Skip to main content
Log in

Identical calibration approach in discrete element method for modeling mechanical properties in fiber- and particle-reinforced composites

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

This study explores the mechanical properties of particle- and unidirectional fiber-reinforced composite materials using the discrete element method (DEM) with an identical calibration technique. Determining micromechanical properties within DEM modeling is a time-consuming challenge typically requiring a distinct calibration approach for each specific model. In this research, we employ identical micromechanical properties for the generated discrete domain to simulate both types of composites. The findings in this paper suggest that an identical calibration procedure could potentially be effective for modeling composites, regardless of their varied reinforcement shapes. Given the computational costs associated with DEM modeling, this research presents a potential advancement in streamlining the DEM calibration process. The linear parallel-bond model served as the contact model in DEM simulations, offering realistic estimates for materials resembling cemented structures. Additionally, group logic was employed in DEM modeling to construct the reinforcement and matrix phases of the composites. Results were validated through FEM simulations and theoretical predictions, demonstrating a satisfactory level of agreement. Furthermore, this paper provides a comprehensive depiction of micro-crack initiation and propagation, along with various fracture modes, including matrix and fiber cracking, as well as matrix/fiber debonding, for both composite types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Abbreviations

m :

The total mass of the particle

\({{M}}_{{{i}}}\) :

Resultant moment acting on the particle

\({{H}}_{{{i}}}\) :

Angular momentum of the particle

\({{F}}_{{{i}}}\) :

Resultant force (the sum of all externally applied forces) acting on the particle

\({{F}}_{{{i}}}^{{{n}}}\) :

Normal component vector

\({{F}}_{{{i}}}^{{{s}}}\) :

Shear component vector

\({{F}}^{{{l}}}\) :

Linear force

\({{F}}^{{{d}}}\) :

Dashpot force

\(\overline{{F}}\) :

Parallel-bond force

\(\overline{{M}}\) :

Parallel-bond moment

\({\Delta \delta }_{{{n}}}\) :

Relative normal-displacement increment

\({\Delta \delta }_{{{s}}}\) :

Relative shear-displacement increment

\({{\varDelta}}\theta_{{{t}}}\) :

Relative twist-rotation increment

\({{\varDelta}}\theta_{{{b}}}\) :

Relative bend-rotation increment

\(\overline{{A}}\) :

Cross-sectional area

I :

Moment of inertia of the cross-sectional area about the neutral axis of the beam

\(\overline{{I}}\) :

Moment of inertia of the parallel-bond cross section about the line passing through \(X_{c} \) and in the direction of \(\overline{M}_{b}\)

J :

Polar moment of inertia of the cross-sectional area about the axis of the shaft

\(\overline{{J}}\) :

Polar moment of inertia of the parallel-bond cross section about the line passing through \(X_{c}\) and in the direction of \(\hat{n}_{c}\)

\({{k}}^{{{n}}}\) :

Normal stiffness [force/displacement] at the contact

\({{k}}^{{{s}}}\) :

Shear stiffness [force/displacement] at the contact

E :

Young’s modulus

\({{E}}_{{{f}}}\) :

Fiber Young’s modulus

\({{E}}_{{{m}}}\) :

Matrix Young’s modulus

\({{E}}_{{{L}}}\) :

Young’s modulus in fiber direction

\({{E}}_{{{T}}}\) :

Young’s modulus in direction perpendicular to the fiber direction

G :

Shear modulus

\({{G}}_{{{{LT}}}}\) :

Shear modulus in LT plane

\({{G}}_{{T{T}^{\prime}}}\) :

Shear modulus in \(T{T}^{\prime}\) plane

\({{\upsilon}}_{{{f}}}\) :

Fiber Poisson’s ratio

\({{x}}_{{{i}}}\) :

Position of the particle’s center of mass

\(\dot{{x}}_{{{i}}}\) :

The velocity of the particle

\(\ddot{x}_{{{i}}}\) :

