Lidsky TI, Schneider JS. Adverse effects of childhood lead poisoning: the clinical neuropsychological perspective. Environ Res. 2006;100(2):284–93.PubMedCrossRefGoogle Scholar
  97. 97.
    Solan TD, Lindow SW. Mercury exposure in pregnancy: a review. J Perinat Med. 2014;42(6):725–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Bose-O’Reilly S, McCarty KM, Steckling N, et al. Mercury exposure and children’s health. Curr Probl Pediatr Adolesc Health Care. 2010;40(8):186–215.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Taber KH, Hurley RA. Mercury exposure: effects across the lifespan. J Neuropsychiatry Clin Neurosci. 2008;20(4):iv–389.CrossRefGoogle Scholar
  100. 100.
    Miranda RC. MicroRNAs and fetal brain development: implications for ethanol teratology during the second trimester period of neurogenesis. Front Genet. 2012;3:77.PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Degroote S, Hunting D, Sébire G, et al. Autistic-like traits in Lewis rats exposed perinatally to a mixture of common endocrine disruptors. Endocr Disruptors. 2014;2(1):e976123.CrossRefGoogle Scholar
  102. 102.
    Wood AG, Nadebaum C, Anderson V, et al. Prospective assessment of autism traits in children exposed to antiepileptic drugs during pregnancy. Epilepsia. 2015;56(7):1047–55.PubMedCrossRefGoogle Scholar
  103. 103.
    Velez-Ruiz NJ, Meador KJ. Neurodevelopmental effects of fetal antiepileptic drug exposure. Drug Saf. 2015;38(3):271–8.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Cohen MJ, Meador KJ, Browning N, et al. Fetal antiepileptic drug exposure: adaptive and emotional/behavioral functioning at age 6 years. Epilepsy Behav EB. 2013;29(2):308–15.CrossRefGoogle Scholar
  105. 105.
    P. Ranger and B. A. Ellenbroek. Perinatal influences of valproate on brain and behaviour: An animal model for autism. Curr Top Behav Neurosci 2015.Google Scholar
  106. 106.
    Glebov K, Löchner M, Jabs R, et al. Serotonin stimulates secretion of exosomes from microglia cells. Glia. 2015;63(4):626–34.PubMedCrossRefGoogle Scholar
  107. 107.
    Chivet M, Javalet C, Laulagnier K, et al. Exosomes secreted by cortical neurons upon glutamatergic synapse activation specifically interact with neurons. J Extracell Vesicles. 2014;3:24722.PubMedCrossRefGoogle Scholar
  108. 108.
    Brites D, Fernandes A. Neuroinflammation and depression: microglia activation, extracellular microvesicles and microRNA dysregulation. Front Cell Neurosci. 2015;9:476.PubMedPubMedCentralCrossRefGoogle Scholar
  109. 109.
    Pegtel DM, Peferoen L, Amor S. Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philos Trans R Soc Lond B Biol Sci. 2014;369:1652.CrossRefGoogle Scholar
  110. 110.
    Fauré J, Lachenal G, Court M, et al. Exosomes are released by cultured cortical neurons. Mol Cell Neurosci. 2006;31(4):642–8.PubMedCrossRefGoogle Scholar
  111. 111.
    Krämer-Albers E-M, Bretz N, Tenzer S, et al. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: trophic support for axons? Proteomics Clin Appl. 2007;1(11):1446–61.PubMedCrossRefGoogle Scholar
  112. 112.
    Guescini M, Genedani S, Stocchi V, Agnati LF. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J Neural Transm Vienna Aust 1996. 2010;117(1):1–4.Google Scholar
  113. 113.
    Potolicchio I, Carven GJ, Xu X, Stipp C, et al. Proteomic analysis of microglia-derived exosomes: metabolic role of the aminopeptidase CD13 in neuropeptide catabolism. J Immunol Baltim Md 1950. 2005;175(4):2237–43.Google Scholar
  114. 114.
    Lopez-Verrilli MA, Picou F, Court FA. Schwann cell-derived exosomes enhance axonal regeneration in the peripheral nervous system. Glia. 2013;61(11):1795–806.PubMedCrossRefGoogle Scholar
  115. 115.
    Grapp M, Wrede A, Schweizer M, et al. Choroid plexus transcytosis and exosome shuttling deliver folate into brain parenchyma. Nat Commun. 2013;4(Journal Article):2123.PubMedGoogle Scholar
  116. 116.
