Current Environmental Health Reports

, Volume 3, Issue 1, pp 40–52 | Cite as

Of Pesticides and Men: a California Story of Genes and Environment in Parkinson’s Disease

  • Beate R. RitzEmail author
  • Kimberly C. Paul
  • Jeff M. Bronstein
Susceptibility Factors in Environmental Health (B Ritz, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Susceptibility Factors in Environmental Health


At the start of the postgenomics era, most Parkinson’s disease (PD) etiology cannot be explained by our knowledge of genetic or environmental factors alone. For more than a decade, we have explored gene–environment (GxE) interactions possibly responsible for the heterogeneity of genetic as well as environmental results across populations. We developed three pesticide exposure measures (ambient due to agricultural applications, home and garden use, and occupational use) in a large population-based case–control study of incident PD in central California. Specifically, we assessed interactions with genes responsible for pesticide metabolism (PON1); transport across the blood–brain barrier (ABCB1); pesticides interfering with or depending on dopamine transporter activity (DAT/SLC6A3) and dopamine metabolism (ALDH2); impacting mitochondrial function via oxidative/nitrosative stress (NOS1) or proteasome inhibition (SKP1); and contributing to immune dysregulation (HLA-DR). These studies established some specificity for pesticides’ neurodegenerative actions, contributed biologic plausibility to epidemiologic findings, and identified genetically susceptible populations.


Pesticides Gene–environment interactions Parkinson’s disease 



This work was funded in part by NIEHS Grants R01-ES010544, U54-ES012078, P01ES016732; the Michael J. Fox Foundation; The Parkinson Alliance, and the American Parkinson Disease Association. The funding organizations had no role in the design, conduct, interpretation, or publication of this work. Kim Paul also reports support from the Burroughs Wellcome Fund.

Compliance with Ethical Standards

Conflict of Interest

BR Ritz, KC Paul, and JM Bronstein declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

Standard Protocol Approvals and Patient Consents

Written informed consent was obtained from all enrolled subjects. All procedures using animals were approved by the UCLA Human Subjects Committee.

Supplementary material

40572_2016_83_MOESM1_ESM.docx (49 kb)
ESM 1 (DOCX 48 kb)
40572_2016_83_MOESM2_ESM.docx (41 kb)
ESM 2 (DOCX 41 kb)


Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Caudle WM, Guillot TS, Lazo CR, et al. Industrial toxicants and Parkinson’s disease. Neurotoxicology. 2012;33:178–88.PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.•
    Lill CM, Roehr JT, McQueen MB, et al. Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: the PDGene database. PLoS Genet. 2012;8:e1002548. This study provides an exhaustive summary of the status of PD genetics on more than seven million polymorphisms originating from GWAS or smaller-scale PD association studies.PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Goldman SM. Environmental toxins and Parkinson’s disease. Annu Rev Pharmacol Toxicol. 2014;54:141–64.PubMedCrossRefGoogle Scholar
  4. 4.
    Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet. 2014;46:989–93.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.••
    Langston JW, Ballard P, Tetrud JW, et al. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science. 1983;219:979–80. This study was the first to describe a specific toxicant as acting selectively on dopamine neurons.PubMedCrossRefGoogle Scholar
  6. 6.
    Barbeau A, Dallaire L, Buu NT, et al. Comparative behavioral, biochemical and pigmentary effects of MPTP, MPP+ and paraquat in Rana pipiens. Life Sci. 1985;37:1529–38.PubMedCrossRefGoogle Scholar
  7. 7.
    Brown TP, Rumsby PC, Capleton AC, et al. Pesticides and Parkinson’s disease—is there a link? Environ Health Perspect. 2006;114:156–64.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Trinh J, Farrer M. Advances in the genetics of Parkinson disease. Nat Rev Neurol. 2013;9:445–54.PubMedCrossRefGoogle Scholar
  9. 9.
    Pihlstrøm L, Toft M. Parkinson’s disease: what remains of the ‘missing heritability’? Mov Disord. 2011;26:1971–3.PubMedCrossRefGoogle Scholar
  10. 10.
    Quadri M, Yang X, Cossu G, et al. An exome study of Parkinson’s disease in Sardinia, a Mediterranean genetic isolate. Neurogenetics. 2015;16:55–64.PubMedCrossRefGoogle Scholar
  11. 11.
    Goldberg DW, Wilson JP, Knoblock CA, et al. An effective and efficient approach for manually improving geocoded data. Int J Health Geogr. 2008;7:60.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Rull RP, Ritz B. Historical pesticide exposure in California using pesticide use reports and land-use surveys: an assessment of misclassification error and bias. Environ Health Perspect. 2003;111:1582–9.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Ritz B, Costello S. Geographic model and biomarker-derived measures of pesticide exposure and Parkinson’s disease. Ann N Y Acad Sci. 2006;1076:378–87.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Narayan S, Liew Z, Paul K, et al. Household organophosphorus pesticide use and Parkinson’s disease. Int J Epidemiol. 2013;42:1476–85.PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Liew Z, Wang A, Bronstein J, et al. Job exposure matrix (JEM)-derived estimates of lifetime occupational pesticide exposure and the risk of Parkinson’s disease. Arch Environ Occup Health. 2014;69:241–51.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Przedborski S, Ischiropoulos H. Reactive oxygen and nitrogen species: weapons of neuronal destruction in models of Parkinson’s disease. Antioxid Redox Signal. 2005;7:685–93.PubMedCrossRefGoogle Scholar
  17. 17.
    Martinez TN, Greenamyre JT. Toxin models of mitochondrial dysfunction in Parkinson’s disease. Antioxid Redox Signal. 2012;16:920–34.PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Cannon JR, Greenamyre JT. Neurotoxic in vivo models of Parkinson’s disease recent advances. Prog Brain Res. 2010;184:17–33.PubMedCrossRefGoogle Scholar
  19. 19.
    Wang X-F, Li S, Chou AP, et al. Inhibitory effects of pesticides on proteasome activity: implication in Parkinson’s disease. Neurobiol Dis. 2006;23:198–205.PubMedCrossRefGoogle Scholar
