Skip to main content

Advertisement

Log in

Antibiotic Application and Emergence of Multiple Antibiotic Resistance (MAR) in Global Catfish Aquaculture

  • Food, Health, and the Environment (KE Nachman, Section Editor)
  • Published:
Current Environmental Health Reports Aims and scope Submit manuscript

Abstract

Catfish is one of the most cultivated species worldwide. Antibiotics are usually used in catfish farming as therapeutic and prophylactic agents. In the USA, only oxytetracycline, a combination of sulfadimethoxine and ormetoprim, and florfenicol are approved by the Food Drug Administration for specific fish species (e.g., catfish and salmonids) and their specific diseases. Misuse of antibiotics as prophylactic agents in disease prevention, however, is common and contributes in the development of antibiotic resistance. Various studies had reported on antibiotic residues and/or resistance in farmed species, feral fish, water column, sediments, and, in a lesser content, among farm workers. Ninety percent of the world aquaculture production is carried out in developing countries, which lack regulations and enforcement on the use of antibiotics. Hence, efforts are needed to promote the development and enforcement of such a regulatory structure. Alternatives to antibiotics such as antibacterial vaccines, bacteriophages and their lysins, and probiotics have been applied to curtail the increasing emergence of antibiotic-resistant bacteria due to the imprudent application of antibiotics in aquaculture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of outstanding importance

  1. FAO. The state of world fisheries and aquaculture: opportunities and challenges. Rome: FAO; 2014. This report provided up-to-date statistics on world aquaculture production.

    Google Scholar 

  2. FAO. FAO global aquaculture production database updated to 2013—summary information. 2016 [cited 2015 2 January]; Available from: http://www.fao.org/fishery/statistics/en.

  3. FAO. Search aquacultured fact sheets: cultured aquatic species. 2016 [cited 2016 2 January]; Available from: http://www.fao.org/fishery/culturedspecies/search/en.

  4. FAO. Cultured aquatic species information programme. Pangasius hypophthalmus (Sauvage, 1878). 2016 [cited 2016 2 January]; Available from: http://www.fao.org/fishery/culturedspecies/Pangasius_hypophthalmus/en.

  5. FAO. FishStatJ Universal software for fishery statistical time series. 2016. Available from: http://www.fao.org/fishery/statistics/software/fishstatj/en. Accessed 10 Mar 2016.

  6. Hansen T and D Sites. 2014 U.S. catfish database. 2015 [cited 2015 23 December]; Available from: http://www.agecon.msstate.edu/whatwedo/budgets/docs/catfish2014.pdf.

  7. Brown TW, Chappell JA, Boyd CE. A commercial-scale, in-pond raceway system for Ictalurid catfish production. Aquac Eng. 2011;44(3):72–9.

    Article  Google Scholar 

  8. USDA. Performance evaluation of intensive, pond-based culture systems for catfish production. 2014, Southern Regional Aquaculture Center

  9. Budiati T et al. Prevalence, antibiotic resistance and plasmid profiling of Salmonella in catfish (Clarias gariepinus) and tilapia (Tilapia mossambica) obtained from wet markets and ponds in Malaysia. Aquaculture. 2013;372:127–32.

    Article  Google Scholar 

  10. Malaysia DF. Annual fishery statistic 2010. Malaysia: Department of Fisheries Malaysia; 2010. p. 27–9.

    Google Scholar 

  11. FAO. Cultured aquatic species information programme. Clarias gariepinus (Burchell, 1822). 2016 [cited 2016 2 January]; Available from: http://www.fao.org/fishery/culturedspecies/Clarias_gariepinus/en.

  12. FAO. Cultured aquatic species information programme. Ictalurus punctatus (Rafinesque, 1818). 2016 [cited 2016 2 January]; Available from: http://www.fao.org/fishery/culturedspecies/Ictalurus_punctatus/en.

  13. FDA. NADA number: 038-439. 2016 [cited 2016 2 January]; Available from: http://www.accessdata.fda.gov/scripts/animaldrugsatfda/details.cfm?dn=038-439.

  14. FDA. NADA number: 125-933. 2016 [cited 2016 2 January]; Available from: http://www.accessdata.fda.gov/scripts/animaldrugsatfda/details.cfm?dn=125-933.

  15. FDA. NADA number: 141-246. 2016. [cited 2016 2 January]; Available from: http://www.accessdata.fda.gov/scripts/animaldrugsatfda/details.cfm?dn=141-246.

  16. WTO. Report on food hygiene and safety control in basa catfish industry in Vietnam. 2009 [cited 2016 5 January]; Available from: http://www.usvtc.org/trade/other/catfish/wto2009_3032%5b1%5d.pdf.