    Street JM, Barran PE, Mackay CL, et al. Identification and proteomic profiling of exosomes in human cerebrospinal fluid. J Transl Med. 2012;10:5.PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Wang G, Dinkins M, He Q, Zhu G, et al. Astrocytes secrete exosomes enriched with proapoptotic ceramide and prostate apoptosis response 4 (PAR-4): potential mechanism of apoptosis induction in Alzheimer disease (AD). J Biol Chem. 2012;287(25):21384–95.PubMedPubMedCentralCrossRefGoogle Scholar
  118. 118.
    Taylor AR, Robinson MB, Gifondorwa DJ, et al. Regulation of heat shock protein 70 release in astrocytes: role of signaling kinases. Dev Neurobiol. 2007;67(13):1815–29.PubMedCrossRefGoogle Scholar
  119. 119.
    Frühbeis C, Fröhlich D, Kuo WP, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013;11(7):e1001604.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Bakhti M, Winter C, Simons M. Inhibition of myelin membrane sheath formation by oligodendrocyte-derived exosome-like vesicles. J Biol Chem. 2011;286(1):787–96.PubMedCrossRefGoogle Scholar
  121. 121.
    Fröhlich D, Kuo WP, Frühbeis C, et al. Multifaceted effects of oligodendroglial exosomes on neurons: impact on neuronal firing rate, signal transduction and gene regulation. Philos Trans R Soc Lond B Biol Sci. 2014;369:1652.CrossRefGoogle Scholar
  122. 122.
    Pasquinelli AE, Reinhart BJ, Slack F, et al. Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA. Nature. 2000;408(6808):86–9.PubMedCrossRefGoogle Scholar
  123. 123.
    Ziats MN, Rennert OM. Identification of differentially expressed microRNAs across the developing human brain. Mol Psychiatry. 2014;19(7):848–52.PubMedCrossRefGoogle Scholar
  124. 124.
    Moreau MP, Bruse SE, Jornsten R, et al. Chronological changes in microRNA expression in the developing human brain. PLoS One. 2013;8(4):e60480.PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Babenko O, Kovalchuk I, Metz GAS. Stress-induced perinatal and transgenerational epigenetic programming of brain development and mental health. Neurosci Biobehav Rev. 2015;48:70–91.PubMedCrossRefGoogle Scholar
  126. 126.
    Smirnova L, Gräfe A, Seiler A, et al. Regulation of miRNA expression during neural cell specification. Eur J Neurosci. 2005;21(6):1469–77.PubMedCrossRefGoogle Scholar
  127. 127.
    Fiore R, Siegel G, Schratt G. MicroRNA function in neuronal development, plasticity and disease. Biochim Biophys Acta. 2008;1779(8):471–8.PubMedCrossRefGoogle Scholar
  128. 128.
    Schaefer A, O’Carroll D, Tan CL, et al. Cerebellar neurodegeneration in the absence of microRNAs. J Exp Med. 2007;204(7):1553–8.PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Kataoka Y, Takeichi M, Uemura T. Developmental roles and molecular characterization of a Drosophila homologue of Arabidopsis Argonaute1, the founder of a novel gene superfamily. Genes Cells Devoted Mol Cell Mech. 2001;6(4):313–25.CrossRefGoogle Scholar
  130. 130.
    Giraldez AJ, Cinalli RM, Glasner ME, et al. MicroRNAs regulate brain morphogenesis in zebrafish. Science. 2005;308(5723):833–8.PubMedCrossRefGoogle Scholar
  131. 131.
    Huang T, Liu Y, Huang M, et al. Wnt1-cre-mediated conditional loss of Dicer results in malformation of the midbrain and cerebellum and failure of neural crest and dopaminergic differentiation in mice. J Mol Cell Biol. 2010;2(3):152–63.PubMedCrossRefGoogle Scholar
  132. 132.
    Hengst U, Cox LJ, Macosko EZ, et al. Functional and selective RNA interference in developing axons and growth cones. J Neurosci. 2006;26(21):5727–32.PubMedCrossRefGoogle Scholar
  133. 133.
    Krichevsky AM, Sonntag K-C, Isacson O, et al. Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells Dayt Ohio. 2006;24(4):857–64.CrossRefGoogle Scholar
  134. 134.
