Skip to main content

An Overview of Occupational Risks From Climate Change

Abstract

Changes in atmosphere and temperature are affecting multiple environmental indicators from extreme heat events to global air quality. Workers will be uniquely affected by climate change, and the occupational impacts of major shifts in atmospheric and weather conditions need greater attention. Climate change-related exposures most likely to differentially affect workers in the USA and globally include heat, ozone, polycyclic aromatic hydrocarbons, other chemicals, pathogenic microorganisms, vector-borne diseases, violence, and wildfires. Epidemiologic evidence documents a U-, J-, or V-shaped relationship between temperature and mortality. Whereas heat-related morbidity and mortality risks are most evident in agriculture, many other outdoor occupational sectors are also at risk, including construction, transportation, landscaping, firefighting, and other emergency response operations. The toxicity of chemicals change under hyperthermic conditions, particularly for pesticides and ozone. Combined with climate-related changes in chemical transport and distribution, these interactions represent unique health risks specifically to workers. Links between heat and interpersonal conflict including violence require attention because they pose threats to the safety of emergency medicine, peacekeeping and humanitarian relief, and public safety professionals. Recommendations for anticipating how US workers will be most susceptible to climate change include formal monitoring systems for agricultural workers; modeling scenarios focusing on occupational impacts of extreme climate events including floods, wildfires, and chemical spills; and national research agenda setting focusing on control and mitigation of occupational susceptibility to climate change.

This is a preview of subscription content, access via your institution.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lundgren K, Kuklane K, Gao C, Holmér I. Effects of heat stress on working populations when facing climate change. Ind Health. 2013;5:3–15.

    Article  Google Scholar 

  2. Roelofs C, Wegman D. Workers: the climate canaries. Am J Public Health. 2014;104(10):1799–801.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Schulte PA, Chun H. Climate change and occupational safety and health: establishing a preliminary framework. J Occup Environ Hyg. 2009;6(542). An important early guide for specifying how workers are at risk for climate change health impacts and how to advance a research and action agenda.

  4. Spector JT, Sheffield PE. Re-evaluating occupational heat stress in a changing climate. Ann Occup Hyg. 2014;58(8):936–42.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Adam-Poupart A, Labrèche F, Smargiassi A, et al. Climate change and occupational health and safety in a temperate climate: potential impacts and research priorities in Quebec. Canada Ind Health. 2013;51(1):68–78.

    Article  PubMed  Google Scholar 

  6. Bourbonnais R, Zayed J, Lévesque M, Busque MA, Duguay P, Truchon G. Identification of workers exposed concomitantly to heat stress and chemicals. Ind Health. 2013;51(1):25–33.

    Article  PubMed  Google Scholar 

  7. Hanna EG, Kjellstrom T, Bennett C, Dear K. Climate change and rising heat: population health implications for working people in Australia. Asia Pac J Public Health. 2011;23(2 Suppl):14S–26.

    Article  PubMed  Google Scholar 

  8. Kjellstrom T, Gabrysch S, Lemke B, Dear K. The ‘Hothaps’ programme for assessing climate change impacts on occupational health and productivity: an invitation to carry out field studies. Glob Health Action. 2009;11:2.

    Google Scholar 

  9. Kjellstrom T, Holmer I, Lemke B. Workplace heat stress, health and productivity—an increasing challenge for low and middle-income countries during climate change. Global Health Action. 2009;2:1–6. A global examination of climate change-related heat risk and occupational health in LMI countries.

    Google Scholar 

  10. US Department of Labor. Occupational heat stress. Safety and Health Topics. Web site: https://www.osha.gov/SLTC/heatstress/. Published 2006. Accessed 22 Aug 2015.

  11. Arbury S, Jacklitsch B, Farquah O, et al. Heat illness and death among workers—United States, 2012-2013. MMWR Morb Mortal Wkly Rep. 2014;63(31):661–5.