  17. Rico A, Van den Brink PJ. Probabilistic risk assessment of veterinary medicines applied to four major aquaculture species produced in Asia. Sci Total Environ. 2014;468:630–41. This study reported comprehensive study on the ecological risk of antibiotics applied in catfish aquaculture in Mekong Delta.

    Article  PubMed  Google Scholar 

  18. Wagner BA et al. The epidemiology of bacterial diseases in food-size channel catfish. J Aquat Anim Health. 2002;14(4):263–72.

    Article  Google Scholar 

  19. Cabello FC. Heavy use of prophylactic antibiotics in aquaculture: a growing problem for human and animal health and for the environment. Environ Microbiol. 2006;8(7):1137–44.

    Article  CAS  PubMed  Google Scholar 

  20. Van Boeckel TP et al. Global trends in antimicrobial use in food animals. Proc Natl Acad Sci. 2015;112(18):5649–54.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Benbrook CM. Antibiotic drug use in U.S. aquaculture. [Report] 2002 February 2002 [cited 2016 2 January]; 1–18]. Available from: http://www.iatp.org/files/421_2_37397.pdf.

  22. Burridge L et al. Chemical use in salmon aquaculture: a review of current practices and possible environmental effects. Aquaculture. 2010;306(1–4):7–23.

    Article  CAS  Google Scholar 

  23. Lillehaug A, Lunestad BT, Grave K. Epidemiology of bacterial diseases in Norwegian aquaculture—a description based on antibiotic prescription data for the ten-year period 1991 to 2000. Dis Aquat Org. 2003;53(2):115–25.

    Article  CAS  PubMed  Google Scholar 

  24. Cruz-Lacierda ER, De la Peña LD, Lumanlan-Mayo SC. The use of chemicals in aquaculture in the Philippines. In: Arthus JR, Lavilla-Pitogo CR, Subasinghe RP, editors. Use of chemicals in aquaculture in Asia: Proceedings of the meeting on the use of chemicals in aquaculture in Asia 20–22 May 1996, Tigbauan. p. 155–184.

  25. Serrano PH. Responsible use of antibiotics in aquaculture. FAO Fish Tech Pap. 2005;469:21–4.

    Google Scholar 

  26. Labella A et al. High incidence of antibiotic multi-resistant bacteria in coastal areas dedicated to fish farming. Mar Pollut Bull. 2013;70(1–2):197–203.

    Article  CAS  PubMed  Google Scholar 

  27. Phu TM, et al. An evaluation of fish health-management practices and occupational health hazards associated with Pangasius catfish (Pangasianodon hypophthalmus) aquaculture in the Mekong Delta, Vietnam. Aquaculture Research, 2015: p. n/a-n/a. This paper provided comprehensive evaluation of fish health-management practices and occupational health hazards associated with catfish farming in the Mekong Delta.

  28. Rico A et al. Use of veterinary medicines, feed additives and probiotics in four major internationally traded aquaculture species farmed in Asia. Aquaculture. 2013;412:231–43.

    Article  Google Scholar 

  29. Tusevljak N et al. Antimicrobial use and resistance in aquaculture: findings of a globally administered survey of aquaculture-allied professionals. Zoonoses Public Health. 2013;60(6):426–36.

    Article  CAS  PubMed  Google Scholar 

  30. FAO Fisheries and Aquaculture Department. National Aquaculture Legislation Overview (NALO). 2016. [cited 2016 2 January]; Available from: http://www.fao.org/fishery/nalo/search/en.

  31. Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clin Microbiol Rev. 2011;24(4):718–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pham DK et al. Monitoring antibiotic use and residue in freshwater aquaculture for domestic use in Vietnam. Ecohealth. 2015;12(3):480–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Olatoye IO, Basiru A. Antibiotic usage and oxytetracycline residue in African catfish (Clarias gariepinus in Ibadan, Nigeria). World J Fish Mar Sci. 2013;5(3):302–9.

    CAS  Google Scholar 

  34. Alday V, Guichard B, Uhland PSC, Joint FAO/WHO/OIE Expert Consultation on Antimicrobial Use in Aquaculture and Antimicrobial Resistance: Towards a risk analysis of antimicrobial use in aquaculture. 2006, Joint FAO/WHO/OIE p. 1–144.

  35. Xuen R et al. Hydrolysis and photolysis of oxytetracycline in aqueous solution. J Environ Sci Health Part B. 2010;45:73–81.

    Article  Google Scholar 

  36. Coyne R, Hiney M, Smith P. Transient presence of oxytetracycline in blue mussels (Mytilus edulis) following its therapeutic use at a marine Atlantic salmon farm. Aquaculture. 1997;149(3–4):175–81.

    Article  CAS  Google Scholar 

  37. Samuelsen OB et al. Residues of oxolinic acid in wild fauna following medication in fish farms. Dis Aquat Org. 1992;12:111–9.