    Hou Q, Ruan H, Gilbert J, et al. MicroRNA miR124 is required for the expression of homeostatic synaptic plasticity. Nat Commun. 2015;6:10045.PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Yoo AS, Sun AX, Li L, et al. MicroRNA-mediated conversion of human fibroblasts to neurons. Nature. 2011;476(7359):228–31.PubMedPubMedCentralCrossRefGoogle Scholar
  136. 136.
    Feliciano DM, Zhang S, Nasrallah CM, et al. Embryonic cerebrospinal fluid nanovesicles carry evolutionarily conserved molecules and promote neural stem cell amplification. PLoS One. 2014;9(2):e88810.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Sun E, Shi Y. MicroRNAs: small molecules with big roles in neurodevelopment and diseases. Exp Neurol. 2015;268:46–53.PubMedCrossRefGoogle Scholar
  138. 138.
    Hui Z, Yongchao Z, Yongqing Z. Recent progresses in molecular genetics of autism spectrum disorders. Yi Chuan Hered Zhongguo Yi Chuan Xue Hui Bian Ji. 2015;37(9):845–54.Google Scholar
  139. 139.
    Washbourne P. Synapse assembly and neurodevelopmental disorders. Neuropsychopharmacology. 2015;40(1):4–15.PubMedCrossRefGoogle Scholar
  140. 140.
    Lachenal G, Pernet-Gallay K, Chivet M, et al. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol Cell Neurosci. 2011;46(2):409–18.PubMedCrossRefGoogle Scholar
  141. 141.
    Bak M, Silahtaroglu A, Møller M, et al. MicroRNA expression in the adult mouse central nervous system. RNA. 2008;14(3):432–44.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Kye M-J, Liu T, Levy SF, et al. Somatodendritic microRNAs identified by laser capture and multiplex RT-PCR. RNA N Y N. 2007;13(8):1224–34.CrossRefGoogle Scholar
  143. 143.
    Mellios N, Sugihara H, Castro J, et al. miR-132, an experience-dependent microRNA, is essential for visual cortex plasticity. Nat Neurosci. 2011;14(10):1240–2.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Hansen KF, Karelina K, Sakamoto K, Wayman GA, Impey S, Obrietan K. miRNA-132: a dynamic regulator of cognitive capacity. Brain Struct Funct. 2013;218(3):817–31.PubMedCrossRefGoogle Scholar
  145. 145.
    Karpova NN. Role of BDNF epigenetics in activity-dependent neuronal plasticity. Neuropharmacology. 2014;76(Pt C):709–18.PubMedCrossRefGoogle Scholar
  146. 146.
    Aksoy-Aksel A, Zampa F, Schratt G. MicroRNAs and synaptic plasticity—a mutual relationship. Philos Trans R Soc Lond B Biol Sci. 2014;369:1652.CrossRefGoogle Scholar
  147. 147.
    Ryan B, Joilin G, Williams JM. Plasticity-related microRNA and their potential contribution to the maintenance of long-term potentiation. Front Mol Neurosci. 2015;8:4.PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Earls LR, Westmoreland JJ, Zakharenko SS. Non-coding RNA regulation of synaptic plasticity and memory: implications for aging. Ageing Res Rev. 2014;17:34–42.PubMedCrossRefGoogle Scholar
  149. 149.
    Codocedo JF, Inestrosa NC. Environmental control of microRNAs in the nervous system: implications in plasticity and behavior. Neurosci Biobehav Rev. 2016;60:121–38.PubMedCrossRefGoogle Scholar
  150. 150.
    Saugstad JA. Non-coding RNAs in stroke and neuroprotection. Front Neurol. 2015;6:50.PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Lusardi TA, Farr CD, Faulkner CL, et al. Ischemic preconditioning regulates expression of microRNAs and a predicted target, MeCP2, in mouse cortex. J Cereb Blood Flow Metab Off J Int Soc Cereb Blood Flow Metab. 2010;30(4):744–56.CrossRefGoogle Scholar
  152. 152.
    Sun Y, Luo Z-M, Guo X-M, et al. An updated role of microRNA-124 in central nervous system disorders: a review. Front Cell Neurosci. 2015;9:193.PubMedPubMedCentralCrossRefGoogle Scholar
  153. 153.