    PubMed  Google Scholar 

  12. Weeks J, Levy B, Wagner G, editors. Preventing occupational disease and injury. Washington, DC: American Public Health Association; 1991.

    Google Scholar 

  13. Xiang J, Bi P, Pisaniello D, Hansen A. Health impacts of workplace heat exposure: an epidemiological review. Ind Health. 2014;52(2):91–101. A current review of occupational heat hazards.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Braga AL, Zanobetti A, Schwartz J. The time course of weather-related deaths. Epidemiology. 2001;6:662–7.

    Article  Google Scholar 

  15. Curriero FC, Heiner KS, Samet JM, Zeger SL, Strug L, Patz JA. Temperature and mortality in 11 cities of the Eastern United States. Am J Epidemiol. 2002;155(1):80–7.

    Article  PubMed  Google Scholar 

  16. Hyatt OM, Lemke B, Kjellstrom T. Regional maps of occupational heat exposure: past, present, and potential future. Global Health Action. 2010;3:1–10.

    Article  Google Scholar 

  17. Gordon CJ, Johnstone AFM, Aydin C. Thermal stress and toxicity. Comprehensive physiology. 2014. doi:10.1002/cphy.c130046.

    PubMed  Google Scholar 

  18. Chen M, Chen C, Yeh W, Huang J, Mao I. Heat stress evaluation and worker fatigue in a steel plant. AIHA J. 2003;64(3):352–9.

    Article  Google Scholar 

  19. Tawatsupa B, Lim L, Kjellstrom T, Seubsman S, Sleigh A, Thai Cohort Study Team. The association between overall health, psychological distress, and occupational heat stress among a large national cohort of 40,913 Thai workers. Global Health Action. 2010; doi: 10.3402/gha.v3i0.5034.

  20. Havenith G. Heat balance when wearing protective clothing. Ann Occup Hyg. 1999;43(5):289–96.

    CAS  Article  PubMed  Google Scholar 

  21. Kim B, Park K, Rhee K. Heat stress response of male germ cells. Cell Mol Life Sci. 2013;70(15):2623–36.

    CAS  Article  PubMed  Google Scholar 

  22. Yarmolenko PS, Moon EJ, Landon C, et al. Thresholds for thermal damage to normal tissues: an update. Int J Hyperther. 2011;27(4):320–43.

    Article  Google Scholar 

  23. Hancock PA, Vasmatzidis I. Effects of heat stress on cognitive performance: the current state of knowledge. Int J Hyperthermia. 2003;19(3):355–72.

    CAS  Article  PubMed  Google Scholar 

  24. Gubernot DM, Anderson GB, Hunting KL. The epidemiology of occupational heat exposure in the United States: a review of the literature and assessment of research needs in a changing climate. Int J Biometeorol. 2014;58(8):1779–88.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Jackson LL, Rosenberg HR. Preventing heat-related illness among agricultural workers. J Agromedicine. 2010;15(3):200–15.

    Article  PubMed  Google Scholar 

  26. Kjellstrom T, Crowe J. Climate change, workplace heat exposure, and occupational health and productivity in Central America. Int J Occup Env Heal. 2011;17(3):270–81.

    Article  Google Scholar 

  27. Centers for Disease Control and Prevention (CDC). Heat-related deaths among crop workers’ United States, 1992-2006. MMWR Morb Mortal Wkly Rep. 2008;57(24):649–53.

    Google Scholar 

  28. ACGIH. 1992-1993 threshold limit values for chemical substances and physical agents and biological exposure indices. Cincinnati, OH: American Conference of Governmental Industrial Hygienists; 1992.

    Google Scholar 

  29. Wesseling C, Crowe J, Hogstedt C, Jakobsson K, Lucas R, Wegman DH. The epidemic of chronic kidney disease of unknown etiology in Mesoamerica: a call for interdisciplinary research and action. Am J Public Health. 2013;103(11):1927–30.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fiore AM, Naik V, Leibensperger EM. Air quality and climate connections. J Air Waste Manag Assoc. 2015;65(6):645–85.