Acceleration of the particle

\({{V}}_{{{i}}}^{{{s}}}\) :

Shear component of contact velocity

\({{\omega}}_{{{i}}}\) :

Angular velocity of the particle

\(\dot{{\omega }}_{{{i}}}\) :

Angular acceleration of the particle

\({{g}}_{{{i}}}\) :

Body force acceleration vector (e.g., gravity loading)

\({{X}}_{{{c}}}\) :

Location of contact plane

\({{X}}_{{{f}}}\) :

The point on the wall facet closest to \(X^{\left( 1 \right)}\)

\({{X}}_{{{w}}}\) :

The center of rotation of the wall

\({{X}}^{{\left( {{b}} \right)}}\) :

The center of the ball b

\({{R}}^{{\left( {{b}} \right)}}\) :

The radius of the ball b

\({{g}}_{{{c}}}\) :

Contact gap

d :

Distance between the ball centers

\(\hat{{n}}_{{{c}}}\) :

Normal direction of contact plane

\(\hat{{s}}_{{{c}}}\) :

Coordinate system of contact plane (s axis) (2D model: \(\hat{{s}}_{{{c}}} \equiv { } - \hat{k}\))

\(\hat{{t}}_{{{c}}}\) :

Coordinate system of contact plane (t axis)

ξ :

A measure of the fiber reinforcement based on its geometry, its arrangement, and the test type

\(\overline{{\beta }}\) :

Moment-contribution factor

References

  1. Ismail Y, Yang D, Ye J (2016) Discrete element method for generating random fiber distributions in micromechanical models of fiber reinforced composite laminates. Compos B Eng 90:485–492

    Article  Google Scholar 

  2. Yu M, Yang B, Chi Y, Xie J, Ye J (2020) Experimental study and DEM modeling of bolted composite lap joints subjected to tension. Compos B Eng 190:107951

    Article  Google Scholar 

  3. Leclerc W, Haddad H, Guessasma M (2019) DEM-FEM coupling method to simulate thermally induced stresses and local damage in composite materials. Int J Solids Struct 160:276–292

    Article  Google Scholar 

  4. Wolff MF, Salikov V, Antonyuk S, Heinrich S, Schneider GA (2013) Three-dimensional discrete element modeling of micromechanical bending tests of ceramic–polymer composite materials. Powder Technol 248:77–83

    Article  Google Scholar 

  5. Yan H, Zhang J, Zhai P (2014) Discrete element modeling on creep behavior of PI/SiO2 composite. Mater Res Innovat 18(sup4): S4-1057–S4-1061.

  6. Wan L, Ismail Y, Yang D, Sheng Y (2018) Progressive failure mechanism of FRP composite laminates with discrete element method. American Society for Composites 2018.

  7. Wan L, Ismail Y, Sheng Y, Wu K, Yang D (2021) Progressive failure analysis of CFRP composite laminates under uniaxial tension using a discrete element method. J Compos Mater 55(8):1091–1108

    Article  Google Scholar 

  8. Khanal M, Raghuramakrishnan R, Tomas J (2008) Discrete element method simulation of effect of aggregate shape on fragmentation of particle composite. Chem Eng Technol Ind Chem-Plant Equip-Process Eng-Biotechnol 31(10):1526–1531

    Google Scholar 

  9. I. C. Group, “PFC version 6.0 user manual,” ed: Itasca Consulting Group Minneapolis, 2019.

  10. Zhao T, Dai F, Xu N, Liu Y, Xu Y (2015) A composite particle model for non-spherical particles in DEM simulations. Granular Matter 17(6):763–774

    Article  Google Scholar 

  11. Le B, Dau F, Pham D, Tran T (2021) Discrete element modeling of interface debonding behavior in composite material: application to a fragmentation test. Compos Struct 272:114170

    Article  Google Scholar 

  12. Yang D, Sheng Y, Ye J, Tan Y (2010) Discrete element modeling of the microbond test of fiber reinforced composite. Comput Mater Sci 49(2):253–259