    Abdolmaleky HM, Zhou J-R, Thiagalingam S. An update on the epigenetics of psychotic diseases and autism. Epigenomics. 2015;7(3):427–49.PubMedCrossRefGoogle Scholar
  154. 154.
    Miller BH, Wahlestedt C. MicroRNA dysregulation in psychiatric disease. Brain Res. 2010;1338:89–99.PubMedPubMedCentralCrossRefGoogle Scholar
  155. 155.
    Issler O, Chen A. Determining the role of microRNAs in psychiatric disorders. Nat Rev Neurosci. 2015;16(4):201–12.PubMedCrossRefGoogle Scholar
  156. 156.
    Hommers LG, Domschke K, Deckert J. Heterogeneity and individuality: microRNAs in mental disorders. J Neural Transm Vienna Aust 1996. 2015;122(1):79–97.Google Scholar
  157. 157.
    Zhou R, Yuan P, Wang Y, et al. Evidence for selective microRNAs and their effectors as common long-term targets for the actions of mood stabilizers. Neuropsychopharmacol Off Publ Am Coll Neuropsychopharmacol. 2009;34(6):1395–405.CrossRefGoogle Scholar
  158. 158.
    Beveridge NJ, Gardiner E, Carroll AP, et al. Schizophrenia is associated with an increase in cortical microRNA biogenesis. Mol Psychiatry. 2010;15(12):1176–89.PubMedCrossRefGoogle Scholar
  159. 159.
    Nguyen LS, Lepleux M, Makhlouf M, et al. Profiling olfactory stem cells from living patients identifies miRNAs relevant for autism pathophysiology. Mol Autism. 2016;7:1.PubMedPubMedCentralCrossRefGoogle Scholar
  160. 160.
    Abu-Elneel K, Liu T, Gazzaniga FS, et al. Heterogeneous dysregulation of microRNAs across the autism spectrum. Neurogenetics. 2008;9(3):153–61.PubMedCrossRefGoogle Scholar
  161. 161.
    Ander BP, Barger N, Stamova B, et al. Atypical miRNA expression in temporal cortex associated with dysregulation of immune, cell cycle, and other pathways in autism spectrum disorders. Mol Autism. 2015;6:37.PubMedPubMedCentralCrossRefGoogle Scholar
  162. 162.
    Talebizadeh Z, Butler MG, Theodoro MF. Feasibility and relevance of examining lymphoblastoid cell lines to study role of microRNAs in autism. Autism Res Off J Int Soc Autism Res. 2008;1(4):240–50.CrossRefGoogle Scholar
  163. 163.
    Ghahramani Seno MM, Hu P, Gwadry FG, et al. Gene and miRNA expression profiles in autism spectrum disorders. Brain Res. 2011;1380:85–97.PubMedCrossRefGoogle Scholar
  164. 164.
    Sarachana T, Zhou R, Chen G, et al. Investigation of post-transcriptional gene regulatory networks associated with autism spectrum disorders by microRNA expression profiling of lymphoblastoid cell lines. Genome Med. 2010;2(4):23.PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Mundalil Vasu M, Anitha A, Thanseem I, et al. Serum microRNA profiles in children with autism. Mol Autism. 2014;5:40.PubMedPubMedCentralCrossRefGoogle Scholar
  166. 166.
    Huang F, Zhou T, Yao X, et al. miRNA profiling in autism spectrum disorder in China. Genomics Data. 2015;6:108–9.PubMedPubMedCentralCrossRefGoogle Scholar
  167. 167.
    Banerjee-Basu S, Larsen E, Muend S. Common microRNAs target established ASD genes. Front Neurol. 2014;5:205.PubMedPubMedCentralCrossRefGoogle Scholar
  168. 168.
    Mellios N, Sur M. The emerging role of microRNAs in schizophrenia and autism spectrum disorders. Front Psych. 2012;3:39.Google Scholar
  169. 169.
    Olde Loohuis NFM, Kole K, Glennon JC, et al. Elevated microRNA-181c and microRNA-30d levels in the enlarged amygdala of the valproic acid rat model of autism. Neurobiol Dis. 2015;80:42–53.PubMedCrossRefGoogle Scholar
  170. 170.
    Kandemir H, Erdal ME, Selek S, et al. Evaluation of several micro RNA (miRNA) levels in children and adolescents with attention deficit hyperactivity disorder. Neurosci Lett. 2014;580:158–62.PubMedCrossRefGoogle Scholar
  171. 171.