    CAS  Article  PubMed  Google Scholar 

  31. Jacob DJ, Winner DA. Effect of climate change on air quality. Atmos Environ. 2009;43(1):51–63.

    CAS  Article  Google Scholar 

  32. Fann N, Nolte CG, Dolwick P, et al. The geographic distribution and economic value of climate change-related ozone health impacts in the United States in 2030. J Air Waste Manag Assoc. 2015;65(5):570–80.

    CAS  Article  PubMed  Google Scholar 

  33. Bell ML, Goldberg R, Hogrefe C, et al. Climate change, ambient ozone, and health in 50 US cities. Clim Change. 2007;82(1–2):61–76.

    CAS  Article  Google Scholar 

  34. Desqueyroux H, Pujet J, Prosper M, Squinazi F, Momas I. Short-term effects of low-level air pollution on respiratory health of adults suffering from moderate to severe asthma. Environ Res. 2002;89(1):29–37.

    CAS  Article  PubMed  Google Scholar 

  35. Hammer DI, Hasselblad V, Portnoy B, Wehrle PF. Los Angeles Student Nurse Study. Daily symptom reporting and photochemical oxidants. Arch Environ Health. 1974;28(5):255–60.

    CAS  Article  PubMed  Google Scholar 

  36. Korrick SA, Neas LM, Dockery DW, et al. Effects of ozone and other pollutants on the pulmonary function of adult hikers. Environ Health Perspect. 1998;106(2):93–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Jerrett M, Burnett RT, Pope CA, et al. Long-term ozone exposure and mortality. N Engl J Med. 2009;360(11):1085–95.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  38. Knowlton K, Rosenthal JE, Hogrefe C, et al. Assessing ozone-related health impacts under a changing climate. Environ Health Perspect. 2004;112(15):1557–63.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. Tolbert PE, Mulholland JA, Macintosh DL, et al. Air quality and pediatric emergency room visits for asthma and Atlanta, Georgia. American J Epidemiology. 2000;151(8):798–810.

    CAS  Article  Google Scholar 

  40. Atkinson RW, Anderson HR, Sunyer J, et al. Acute effects of particulate air pollution on respiratory admissions: results from APHEA 2 project. Air Pollution and Health: a European Approach. Am J Respir Crit Care Med. 2001;164(10):1860–6.

    CAS  Article  PubMed  Google Scholar 

  41. White MC, Etzel RA, Wilcox WD, Lloyd C. Exacerbations of childhood asthma and ozone pollution in Atlanta. Environ Res. 1994;65(1):56–68.

    CAS  Article  PubMed  Google Scholar 

  42. Kinney PL, Ware JH, Spengler JD, Dockery DW, Speizer FE, Ferris Jr BG. Short-term pulmonary function change in association with ozone levels. Am Rev Respir Dis. 1989;139(1):56–61.

    CAS  Article  PubMed  Google Scholar 

  43. Schwartz J. PM10, ozone, and hospital admissions for the elderly in Minneapolis-St. Paul, Minnesota. Archives of Environmental Health: An International J. 1994;49(5):366–74.

    CAS  Article  Google Scholar 

  44. Brauer M, Blair J, Vedal S. Effect of ambient ozone exposure on lung function in farm workers. Am J Respir Crit Care Med. 1996;154(4):981–7.

    CAS  Article  PubMed  Google Scholar 

  45. Brauer M, Vedal S. Health effects of photochemical smog: seasonal and acute lung function change in outdoor workers. J Environ Med. 1999;1(3):163–70.

