Skip to main content
Log in

Mechanical response and AE characteristics of heterogeneous rock under dynamic compression tests based on moment tensor analysis

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Rock heterogeneity significantly influences a rock mass's dynamic mechanical behavior and fracture evolution. This study focused on creating heterogeneous sandstone models using the discrete element method and conducting split-Hopkinson pressure bar tests. The results show that heterogeneity has a significant impact on the dynamic mechanical properties of rock. The dynamic compressive strength, elastic modulus, and heterogeneity coefficient exhibit a negative correlation. The weakening effect of heterogeneity on rock strength is greater than its effect on stiffness. Increasing heterogeneity leads to a decrease in strain and kinetic energy at the peak stress point, while friction energy initially decreases and then increases. Rock heterogeneity reduces impact resistance and the occurrence of rock bursts. Moreover, heterogeneity rocks exhibit significant strain rate effects. Acoustic emission (AE) moment tensor analysis reveals that under impact load, tensile or shear fractures are the main sources of failure in heterogeneous rock samples. With increased heterogeneity, tensile fractures gradually transform into compression fractures, while shear fractures slowly increase. Shear fractures have relatively high strength compared to other AE types. The characteristics of acoustic emissions in rock samples follow a roughly normal distribution, and the b value of AE gradually increases with higher heterogeneity. These findings provide valuable insights into the dynamic mechanical response and fracture mechanism of rocks and have practical applications in engineering design and rock disaster prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig.17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Dai S, Gao W, Wang C, Xiao T (2019) Damage evolution of heterogeneous rocks under uniaxial compression based on distinct element method. Rock Mech Rock Eng 52:2631–2647. https://doi.org/10.1007/s00603-018-1689-5

    Article  Google Scholar 

  2. Cheng HM, Yang XB, Pei YY, Song YM (2022) Quantitative investigation on the heterogeneity of deformation fields in sandstone pre-existing cracks during damage evolution. Sci Rep. https://doi.org/10.1038/s41598-022-09600-3

    Article  Google Scholar 

  3. Xu T, Tang CA, Zhao J, Li LC, Heap MJ (2012) Modelling the time-dependent rheological behaviour of heterogeneous brittle rocks. Geophys J Int 189:1781–1796. https://doi.org/10.1111/j.1365-246X.2012.05460.x

    Article  Google Scholar 

  4. Yang BC, Xue L, Wang MM (2018) Evolution of the shape parameter in the Weibull distribution for brittle rocks under uniaxial compression. Arab J Geosci. https://doi.org/10.1007/s12517-018-3689-x

    Article  Google Scholar 

  5. Yang BB, Cao XS, Han TL, Li PF, Shi JP (2022) Effect of heterogeneity on the extension of ubiquitiformal cracks in rock materials. Fract Fract. https://doi.org/10.3390/fractalfract6060317

    Article  Google Scholar 

  6. Zhang T, Yu LY, Li J, Ma LJ, Su HJ, Zhang MW, Xu XL, Peng YX (2022) Numerical investigation of the effects of the micro-parameters of the transgranular contact on the mechanical response of granite. Theor Appl Fract Mech. https://doi.org/10.1016/j.tafmec.2022.103259

    Article  Google Scholar 

  7. Yin TB, Wang P, Li XB, Wu BB, Tao M, Shu RH (2016) Determination of dynamic flexural tensile strength of thermally treated laurentian granite using semi-circular specimens. Rock Mech Rock Eng 49:3887–3898. https://doi.org/10.1007/s00603-016-0920-5

    Article  Google Scholar 

  8. Silva RA, Ceia M, Missagia R, Neto IAL (2019) Analysis of elastic velocities behavior and porosity in carbonates submitted to external pressure variation. J Appl Geophys 166:10–21. https://doi.org/10.1016/j.jappgeo.2019.04.013

    Article  Google Scholar 

  9. Yang XJ, Wang JM, Zhu C, He MC, Gao Y (2019) Effect of wetting and drying cycles on microstructure of rock based on SEM. Environ Earth Sci. https://doi.org/10.1007/s12665-019-8191-6

    Article  Google Scholar 

  10. Cai YY, Yu J, Fu GF, Li H (2016) Experimental investigation on the relevance of mechanical properties and porosity of sandstone after hydrochemical erosion. J Mt Sci 13:2053–2068. https://doi.org/10.1007/s11629-016-4007-2