    Article  CAS  Google Scholar 

  38. Torres-Barceló C et al. The SOS response increases bacterial fitness, but not evolvability, under a sublethal dose of antibiotic. Proc R Soc B Biol Sci. 2015;282(1816):20150885.

    Article  Google Scholar 

  39. Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol. 2014;12(7):465–78.

    Article  CAS  PubMed  Google Scholar 

  40. Seyfried EE et al. Occurrence of tetracycline resistance genes in aquaculture facilities with varying use of oxytetracycline. Microb Ecol. 2010;59(4):799–807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao P et al. Occurrence of sulfonamide and tetracycline-resistant bacteria and resistance genes in aquaculture environment. Water Res. 2012;46(7):2355–64.

    Article  CAS  PubMed  Google Scholar 

  42. Nguyen Dang Giang C et al. Occurrence and dissipation of the antibiotics sulfamethoxazole, sulfadiazine, trimethoprim, and enrofloxacin in the Mekong Delta, Vietnam. PLoS One. 2015;10(7):e0131855. This study highlighted the possibility of dissemination of antibiotics applied in catfish aquaculture in Mekong Delta.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Petersen A et al. Impact of integrated fish farming on antimicrobial resistance in a pond environment. Appl Environ Microbiol. 2002;68(12):6036–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shah SQ et al. Prevalence of antibiotic resistance genes in the bacterial flora of integrated fish farming environments of Pakistan and Tanzania. Environ Sci Technol. 2012;46(16):8672–9.

    Article  CAS  PubMed  Google Scholar 

  45. Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schwarz S et al. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol Rev. 2004;28(5):519–42.

    Article  CAS  PubMed  Google Scholar 

  47. Moon DC et al. Identification of livestock-associated methicillin-resistant Staphylococcus aureus isolates in Korea and molecular comparison between isolates from animal carcasses and slaughterhouse workers. Foodborne Pathog Di. 2015;12(4):327–34.

    Article  CAS  Google Scholar 

  48. Van Cleef BA et al. High prevalence of nasal MRSA carriage in slaughterhouse workers in contact with live pigs in The Netherlands. Epidemiol Infect. 2010;138(5):756–63.

    Article  PubMed  Google Scholar 

  49. Huijbers PM et al. Role of the environment in the transmission of antimicrobial resistance to humans: a review. Environ Sci Technol. 2015;49(20):11993–2004.

    Article  CAS  PubMed  Google Scholar 

  50. Kolndadacha OD et al. Antibiogram of bacterial isolates from the skin of catfish from Lake Kainji Area, Nigeria. Niger J Fish Aquacult. 2014;2(1):60–4.

    Google Scholar 

  51. Dung TT et al. Antimicrobial susceptibility pattern of Edwardsiella ictaluri isolates from natural outbreaks of bacillary necrosis of Pangasianodon hypophthalmus in Vietnam. Microb Drug Resist. 2008;14(4):311–6.

    Article  CAS  Google Scholar 

  52. McPhearson RM et al. Antibiotic-resistance in gram-negative bacteria from cultured catfish and aquaculture ponds. Aquaculture. 1991;99(3–4):203–11.

    Article  Google Scholar 

  53. Sarter S et al. Antibiotic resistance in Gram-negative bacteria isolated from farmed catfish. Food Control. 2007;18(11):1391–6.

    Article  CAS  Google Scholar 

  54. Najiah M et al. Bacterial diseases outbreak of African Catfish (Clarias gariepinus) from Manir River, Terengganu, Malaysia. J Life Sci. 2009;3(5):10–3.

    Google Scholar 

  55. Efuntoye MO, Olurin KB, Jegede GC. Bacterial flora from healthy Clarias Gariepinus and their antimicrobial resistance pattern. Adv J Food Sci Technol. 2012;4(3):121–5.

    CAS  Google Scholar 

  56. Nawaz M et al. Biochemical and molecular characterization of tetracycline-resistant Aeromonas veronii isolates from catfish. Appl Environ Microbiol. 2006;72(10):6461–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ho TT et al. Identification and antibiotic sensitivity test of the bacteria isolated from Tra catfish (Pangasianodon hypophthalmus [Sauvage, 1878]) cultured in pond in Vietnam. Kasetsart J (Nat Sci). 2008;42:54–60.

    Google Scholar 

  58. Geng Y, Wang KY. Isolation and characterization of Edwardsiella ictaluri from Southern Catfish, Silurus soldatovi meridionalis, (Chen) cultured in China. J World Aquacult Soc. 2013;42(2):273–81.

    Article  Google Scholar 

  59. Nawaz M et al. Isolation and characterization of tetracycline-resistant Citrobacter spp. from catfish. Food Microbiol. 2008;25:85–91.