    Article  Google Scholar 

  46. Chan CC, Wu TH. Effects of ambient ozone exposure on mail carriers’ peak expiratory flow rates. Environ Health Perspect. 2005;113(6):735–8.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. Tovalin H, Valverde M, Morandi MT, Blanco S, Whitehead L, Rojas E. DNA damage in outdoor workers occupationally exposed to environmental air pollutants. Occup Environ Med. 2006;63(4):230–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. Adam-Poupart A, Labrèche F, Busque M-A, et al. Association between outdoor ozone and compensated acute respiratory diseases among workers in Quebec (Canada). Ind Health. 2015;53(2):171–5.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  49. Vinikoor-Imler L, Owens EO, Nichols JL, Ross M, Brown JS, Sacks JD. Evaluating potential response-modifying factors for associations between ozone and health outcomes: a weight-of-evidence approach. Environ Health Perspect. 2014;122(11):1166–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Graff Zivin J, Neidell M. The impact of pollution on worker productivity. http://www.nber.org/papers/w17004.pdf. National Bureau of Economic Research working Paper 17004. Published April 2011. Accessed 5 Nov 2015.

  51. Bosetti C, Boffetta P, La Vecchia C. Occupational exposures to polycyclic aromatic hydrocarbons, and respiratory and urinary tract cancers: a quantitative review to 2005. Ann Oncol. 2007;18:431–46.

    CAS  Article  PubMed  Google Scholar 

  52. Burstyn I, Kromhout H, Partanen T, et al. Polycyclic aromatic hydrocarbons and fatal ischemic heart disease. Epidemiology. 2005;16(6):744–50.

    Article  PubMed  Google Scholar 

  53. Friedman CL, Pierce JR, Selin NE. Assessing the influence of secondary organic versus primary carbonaceous aerosols on long-range atmospheric polycyclic aromatic hydrocarbon transport. Environ Sci Technol. 2014;48(6):3293–302.

    CAS  Article  PubMed  Google Scholar 

  54. Cai JJ, Song JH, Lee Y, Lee DS. Assessment of climate change impact on the fates of polycyclic aromatic hydrocarbons in the multimedia environment based on model prediction. Sci Total Environ. 2014;470–471:1526–36.

    Article  PubMed  Google Scholar 

  55. Luber G, Knowlton K, Balbus J, et al. Ch. 9: Human health. Climate change impacts in the United States: the Third National Climate Assessment, J. M. Melillo, Terese (T.C.) Richmond, and G. W. Yohe, Eds., U.S. Global Change Research Program. 2014; doi: 10.7930/J0PN93H5

  56. Gamble JL, Ebi KL, Sussman FG, Wilbanks, TJ. US Climate Change Science Program. Analyses of the effects of global change on human health and welfare and human systems. A report by the U.S. Climate Change Science Program and the Subcommittee on Global Change Research. Washington, DC, USA. U.S. Environmental Protection Agency. 2008.

  57. Boxall ABA, Hardy A, Beulke S. Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture. Environ Health Perspect. 2009;117(4):508–14. A thorough review of climate change factors influencing the environment and, more directly, farmers and other agricultural workers.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Balbus JM, Boxall ABA, Fenske RA, McKone TE, Zeise L. Implications of global climate change for the assessment and management of human health risks of chemicals in the natural environment. Environ Toxicol Chem. 2013;32(1):62–78. A careful review of environmental health impacts of climate change. The table on environmental exposures was used to frame Table 1 included in this chapter, by focusing specifically on occupational impacts.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  59. Rogge WF, Medeiros PM, Simoneit BRT. Organic marker compounds in surface soils of crop fields from the San Joaquin Valley fugitive dust characterization study. Atmos Environ. 2007;41(37):8183–204.

    CAS  Article  Google Scholar 

  60. Noyes PD, McElwee MK, Miller HD, et al. The toxicology of climate change: environmental contaminants in a warming world. Environ Int. 2009;35(6):971–86.

    CAS  Article  PubMed  Google Scholar 

  61. Bloomfield JP, Williams RJ, Gooddy DC, Cape JN, Guha P. Impacts of climate change on the fate and behaviour of pesticides in surface and groundwater—a UK perspective. Sci Total Environ. 2006;369(1–3):163–77.