  20. 20.
    Zhou Y, Shie F-S, Piccardo P, et al. Proteasomal inhibition induced by manganese ethylene-bis-dithiocarbamate: relevance to Parkinson’s disease. Neuroscience. 2004;128:281–91.PubMedCrossRefGoogle Scholar
  21. 21.
    Fitzmaurice AG, Rhodes SL, Cockburn M, et al. Aldehyde dehydrogenase variation enhances effect of pesticides associated with Parkinson disease. Neurology. 2014;82:419–26.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Roede JR, Jones DP. Thiol-reactivity of the fungicide maneb. Redox Biol. 2014;2:651–5.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Johnson ME, Bobrovskaya L. An update on the rotenone models of Parkinson’s disease: their ability to reproduce the features of clinical disease and model gene-environment interactions. Neurotoxicology. 2015;46:101–16.PubMedCrossRefGoogle Scholar
  24. 24.
    Pan-Montojo F, Schwarz M, Winkler C, et al. Environmental toxins trigger PD-like progression via increased alpha-synuclein release from enteric neurons in mice. Sci Rep. 2012;2:898.PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.•
    Van der Mark M, Brouwer M, Kromhout H, et al. Is pesticide use related to Parkinson disease? Some clues to heterogeneity in study results. Environ Health Perspect. 2012;120:340–7. This is a comprehensive systematic review of PD and exposure to pesticides that investigates methodological differences between studies and heterogeneity in results.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Barr DB, Olsson AO, Wong L-Y, et al. Urinary concentrations of metabolites of pyrethroid insecticides in the general U.S. population: National Health and Nutrition Examination Survey 1999–2002. Environ Health Perspect. 2010;118:742–8.PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Glotfelty DE, Seiber JN, Liljedahl LA. Pesticides in fog. Nature. 1987;325:602–5.PubMedCrossRefGoogle Scholar
  28. 28.
    USGS. Pesticides in the atmosphere—distribution, trends and governing factors. Sacromento: U.S. Geological Survey; 1995. p. 94–506.Google Scholar
  29. 29.
    Tiefenbacher J. Mapping the pesticide driftscape: theoretical patterns of the drift hazard. Geogr Environ Model. 1998;2:83–102.Google Scholar
  30. 30.
    Camann DE, Geno PW, Harding HJ, et al. A pilot study of pesticides in indoor air in relation to agricultural applications. In: Indoor air’93: proceedings of 6th International Conference on Indoor Air Quality and Climate. Helsinki: Finnish Society of Indoor Air Quality and Climate; 1993. p. 207–12.Google Scholar
  31. 31.
    CPDR. Summary of pesticide use report data. Sacramento: California Department of Pesticide Regulation; 2000.Google Scholar
  32. 32.
    Teschke K, Chow Y, Bartlett K, et al. Spatial and temporal distribution of airborne Bacillus thuringiensis var. kurstaki during an aerial spray program for gypsy moth eradication. Environ Health Perspect. 2001;109:47–54.PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Baker LW, Fitzell DL, Seiber JN, et al. Ambient air concentrations of pesticides in California. Environ Sci Technol. 1996;30:1365–8.CrossRefGoogle Scholar
  34. 34.
    Majewski MS, Foreman WT, Goolsby DA, et al. Airborne pesticide residues along the Mississippi River. Environ Sci Technol. 1998;32:3689–98.CrossRefGoogle Scholar
  35. 35.
    Harnly M, McLaughlin R, Bradman A, et al. Correlating agricultural use of organophosphates with outdoor air concentrations: a particular concern for children. Environ Health Perspect. 2005;113:1184–9.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Wofford P, Segawa R, Schreider J, et al. Community air monitoring for pesticides. Part 3: using health-based screening levels to evaluate results collected for a year. Environ Monit Assess. 2014;186:1355–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Ward MH, Colt JS, Metayer C, et al. Residential exposure to polychlorinated biphenyls and organochlorine pesticides and risk of childhood leukemia. Environ Health Perspect. 2009;117:1007–13.PubMedPubMedCentralCrossRefGoogle Scholar