    Article  Google Scholar 

  11. Li H, Yang CH, Ding XL, William NT, Yin HW, Zhang SN (2019) Weibull linear parallel bond model (WLPBM) for simulating micro-mechanical characteristics of heterogeneous rocks. Eng Anal Bound Elem 108:82–94. https://doi.org/10.1016/j.enganabound.2019.07.018

    Article  Google Scholar 

  12. Li A, Shao GJ, Su JB, Sun Y, Yu TT, Shi HG (2018) Influence of heterogeneity on mechanical and AE behaviours of stratified rock specimens. Eur J Environ Civ Eng 22:s381–s414. https://doi.org/10.1080/19648189.2017.1373709

    Article  Google Scholar 

  13. Li H, Yang J, Han Y, Yang CH, Daemen JJK, Li P (2019) Weibull grain-based model (W-GBM) for simulating heterogeneous mechanical characteristics of salt rock. Eng Anal Bound Elem 108:227–243. https://doi.org/10.1016/j.enganabound.2019.09.001

    Article  MathSciNet  Google Scholar 

  14. Wang JT, Zuo JP (2020) Numerical simulation on effect of heterogeneity on mode I fracture characteristics of rock. J Cent South Univ 27:3063–3077. https://doi.org/10.1007/s11771-020-4529-1

    Article  Google Scholar 

  15. Li XF, Li HB, Zhao Y (2017) 3D polycrystalline discrete element method (3PDEM) for simulation of crack initiation and propagation in granular rock. Comput Geotech 90:96–112. https://doi.org/10.1016/j.compgeo.2017.05.023

    Article  Google Scholar 

  16. Pakzad R, Wang SY, Sloan SW (2020) Three-dimensional finite element simulation of fracture propagation in rock specimens with pre-existing fissure(s) under compression and their strength analysis. Int J Numer Anal Methods Geomech 44:1472–1494. https://doi.org/10.1002/nag.3071

    Article  Google Scholar 

  17. Li SC, Li GY (2010) Effect of heterogeneity on mechanical and AE characteristics of rock specimen. J Cent South Univ Technol 17:1119–1124. https://doi.org/10.1007/s11771-010-0605-2

    Article  Google Scholar 

  18. Fathipour-Azar H, Wang JF, Jalali SME, Torabi SR (2020) Numerical modeling of geomaterial fracture using a cohesive crack model in grain-based DEM. Comput Part Mech 7:645–654. https://doi.org/10.1007/s40571-019-00295-4

    Article  Google Scholar 

  19. Hu XJ, Xie N, Zhu QZ, Chen L, Li PC (2020) Modeling damage evolution in heterogeneous granite using digital image-based grain-based model. Rock Mech Rock Eng 53:4925–4945. https://doi.org/10.1007/s00603-020-02191-3

    Article  Google Scholar 

  20. Manouchehrian A, Cai M (2016) Influence of material heterogeneity on failure intensity in unstable rock failure. Comput Geotech 71:237–246. https://doi.org/10.1016/j.compgeo.2015.10.004

    Article  Google Scholar 

  21. Xu Y, Yao W, Xia KW (2020) Numerical study on tensile failures of heterogeneous rocks. J Rock Mech Geotech Eng 12:50–58. https://doi.org/10.1016/j.jrmge.2019.10.002

    Article  Google Scholar 

  22. Feng P, Xu Y, Dai F (2021) Effects of dynamic strain rate on the energy dissipation and fragment characteristics of cross-fissured rocks. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2020.104600

    Article  Google Scholar 

  23. Liu Y, Dai F, Pei PD (2021) A wing-crack extension model for tensile response of saturated rocks under coupled static-dynamic loading. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2021.104893

    Article  Google Scholar 

  24. Wu YZ, Sun ZY, Fu YK (2022) Mechanical properties and energy dissipation law of coal samples with different length-diameter ratios under three-dimensional dynamic and static loading. Chin J Rock Mech Eng 41:877–888. https://doi.org/10.13722/j.cnki.jrme.2021.0920

    Article  Google Scholar 

  25. Wang CL, Zhou BK, Li CF, Cao C, Sui QR, Zhao GM, Yu WJ, Chen Z, Wang Y, Liu B, Lu H (2022) Experimental investigation on the spatio-temporal-energy evolution pattern of limestone fracture using AE monitoring. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2022.104787