    CAS  Article  PubMed  Google Scholar 

  62. Kemper N. Veterinary antibiotics in the aquatic and terrestrial environment. Ecol Ind. 2008;8(1):1–13.

    CAS  Article  Google Scholar 

  63. Funckes AJ, Hayes GR, Hartwell WV. Insecticide activity in man, urinary excretion of paranitrophenol by volunteers following dermal exposure to parathion at different ambient temperatures. J Agric Food Chem. 1963;11(6):455–7.

    CAS  Article  Google Scholar 

  64. Dearing MD. Temperature-dependent toxicity in mammals with implications for herbivores: a review. Journal of Comparative Physiology B-Biochemical Systemic and Environmental Physiology. 2013;183(1):43–50.

    CAS  Article  Google Scholar 

  65. Keplinger ML, Lanier GE, Deichmann WB. Effects of environmental temperature on the acute toxicity of a number of compounds in rats. Toxicol Appl Pharmacol. 1959;1(2):156–61.

    CAS  Article  Google Scholar 

  66. Curriero FC, Patz JA, Rose JB, Lele S. The association between extreme precipitation and waterborne disease outbreaks in the United States, 1948-1994. Am J Public Health. 2001;91(8):1194–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Perciasepe R. Combined sewer overflows: where are we four years after adoption of the CSO control policy? US Environmental Protection Agency. Web site. http://www.epa.gov/npdes/pubs/sf-where.pdf. Published May 18, 1998. Accessed 22 Aug 2015

  68. Altizer S, Ostfeld RS, Johnson PTJ, Kutz S, Harvell CD. Climate change and infectious diseases: from evidence to a predictive framework. Science. 2013;341(6145):514–9.

    CAS  Article  PubMed  Google Scholar 

  69. Paz S, Bisharat N, Paz E, Kidar O, Cohen D. Climate change and the emergence of vibrio vulnificus disease in Israel. Environ Res. 2007;103(3):390–6.

    CAS  Article  PubMed  Google Scholar 

  70. Checkley W, Epstein LD, Gilman RH, et al. Effects of El Niño and ambient temperature on hospital admissions for diarrhoeal diseases in Peruvian children. Lancet. 2000;355(9202):442–50.

    CAS  Article  PubMed  Google Scholar 

  71. Martin V, Chevalier V, Ceccato P, et al. The impact of climate change on the epidemiology and control of Rift Valley fever. Rev Sci Tech. 2008;27(2):413–26.

    CAS  PubMed  Google Scholar 

  72. Archer BN, Weyer J, Paweska J, et al. Outbreak of Rift Valley fever affecting veterinarians and farmers in South Africa, 2008. S Afr Med J. 2011;101(4):263–6.

    PubMed  Google Scholar 

  73. Chambers PG, Swanepoel R. Rift Valley fever in abattoir workers. Cent Afr J Med. 1980;26(6):122–6.

    CAS  PubMed  Google Scholar 

  74. Hsiang SM, Burke M, Miguel E. Quantifying the influence of climate on human conflict. Science. 2013;341(6151):1212.

    CAS  Article  Google Scholar 

  75. Department of Defense. Climate change adaptation roadmap. http://www.acq.osd.mil/ie/download/CCARprint_wForeword_c.pdf. Published October 13, 2014. Accessed 22 Aug 2015

  76. Vrij A, Van Der Steen J, Koppelaar L. Aggression of police officers as a function of temperature: an experiment with the fire arms training system. J Community & Applied Social Psychol. 1994;4(5):365–70.

    Article  Google Scholar 

  77. McLean I. Original communication: climatic effects on incidence of sexual assault. J Forensic Leg Med. 2007;14:16–9.

    Article  PubMed  Google Scholar 

  78. Mares D et al. Climate change and levels of violence in socially disadvantaged neighborhood groups. J Urban Health. 2013;90(4):768–83.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Core Writing Team, Pachauri RK, Meyer, LA, eds. Climate change 2014: synthesis report. Contribution of working groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate Change. 5th Assessment. Geneva, Switzerland. IPCC; 2014

  80. Britton C, Ramirez M, Lynch CF, Torner J, Peek-Asa C. Risk of injury by job assignment among federal wildland firefighters, United States, 2003-2007. Int J Occup Environ Health. 2013;19(2):77–84.