  38. 38.
    Jones BC, Huang X, Mailman RB, et al. The perplexing paradox of paraquat: the case for host-based susceptibility and postulated neurodegenerative effects. J Biochem Mol Toxicol. 2014;28:191–7.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Costello S, Cockburn M, Bronstein J, et al. Parkinson’s disease and residential exposure to maneb and paraquat from agricultural applications in the central valley of California. Am J Epidemiol. 2009;169:919–26.PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Kelada SNP, Checkoway H, Kardia SLR, et al. 5′ and 3′ region variability in the dopamine transporter gene (SLC6A3), pesticide exposure and Parkinson’s disease risk: a hypothesis-generating study. Hum Mol Genet. 2006;15:3055–62. doi: 10.1093/hmg/ddl247.PubMedCrossRefGoogle Scholar
  41. 41.
    Kelada SN, Costa-Mallen P, Checkoway H, et al. Dopamine transporter (SLC6A3) 5′ region haplotypes significantly affect transcriptional activity in vitro but are not associated with Parkinson’s disease. Pharmacogenet Genomics. 2005;15:659–68.PubMedCrossRefGoogle Scholar
  42. 42.
    Drgon T, Lin Z, Wang G-J, et al. Common human 5′ dopamine transporter (SLC6A3) haplotypes yield varying expression levels in vivo. Cell Mol Neurobiol. 2006;26:875–89.PubMedCrossRefGoogle Scholar
  43. 43.
    Ritz BR, Manthripragada AD, Costello S, et al. Dopamine transporter genetic variants and pesticides in Parkinson’s disease. Environ Health Perspect. 2009;117:964–9.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Droździk M, Białecka M, Myśliwiec K, et al. Polymorphism in the P-glycoprotein drug transporter MDR1 gene: a possible link between environmental and genetic factors in Parkinson’s disease. Pharmacogenetics. 2003;13:259–63.PubMedCrossRefGoogle Scholar
  45. 45.
    Zschiedrich K, König IR, Brüggemann N, et al. MDR1 variants and risk of Parkinson disease. Association with pesticide exposure? J Neurol. 2009;256:115–20.PubMedCrossRefGoogle Scholar
  46. 46.
    Dutheil F, Beaune P, Tzourio C, et al. Interaction between ABCB1 and professional exposure to organochlorine insecticides in Parkinson disease. Arch Neurol. 2010;67:739–45.PubMedGoogle Scholar
  47. 47.
    Narayan S, Sinsheimer JS, Paul KC, et al. Genetic variability in ABCB1, occupational pesticide exposure, and Parkinson’s disease. Environ Res. 2015. Accepted A.Google Scholar
  48. 48.
    Lee P-C, Rhodes SL, Sinsheimer JS, et al. Functional paraoxonase 1 variants modify the risk of Parkinson’s disease due to organophosphate exposure. Environ Int. 2013;56:42–7.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Hancock DB, Martin ER, Vance JM, et al. Nitric oxide synthase genes and their interactions with environmental factors in Parkinson’s disease. Neurogenetics. 2008;9:249–62.PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Paul KC, Sinsheimer JS, Rhodes SL, et al. Organophosphate pesticide exposures, nitric oxide synthase gene variants, and gene-pesticide interactions in a case-control study of Parkinson’s Disease, California (USA). Environ Health Perspect. 2015. doi: 10.1289/ehp.1408976. Published Online First.PubMedGoogle Scholar
  51. 51.
    Rhodes SL, Fitzmaurice AG, Cockburn M, et al. Pesticides that inhibit the ubiquitin-proteasome system: effect measure modification by genetic variation in SKP1 in Parkinson׳s disease. Environ Res. 2013;126:1–8.PubMedCrossRefGoogle Scholar
  52. 52.