    Article  CAS  PubMed  Google Scholar 

  60. Elhadi N. Prevalence and antimicrobial resistance of Salmonella spp. in raw retail frozen imported freshwater fish to Eastern Province of Saudi Arabia. Asian Pacific J Trop Biomed. 2014;4(3):234–8.

    Article  Google Scholar 

  61. Bharathkumar G, Abraham TJ. Oxytetracycline resistant bacteria in Clarias gariepinus and Clarias batrachus larvae and the environment. J Fish. 2015;3(1):217–20.

    Article  Google Scholar 

  62. Huys G et al. Biodiversity of chloramphenicol-resistant mesophilic heterotrophs from Southeast Asian aquaculture environments. Res Microbiol. 2007;158(3):228–35.

    Article  CAS  PubMed  Google Scholar 

  63. Heuer OE et al. Human health consequences of use of antimicrobial agents in aquaculture. Clin Infect Dis. 2009;49:1248–53.

    Article  PubMed  Google Scholar 

  64. Done HY, Halden RU. Reconnaissance of 47 antibiotics and associated microbial risks in seafood sold in the United States. J Hazard Mater. 2015;282:10–7.

    Article  CAS  PubMed  Google Scholar 

  65. Lim SJ et al. Antibiotic resistance in bacteria isolated from freshwater aquacultures and prediction of the persistence and toxicity of antimicrobials in the aquatic environment. J Environ Sci Health B. 2013;48(6):495–504.

    Article  CAS  PubMed  Google Scholar 

  66. Penders J, Stobberingh EE. Antibiotic resistance of motile aeromonads in indoor catfish and eel farms in the southern part of The Netherlands. Int J Antimicrob Agents. 2008;31(3):261–5.

    Article  CAS  PubMed  Google Scholar 

  67. Andrieu M et al. Ecological risk assessment of the antibiotic enrofloxacin applied to Pangasius catfish farms in the Mekong Delta, Vietnam. Chemosphere. 2015;119:407–14.

    Article  CAS  PubMed  Google Scholar 

  68. Buschmann AH et al. Salmon aquaculture and antimicrobial resistance in the marine environment. Plos One. 2012;7(8), e42724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Cheng G et al. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol. 2014;5:217. This review is a comprehensive review of antibiotic alternatives.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Locke JB et al. Evaluation of Streptococcus iniae killed bacterin and live attenuated vaccines in hybrid striped bass through injection and bath immersion. Dis Aquat Org. 2010;89(2):117–23.

    Article  PubMed  Google Scholar 

  71. Mart et al. Use of probiotics in aquaculture. ISRN Microbiol. 2012;2012:13.

    Google Scholar 

  72. Turcios AE, Papenbrock J. Sustainable treatment of aquaculture effluents—what can we learn from the past for the future? Sustainability. 2014;6:836–56.

    Article  Google Scholar 

  73. Chen H, Zhang M. Effects of advanced treatment systems on the removal of antibiotic resistance genes in wastewater treatment plants from Hangzhou, China. Environ Sci Technol. 2013;47(15):8157–63.

    CAS  PubMed  Google Scholar 

  74. Zhang T, Li B. Occurrence, transformation, and fate of antibiotics in municipal wastewater treatment plants. Crit Rev Environ Sci Technol. 2011;41(11):951–98.

    Article  CAS  Google Scholar 

  75. WHO, Antimicrobial use in aquaculture and antimicrobial resistance. Report of a Joint FAO/OIE/WHO Expert Consultation on Antimicrobial Use in Aquaculture and Antimicrobial Resistance. 2006, Joint FAO/OIE/WHO: Seoul, Korea. This report is a comprehensive study on antimicrobial use in aquaculture and antimicrobial resistance. Antimicrobial application in aquaculture in various countries were studied and summarized in this report.

  76. Phu TM et al. Quality of antimicrobial products used in striped catfish (Pangasianodon hypophthalmus) aquaculture in Vietnam. PLoS ONE. 2015;10(4), e0124267.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the following support: University Sains Malaysia for providing Graduate Assistant Fellowship to Li-Oon Chuah and USM Global Fellowship to Abatcha Mustapha Goni.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gulam Rusul.

Ethics declarations

Conflict of Interest

Li-Oon Chuah, M. E. Effarizah, Abatcha Mustapha Goni, and Gulam Rusul declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors

Additional information

This article is part of the Topical Collection on Food, Health, and the Environment

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chuah, LO., Effarizah, M.E., Goni, A.M. et al. Antibiotic Application and Emergence of Multiple Antibiotic Resistance (MAR) in Global Catfish Aquaculture. Curr Envir Health Rpt 3, 118–127 (2016). https://doi.org/10.1007/s40572-016-0091-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-016-0091-2

Keywords

Navigation