    Article  PubMed  Google Scholar 

  81. Britton C, Lynch CF, Ramirez M, Torner J, Buresh C, Peek-Asa C. Epidemiology of injuries to wildland firefighters. Am J Emerg Med. 2013;31(2):339–45.

    Article  PubMed  Google Scholar 

  82. Britton C, Lynch CF, Torner J, Peek-Asa C. Fire characteristics associated with firefighter injury on large federal wildland fires. Ann Epidemiol. 2013;23:37–42.

    Article  PubMed  Google Scholar 

  83. Mangan R. Wildland firefighter fatalities in the United States, 1990-2006. NWCG PMS 841. http://www.fs.fed.us/t-d/pubs/pdfpubs/pdf07512814/pdf07512814dpi72.pdf. Published August 2007. Accessed 22 Aug 2015

  84. Finney MA. The challenge of quantitative risk analysis for wildland fire. For Ecol Manage. 2005;211(1–2):97–108.

    Article  Google Scholar 

  85. Brown TJ, Hall BL, Westerling AL. The impact of twenty-first century climate change on wildland fire danger in the Western United States: an applications perspective. Clim Change. 2004;62(1–3):365–88.

    Article  Google Scholar 

  86. Flannigan MD, Krawchuk MA, de Groot WJ, Wotton BM, Gowman LM. Implications of changing climate for global wildland fire. Int J Wildland Fire. 2009;18(5):483–507.

    Article  Google Scholar 

  87. Moritz MA, Parisien M, Batllori E, et al. Climate change and disruptions to global fire activity. Ecosphere. 2012;3(6):art49

  88. National Interagency Fire Center. Wildland fire fatalities by year. https://www.nifc.gov/safety/safety_documents/Fatalities-by-Year.pdf. Published 2015. Accessed 22 Aug 2015.

  89. Slaughter JC, Koenig JQ, Reinhardt TE. Association between lung function and exposure to smoke among firefighters at prescribed burns. J Occup Environ Hyg. 2004;1(1):45–9.

    CAS  Article  PubMed  Google Scholar 

  90. Koehler KA, Peters TM. New methods for personal exposure monitoring for airborne particles. Curr Environ Health Rep. 2015;2(4):399–411.

    Article  PubMed  Google Scholar 

Download references

Author Contributions

KMA contributed the section on agricultural heat. JG contributed the sections on pathogenic microorganisms and vector-borne infectious agents. GMG contributed the section on wildfires. PL contributed the section on conflict. SAM contributed the section on occupational heat. AN contributed the sections on ozone and PAHs. MJP contributed the section on other chemicals, coordinated the manuscript sections, and communicated with the editors. All authors approved the final version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa J. Perry.

Ethics declarations

Conflict of Interest

Katie M. Applebaum, Jay Graham, George M. Gray, Peter LaPuma, Sabrina A. McCormick, Amanda Northcross, and Melissa J. Perry declare no conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Susceptibility Factors in Environmental Health

Katie M. Applebaum, Jay Graham, M. George, Peter LaPuma, Sabrina A. McCormick, Amanda Northcross and Melissa J. Perry contributed equally to this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Applebaum, K.M., Graham, J., Gray, G.M. et al. An Overview of Occupational Risks From Climate Change. Curr Envir Health Rpt 3, 13–22 (2016). https://doi.org/10.1007/s40572-016-0081-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40572-016-0081-4

Keywords

  • Occupational risks
  • Climate change
  • Heat
  • Ozone
  • Polycyclic aromatic hydrocarbons
  • Other chemicals
  • Pathogenic microorganisms
  • Vector-borne diseases
  • Violence and wildfires