    Kannarkat GT, Cook DA, Lee J-K, et al. Common genetic variant association with altered HLA expression, synergy with pyrethroid exposure, and risk for Parkinson’s disease: an observational and case–control study. NPJ Park Dis. 2015;1:15002.CrossRefGoogle Scholar
  53. 53.
    Shimizu K, Matsubara K, Ohtaki K, et al. Paraquat leads to dopaminergic neural vulnerability in organotypic midbrain culture. Neurosci Res. 2003;46:523–32.PubMedCrossRefGoogle Scholar
  54. 54.
    Richardson JR, Quan Y, Sherer TB, et al. Paraquat neurotoxicity is distinct from that of MPTP and rotenone. Toxicol Sci. 2005;88:193–201.PubMedCrossRefGoogle Scholar
  55. 55.
    Rappold PM, Cui M, Chesser AS, et al. Paraquat neurotoxicity is mediated by the dopamine transporter and organic cation transporter-3. Proc Natl Acad Sci U S A. 2011;108:20766–71.PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    Van de Giessen EM, de Win MML, Tanck MWT, et al. Striatal dopamine transporter availability associated with polymorphisms in the dopamine transporter gene SLC6A3. J Nucl Med. 2009;50:45–52.PubMedCrossRefGoogle Scholar
  57. 57.
    Schinkel AH, Smit JJ, van Tellingen O, et al. Disruption of the mouse mdr1a P-glycoprotein gene leads to a deficiency in the blood-brain barrier and to increased sensitivity to drugs. Cell. 1994;77:491–502.PubMedCrossRefGoogle Scholar
  58. 58.
    Bain LJ, McLachlan JB, LeBlanc GA. Structure-activity relationships for xenobiotic transport substrates and inhibitory ligands of P-glycoprotein. Environ Health Perspect. 1997;105:812–8.PubMedPubMedCentralCrossRefGoogle Scholar
  59. 59.
    Lecoeur S, Videmann B, Mazallon M. Effect of organophosphate pesticide diazinon on expression and activity of intestinal P-glycoprotein. Toxicol Lett. 2006;161:200–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Sreeramulu K, Liu R, Sharom FJ. Interaction of insecticides with mammalian P-glycoprotein and their effect on its transport function. Biochim Biophys Acta. 2007;1768:1750–7.PubMedCrossRefGoogle Scholar
  61. 61.
    Kimchi-Sarfaty C, Oh JM, Kim I-W, et al. A ‘silent’ polymorphism in the MDR1 gene changes substrate specificity. Science. 2007;315:525–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Cascorbi I, Gerloff T, Johne A, et al. Frequency of single nucleotide polymorphisms in the P-glycoprotein drug transporter MDR1 gene in white subjects. Clin Pharmacol Ther. 2001;69:169–74.PubMedCrossRefGoogle Scholar
  63. 63.
    Hitzl M, Schaeffeler E, Hocher B, et al. Variable expression of P-glycoprotein in the human placenta and its association with mutations of the multidrug resistance 1 gene (MDR1, ABCB1). Pharmacogenetics. 2004;14:309–18.PubMedCrossRefGoogle Scholar
  64. 64.
    Wang A, Cockburn M, Ly TT, et al. The association between ambient exposure to organophosphates and Parkinson’s disease risk. Occup Environ Med. 2014;71:275–81. doi: 10.1136/oemed-2013-101394.PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Davies HG, Richter RJ, Keifer M, et al. The effect of the human serum paraoxonase polymorphism is reversed with diazoxon, soman and sarin. Nat Genet. 1996;14:334–6.PubMedCrossRefGoogle Scholar
  66. 66.
    Richter RJ, Jarvik GP, Furlong CE. Paraoxonase 1 (PON1) status and substrate hydrolysis. Toxicol Appl Pharmacol. 2009;235:1–9.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Costa LG, Cole TB, Furlong CE. Polymorphisms of paraoxonase (PON1) and their significance in clinical toxicology of organophosphates. J Toxicol Clin Toxicol. 2003;41:37–45.PubMedCrossRefGoogle Scholar
  68. 68.
    O’Leary KA, Edwards RJ, Town MM, et al. Genetic and other sources of variation in the activity of serum paraoxonase/diazoxonase in humans: consequences for risk from exposure to diazinon. Pharmacogenet Genomics. 2005;15:51–60.PubMedCrossRefGoogle Scholar
  69. 69.