    Article  Google Scholar 

  26. Liu PX, Chen SY, Guo YS, Li PC (2014) Moment tensor inversion of AE. Chin J Geophys Chin Ed 57:858–866. https://doi.org/10.6038/cjg20140315

    Article  Google Scholar 

  27. Zafar S, Hedayat A, Moradian O (2022) Evolution of tensile and shear cracking in crystalline rocks under compression. Theor Appl Fract Mech. https://doi.org/10.1016/j.tafmec.2022.103254

    Article  Google Scholar 

  28. Luo Y, Wang G, Li XP, Liu TT, Mandal AK, Xu MN, Xu K (2020) Analysis of energy dissipation and crack evolution law of sandstone under impact load. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2020.104359

    Article  Google Scholar 

  29. Zhou ZL, Zhou J, Zhao Y, Chen LJ, Li CJ (2021) Microscopic failure mechanism analysis of rock under dynamic brazilian test based on ae and moment tensor simulation. Front Phys. https://doi.org/10.3389/fphy.2020.592483

    Article  Google Scholar 

  30. Wang HC, Zhao J, Li J, Wang HJ, Braithwaite CH, Zhang QB (2022) Fracturing and AE characteristics of matrix-inclusion rock types under dynamic Brazilian testing. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2022.105164

    Article  Google Scholar 

  31. Hazzard JF, Young RP (2002) Moment tensors and micromechanical models. Tectonophysics 356:181–197. https://doi.org/10.1016/s0040-1951(02)00384-0

    Article  Google Scholar 

  32. Hazzard JF, Young RP (2004) Dynamic modelling of induced seismicity. Int J Rock Mech Min Sci 41:1365–1376. https://doi.org/10.1016/j.ijrmms.2004.09.005

    Article  Google Scholar 

  33. Baud P, Wong TF, Zhu W (2014) Effects of porosity and crack density on the compressive strength of rocks. Int J Rock Mech Min Sci 67:202–211. https://doi.org/10.1016/j.ijrmms.2013.08.031

    Article  Google Scholar 

  34. Zhai MY, Xue L, Bu FC, Yang BC, Ding H (2022) Microcracking behaviors and AE characteristics of granite subjected to direct shear based on a novel grain-based model. Comput Geotech. https://doi.org/10.1016/j.compgeo.2022.104955

    Article  Google Scholar 

  35. Yoon JS, Stephansson O, Zang A, Min KB, Lanaro F (2017) Discrete bonded particle modelling of fault activation near a nuclear waste repository site and comparison to static rupture earthquake scaling laws. Int J Rock Mech Min Sci 98:1–9. https://doi.org/10.1016/j.ijrmms.2017.07.008

    Article  Google Scholar 

  36. Zhang Q, Zhang XP, Yang SQ (2022) Numerical Study of fracture failure nature around the circular and horseshoe openings using the bonded-particle model. Geophys J Int 232:725–737. https://doi.org/10.1093/gji/ggac360

    Article  Google Scholar 

  37. Bai QS, Konietzky H, Ding ZW, Cai W, Zhang C (2021) A displacement-dependent moment tensor method for simulating fault-slip induced seismicity. Geomech Geophys Geo-Energy Geo-Resour. https://doi.org/10.1007/s40948-021-00269-y

    Article  Google Scholar 

  38. Zhai MY, Xue L, Chen HR, Xu C, Cui Y (2021) Effects of shear rates on the damaging behaviors of layered rocks subjected to direct shear: Insights from AE characteristics. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2021.108046

    Article  Google Scholar 

  39. Hu XJ, Bian K, Liu J, Chen M, Cen Y, Liu ZP (2021) Particle flow simulation of the effect of particle size distribution of granite crystal on AE characteristics. J China Coal Soc 46:721–730. https://doi.org/10.13225/j.cnki.jccs.2021.0581

    Article  Google Scholar 

  40. Xu GW, Hu XY, Tang R, Hou ZK (2022) Fracture evolution of transversely isotropic rocks with a pre-existing flaw under compression tests based on moment tensor analysis. Acta Geotech 17:169–203. https://doi.org/10.1007/s11440-021-01214-9