    Wu LH, Peng M, Yu M, et al. Circulating MicroRNA Let-7d in attention-deficit/hyperactivity disorder. Neuromolecular Med. 2015;17(2):137–46.PubMedCrossRefGoogle Scholar
  172. 172.
    Chistiakov DA, Chekhonin VP. Extracellular vesicles shed by glioma cells: pathogenic role and clinical value. Tumour Biol J Int Soc Oncodevelopmental Biol Med. 2014;35(9):8425–38.CrossRefGoogle Scholar
  173. 173.
    Gonda DD, Akers JC, Kim R, et al. Neuro-oncologic applications of exosomes, microvesicles, and other nano-sized extracellular particles. Neurosurgery. 2013;72(4):501–10.PubMedCrossRefGoogle Scholar
  174. 174.
    Viaud S, Théry C, Ploix S, et al. Dendritic cell-derived exosomes for cancer immunotherapy: what’s next? Cancer Res. 2010;70(4):1281–5.PubMedCrossRefGoogle Scholar
  175. 175.
    Liddelow SA. Development of the choroid plexus and blood-CSF barrier. Front Neurosci. 2015;9:32.PubMedPubMedCentralCrossRefGoogle Scholar
  176. 176.
    Moretti R, Pansiot J, Bettati D, et al. Blood–brain barrier dysfunction in disorders of the developing brain. Front Neurosci. 2015;9:40.PubMedPubMedCentralCrossRefGoogle Scholar
  177. 177.
    Alvarez-Erviti L, Seow Y, Yin H, Betts C, et al. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat Biotechnol. 2011;29(4):341–5.PubMedCrossRefGoogle Scholar
  178. 178.
    Lakhal S, Wood MJA. Exosome nanotechnology: an emerging paradigm shift in drug delivery: exploitation of exosome nanovesicles for systemic in vivo delivery of RNAi heralds new horizons for drug delivery across biological barriers. BioEssays News Rev Mol Cell Dev Biol. 2011;33(10):737–41.CrossRefGoogle Scholar
  179. 179.
    Skog J, Würdinger T, van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat Cell Biol. 2008;10(12):1470–6.PubMedPubMedCentralCrossRefGoogle Scholar
  180. 180.
    Wood MJA, O’Loughlin AJ, Samira L. Exosomes and the blood–brain barrier: implications for neurological diseases. Ther Deliv. 2011;2(9):1095–9.PubMedCrossRefGoogle Scholar
  181. 181.
    Kapogiannis D, Boxer A, Abner E, et al. Neural origin plasma exosomes provide novel biomarkers for brain insulin resistance in Alzheimer’s disease (I11-5B). Neurology. 2015;84(14 Supplement):I11–5B.Google Scholar
  182. 182.
    Shao H, Chung J, Balaj L, et al. Protein typing of circulating microvesicles allows real-time monitoring of glioblastoma therapy. Nat Med. 2012;18(12):1835–40.PubMedPubMedCentralCrossRefGoogle Scholar
  183. 183.
    Theoharides TC, Zhang B. Neuro-inflammation, blood–brain barrier, seizures and autism. J Neuroinflammation. 2011;8:168.PubMedPubMedCentralCrossRefGoogle Scholar
  184. 184.
    de Vries HE, Kooij G, Frenkel D, et al. Inflammatory events at blood–brain barrier in neuroinflammatory and neurodegenerative disorders: implications for clinical disease. Epilepsia. 2012;53 Suppl 6:45–52.PubMedPubMedCentralCrossRefGoogle Scholar
  185. 185.
    Jia R, Li J, Rui C, et al. Comparative proteomic profile of the human umbilical cord blood exosomes between normal and preeclampsia pregnancies with high-resolution mass spectrometry. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2015;36(6):2299–306.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Virginie Gillet
    • 1
  • Darel John Hunting
    • 2
  • Larissa Takser
    • 1
    Email author
  1. 1.Département PédiatrieFaculté de Médecine et Sciences de la Santé de l’Université de SherbrookeSherbrookeCanada
  2. 2.Département RadiobiologieFaculté de Médecine et Sciences de la Santé de l’Université de SherbrookeSherbrookeCanada

Personalised recommendations