    Liu Y-L, Yang J, Zheng J, et al. Paraoxonase 1 polymorphisms L55M and Q192R were not risk factors for Parkinson’s disease: a HuGE review and meta-analysis. Gene. 2012;501:188–92.PubMedCrossRefGoogle Scholar
  70. 70.
    Taylor MC, Le Couteur DG, Mellick GD, et al. Paraoxonase polymorphisms, pesticide exposure and Parkinson’s disease in a Caucasian population. J Neural Transm. 2000;107:979–83.PubMedCrossRefGoogle Scholar
  71. 71.
    Dick FD, De Palma G, Ahmadi A, et al. Gene-environment interactions in Parkinsonism and Parkinson’s disease: the Geoparkinson study. Occup Environ Med. 2007;64:673–80.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kavya R, Saluja R, Singh S, et al. Nitric oxide synthase regulation and diversity: implications in Parkinson’s disease. Nitric Oxide. 2006;15:280–94.PubMedCrossRefGoogle Scholar
  73. 73.
    Dauer W, Przedborski S. Parkinson’s disease: mechanisms and models. Neuron. 2003;39:889–909.PubMedCrossRefGoogle Scholar
  74. 74.
    Lukaszewicz-Hussain A. Role of oxidative stress in organophosphate insecticide toxicity—short review. Pestic Biochem Physiol. 2010;98:145–50.CrossRefGoogle Scholar
  75. 75.
    Licinio J, Prolo P, McCann SM, et al. Brain iNOS: current understanding and clinical implications. Mol Med Today. 1999;5:225–32.PubMedCrossRefGoogle Scholar
  76. 76.
    Hague S, Peuralinna T, Eerola J, et al. Confirmation of the protective effect of iNOS in an independent cohort of Parkinson disease. Neurology. 2004;62:635–6.PubMedCrossRefGoogle Scholar
  77. 77.
    Huerta C, Sánchez-Ferrero E, Coto E, et al. No association between Parkinson’s disease and three polymorphisms in the eNOS, nNOS, and iNOS genes. Neurosci Lett. 2007;413:202–5.PubMedCrossRefGoogle Scholar
  78. 78.
    Levecque C, Elbaz A, Clavel J, et al. Association between Parkinson’s disease and polymorphisms in the nNOS and iNOS genes in a community-based case-control study. Hum Mol Genet. 2003;12:79–86.PubMedCrossRefGoogle Scholar
  79. 79.
    Schulte C, Sharma M, Mueller JC, et al. Comprehensive association analysis of the NOS2A gene with Parkinson disease. Neurology. 2006;67:2080–2.PubMedCrossRefGoogle Scholar
  80. 80.
    Przedborski S, Jackson-Lewis V, Yokoyama R, et al. Role of neuronal nitric oxide in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced dopaminergic neurotoxicity. Proc Natl Acad Sci U S A. 1996;93:4565–71.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Liberatore GT, Jackson-Lewis V, Vukosavic S, et al. Inducible nitric oxide synthase stimulates dopaminergic neurodegeneration in the MPTP model of Parkinson disease. Nat Med. 1999;5:1403–9.PubMedCrossRefGoogle Scholar
  82. 82.
    Hunot S, Boissière F, Faucheux B, et al. Nitric oxide synthase and neuronal vulnerability in Parkinson’s disease. Neuroscience. 1996;72:355–63.PubMedCrossRefGoogle Scholar
  83. 83.
    Tsang AHK, Lee Y-I, Ko HS, et al. S-nitrosylation of XIAP compromises neuronal survival in Parkinson’s disease. Proc Natl Acad Sci U S A. 2009;106:4900–5.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Michel TM, Käsbauer L, Gsell W, et al. Aldehyde dehydrogenase 2 in sporadic Parkinson’s disease. Parkinsonism Relat Disord. 2014;20:S68–72.PubMedCrossRefGoogle Scholar
  85. 85.
    Goldstein DS, Sullivan P, Cooney A, et al. Rotenone decreases intracellular aldehyde dehydrogenase activity: implications for the pathogenesis of Parkinson’s disease. J Neurochem. 2015;133:14–25.PubMedCrossRefGoogle Scholar
  86. 86.