    Article  Google Scholar 

  13. Sheng Y, Yang D, Tan Y, Ye J (2010) Microstructure effects on transverse cracking in composite laminae by DEM. Compos Sci Technol 70(14):2093–2101

    Article  Google Scholar 

  14. Haddad H, Leclerc W, Guessasma M, Pélegris C, Ferguen N, Bellenger E (2015) Application of DEM to predict the elastic behavior of particulate composite materials. Granular Matter 17(4):459–473

    Article  Google Scholar 

  15. Leclerc W, Haddad H, Guessasma CM (2016) On a numerical DEM-based approach for assessing thermoelastic properties of composite materials. In: The 7th International Conference on Computational Methods (ICCM2016).

  16. Ismail Y, Yang D, Ye J (2016) A DEM model for visualizing damage evolution and predicting failure envelope of composite laminae under biaxial loads. Compos B Eng 102:9–28

    Article  Google Scholar 

  17. Leclerc W, Haddad H, Guessasma M (2018) On a discrete element method to simulate thermal-induced damage in 2D composite materials. Comput Struct 196:277–291

    Article  Google Scholar 

  18. Haddad H, Leclerc W, Guessasma M (2018) Application of the discrete element method to study heat transfer by conduction in particulate composite materials. Modell Simul Mater Sci Eng 26(8):085010

    Article  Google Scholar 

  19. Zha X, Wan C, Fan Y, Ye J (2013) Discrete element modeling of metal skinned sandwich composite panel subjected to uniform load. Comput Mater Sci 69:73–80

    Article  Google Scholar 

  20. Maheo L, Dau F, Andre D, Charles J-L, Iordanoff I (2015) A promising way to model cracks in composite using discrete element method. Compos B Eng 71:193–202

    Article  Google Scholar 

  21. Le BD, Dau F, Charles J-L, Iordanoff I (2016) Modeling damages and cracks growth in composite with a 3D discrete element method. Compos B Eng 91:615–630

    Article  Google Scholar 

  22. Dau F, Girardot J, Le BD (2016) A promising way to model damage in composite and dry fabrics using a Discrete Element Method (DEM). Appl Mech Mater 828:119–136

    Article  Google Scholar 

  23. Moukadiri D et al (2019) Halo approach to evaluate the stress distribution in 3D discrete element method simulation: validation and application to flax/bio based epoxy composite. Modell Simul Mater Sci Eng 27(6):065005

    Article  Google Scholar 

  24. Alhajj Hassan G, Leclerc W, Pelegris C, Guessasma M, Bellenger E (2020) On the suitability of a 3D discrete element method to model the composite damage induced by thermal expansion mismatch. Comput Particle Mech 7(4):679–698.

  25. Ammar A, Leclerc W, Guessasma M, Haddar N (2021) Discrete element approach to simulate debonding process in 3D short glass fiber composite materials: Application to PA6/GF30. Compos Struct 270:114035

    Article  Google Scholar 

  26. Hu G, Zhou B, Fu R, Guo Y, Han C, Lv K (2021) Discrete element modeling of the compression molding of polymer–crystal composite particles. Powder Technol 390:112–125

    Article  Google Scholar 

  27. Wang H, Li J, Hu G, Zhou B, Guo Y (2021) Effect of binder coatings on the fracture behavior of polymer–crystal composite particles using the discrete element method. Coatings 11(9):1075

    Article  Google Scholar 

  28. Berthelot J-M (1999) Composite materials: mechanical behavior and structural analysis. Springer, New York.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan Assaee.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest. Also, this research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paziresh, A., Assaee, H. Identical calibration approach in discrete element method for modeling mechanical properties in fiber- and particle-reinforced composites. Comp. Part. Mech. (2024). https://doi.org/10.1007/s40571-024-00749-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40571-024-00749-4

Keywords

Navigation