    Article  Google Scholar 

  41. Yuan GT, Zhang MW, Zhang K, Wei J, Tian ZC, Liu BL (2023) Dynamic mechanical response characteristics and cracking behavior of randomly distributed cracked sandstone. Comput Part Mech. https://doi.org/10.1007/s40571-023-00612-y

    Article  Google Scholar 

  42. Bahrani N, Kaiser PK (2016) Numerical investigation of the influence of specimen size on the unconfined strength of defected rocks. Comput Geotech 77:56–67. https://doi.org/10.1016/j.compgeo.2016.04.004

    Article  Google Scholar 

  43. Huang YH, Yang SQ, Tian WL, Wu SY (2022) Experimental and DEM Study on failure behavior and stress distribution of flawed sandstone specimens under uniaxial compression. Theor Appl Fract Mech. https://doi.org/10.1016/j.tafmec.2022.103266

    Article  Google Scholar 

  44. Shi H, Song L, Zhang HQ, Chen WL, Lin HS, Li DQ, Wang GZ, Zhao HY (2022) Experimental and numerical studies on progressive debonding of grouted rock bolts. Int J Min Sci Technol 32:63–74. https://doi.org/10.1016/j.ijmst.2021.10.002

    Article  Google Scholar 

  45. Liu HL, Wang PT, Yang TH, Xu T, Yu QL, Xia D (2015) AE characteristics of granite uniaxial compression fracture process based on discrete element method. J China Coal Soc 40:1790–1795. https://doi.org/10.13225/j.cnki.jccs.2014.1779

    Article  Google Scholar 

  46. Cheng AP, Shu PF, Deng DQ, Zhou CS, Huang SB, Ye ZY (2021) Microscopic AE simulation and fracture mechanism of cemented tailings backfill based on moment tensor theory. Constr Build Mater. https://doi.org/10.1016/j.conbuildmat.2021.125069

    Article  Google Scholar 

  47. Zhao Y, Yang TH, Zhang PH, Xu HY, Wang SH (2020) Inversion of seepage channels based on mining-induced microseismic data. Int J Rock Mech Min Sci 1:26. https://doi.org/10.1016/j.ijrmms.2019.104180

    Article  Google Scholar 

  48. Zhao Y, Zhao GY, Zhou J, Ma J, Cai X (2021) Failure mechanism analysis of rock in particle discrete element method simulation based on moment tensors. Comput Geotech. https://doi.org/10.1016/j.compgeo.2021.104215

    Article  Google Scholar 

  49. Feignier B, Young RP (1992) Moment tensor inversion of induced microseismic events: evidence of non-shear failures in the − 4 < M < − 2 moment magnitude range. Geophys Res Lett 19:1503–1506. https://doi.org/10.1029/92GL01130

    Article  Google Scholar 

  50. Liu YC, Li SL (2021) Tang, Research on the improvement and application of the criterion of the source mechanism solution type of rock mass fracture. Rock Soil Mech 42:1335–1344. https://doi.org/10.16285/j.rsm.2020.1228

    Article  Google Scholar 

  51. Ohtsu M (1995) AE theory for moment tensor analysis. Res Nondestr Eval 6:169–184. https://doi.org/10.1007/BF01606380

    Article  Google Scholar 

  52. Zhao Y, Yang TH, Zhang PH, Xu HY, Zhou JR, Yu QL (2019) Method for generating a discrete fracture network from microseismic data and its application in analyzing the permeability of rock masses: a case study (February, 10.1007/s00603-018-1712-x, 2019). Rock Mech Rock Eng 52:2021–2021. https://doi.org/10.1007/s00603-019-1742-z

    Article  Google Scholar 

  53. Manouchehrian A, Sharifzadeh M, Marji MF, Gholamnejad J (2014) A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression. Arch Civ Mech Eng 14:40–52. https://doi.org/10.1016/j.acme.2013.05.008

    Article  Google Scholar 

  54. Marji MF (2014) A bonded particle model for analysis of the flaw orientation effect on crack propagation mechanism in brittle materials under compression. Arch Civ Mech Eng 14:40–52. https://doi.org/10.1088/0953-4075/32/13/101

    Article  Google Scholar 

  55. Castro-Filgueira U, Alejano LR, Arzúa J, Ivars DM (2017) Sensitivity analysis of the micro-parameters used in a PFC analysis towards the mechanical properties of rocks. Procedia Eng 191:488–495. https://doi.org/10.1016/j.proeng.2017.05.208