    Chiu C-C, Yeh T-H, Lai S-C, et al. Neuroprotective effects of aldehyde dehydrogenase 2 activation in rotenone-induced cellular and animal models of parkinsonism. Exp Neurol. 2015;263:244–53.PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Fitzmaurice AG, Rhodes SL, Lulla A, et al. Aldehyde dehydrogenase inhibition as a pathogenic mechanism in Parkinson disease. Proc Natl Acad Sci U S A. 2013;110:636–41. doi: 10.1073/pnas.1220399110.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Yoshii SR, Kishi C, Ishihara N, et al. Parkin mediates proteasome-dependent protein degradation and rupture of the outer mitochondrial membrane. J Biol Chem. 2011;286:19630–40.PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Ebrahimi-Fakhari D, Wahlster L, McLean PJ. Protein degradation pathways in Parkinson’s disease: curse or blessing. Acta Neuropathol. 2012;124:153–72.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Licker V, Kövari E, Hochstrasser DF, et al. Proteomics in human Parkinson’s disease research. J Proteome. 2009;73:10–29.CrossRefGoogle Scholar
  91. 91.
    Wakabayashi K, Tanji K, Odagiri S, et al. The Lewy body in Parkinson’s disease and related neurodegenerative disorders. Mol Neurobiol. 2013;47:495–508.PubMedCrossRefGoogle Scholar
  92. 92.
    Chen Q, Thorpe J, Keller JN. Alpha-synuclein alters proteasome function, protein synthesis, and stationary phase viability. J Biol Chem. 2005;280:30009–17.PubMedCrossRefGoogle Scholar
  93. 93.
    Betarbet R, Sherer TB, Greenamyre JT. Ubiquitin-proteasome system and Parkinson’s diseases. Exp Neurol. 2005;191 Suppl 1:S17–27.PubMedCrossRefGoogle Scholar
  94. 94.
    Chou AP, Li S, Fitzmaurice AG, et al. Mechanisms of rotenone-induced proteasome inhibition. Neurotoxicology. 2010;31:367–72.PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Chou AP, Maidment N, Klintenberg R, et al. Ziram causes dopaminergic cell damage by inhibiting E1 ligase of the proteasome. J Biol Chem. 2008;283:34696–703.PubMedPubMedCentralCrossRefGoogle Scholar
  96. 96.
    Wills J, Credle J, Oaks AW, et al. Paraquat, but not maneb, induces synucleinopathy and tauopathy in striata of mice through inhibition of proteasomal and autophagic pathways. PLoS ONE. 2012;7:e30745.PubMedPubMedCentralCrossRefGoogle Scholar
  97. 97.
    Bai C, Sen P, Hofmann K, et al. SKP1 connects cell cycle regulators to the ubiquitin proteolysis machinery through a novel motif, the F-box. Cell. 1996;86:263–74.PubMedCrossRefGoogle Scholar
  98. 98.
    Grünblatt E, Mandel S, Jacob-Hirsch J, et al. Gene expression profiling of parkinsonian substantia nigra pars compacta; alterations in ubiquitin-proteasome, heat shock protein, iron and oxidative stress regulated proteins, cell adhesion/cellular matrix and vesicle trafficking genes. J Neural Transm. 2004;111:1543–73.PubMedCrossRefGoogle Scholar
  99. 99.
    Fishman-Jacob T, Reznichenko L, Youdim MBH, et al. A sporadic Parkinson disease model via silencing of the ubiquitin-proteasome/E3 ligase component SKP1A. J Biol Chem. 2009;284:32835–45.PubMedPubMedCentralCrossRefGoogle Scholar
  100. 100.
    Esa AH, Warr GA, Newcombe DS. Immunotoxicity of organophosphorus compounds. Modulation of cell-mediated immune responses by inhibition of monocyte accessory functions. Clin Immunol Immunopathol. 1988;49:41–52.PubMedCrossRefGoogle Scholar
  101. 101.
    Freire C, Koifman S. Pesticide exposure and Parkinson’s disease: epidemiological evidence of association. Neurotoxicology. 2012;33:947–71.PubMedCrossRefGoogle Scholar
  102. 102.
    Dardiotis E, Xiromerisiou G, Hadjichristodoulou C, et al. The interplay between environmental and genetic factors in Parkinson’s disease susceptibility: the evidence for pesticides. Toxicology. 2013;307:17–23. doi: 10.1016/j.tox.2012.12.016.PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2016

Authors and Affiliations

  • Beate R. Ritz
    • 1
    • 2
    • 3
    Email author
  • Kimberly C. Paul
    • 1
  • Jeff M. Bronstein
    • 3
  1. 1.Department of Epidemiology, Fielding School of Public HealthUCLALos AngelesUSA
  2. 2.Center for Occupational and Environmental HealthUCLALos AngelesUSA
  3. 3.Department of Neurology, Geffen School of MedicineUCLALos AngelesUSA

Personalised recommendations