    Article  Google Scholar 

  56. Chen HR, Qin SQ, Xue L (2017) Characterization of rock brittle failure and application range of Weibull distribution. Progress Geophys 32:2200–2206. https://doi.org/10.6038/pg20170548

    Article  Google Scholar 

  57. Li XB, Zou Y, Zhou ZL (2014) Numerical simulation of the rock SHPB test with a special shape striker based on the discrete element method. Rock Mech Rock Eng 47:1693–1709. https://doi.org/10.1007/s00603-013-0484-6

    Article  Google Scholar 

  58. Zhang QB, Zhao J (2014) A review of dynamic experimental techniques and mechanical behaviour of rock materials. Rock Mech Rock Eng 47:1411–1478. https://doi.org/10.1007/s00603-013-0463-y

    Article  Google Scholar 

  59. Xie HP, Li LY, Ju Y, Peng RD, Yang YM (2011) Energy analysis for damage and catastrophic failure of rocks. Sci China Technol Sci 54:199–209. https://doi.org/10.1007/s11431-011-4639-y

    Article  Google Scholar 

  60. Gong FQ, Yan JY, Li XB, Luo S (2019) A peak-strength strain energy storage index for rock burst proneness of rock materials. Int J Rock Mech Min Sci 117:76–89. https://doi.org/10.1016/j.ijrmms.2019.03.020

    Article  Google Scholar 

  61. Zhao TB, Yin YC, Tan YL (2014) Microscopic simulation test of coal rock burst tendency based on particle flow theory. J Res 39:280–285. https://doi.org/10.13225/j.cnki.jccs.2013.2017

    Article  Google Scholar 

  62. Yan ZL, Dai F, Liu Y, Du HB (2020) Experimental investigations of the dynamic mechanical properties and fracturing behavior of cracked rocks under dynamic loading. B Eng Geol Environ 79:5535–5552. https://doi.org/10.1007/s10064-020-01914-8

    Article  Google Scholar 

  63. Haeri H, Sarfarazi V, Fatehi Marji M (2022) Static and dynamic response of rock engineering models. Iran J Sci Technol Trans Civ Eng 46:327–341. https://doi.org/10.1007/s40996-020-00564-w

    Article  Google Scholar 

  64. Wu C, Gong FQ, Luo Y (2021) A new quantitative method to identify the crack damage stress of rock using AE detection parameters. B Eng Geol Environ 80:519–531. https://doi.org/10.1007/s10064-020-01932-6

    Article  Google Scholar 

  65. Liu J, Ma FS, Guo J, Zhou TT, Song YW, Li FR (2022) Numerical simulation of failure behavior of brittle heterogeneous rock under uniaxial compression test. Materials. https://doi.org/10.3390/ma15197035

    Article  Google Scholar 

  66. Lundberg B (1976) A split Hopkinson bar study of energy absorption in dynamic rock fragmentation. Int J Rock Mech Min Sci Geomech Abstr 13:187–197. https://doi.org/10.1016/0148-9062(76)91285-7

    Article  Google Scholar 

  67. Zhang MT, Wang W, Wang QZ (2021) study on dynamic failure process and strain-damage evolution law of sandstone based on SHPB experiment. Explos Shock Waves 41:40–53. https://doi.org/10.11883/bzycj-2020-0288

    Article  Google Scholar 

  68. Zhou X, Xie YJ, Long GC, Zeng XH, Li JT, Li N, Wang F, Umar HA (2023) Influence of end friction confinement on dynamic mechanical properties and damage evolution of concrete by coupled DEM-FDM method. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2023.109150

    Article  Google Scholar 

  69. Liu XL, Liu Z, Li XB, Gong FQ, Du K (2020) Experimental study on the effect of strain rate on rock AE characteristics. Int J Rock Mech Min Sci. https://doi.org/10.1016/j.ijrmms.2020.104420

    Article  Google Scholar 

  70. Fu JW, Haeri H, Sarfarazi V, Naderi AA, Marji MF, Xu LG (2023) Influence of arch shaped notch angle, length and opening on the failure mechanism of rock like material and acoustic emission properties: experimental test and numerical simulation. Theor Appl Fract Mech. https://doi.org/10.1016/j.tafmec.2023.103879

    Article  Google Scholar 

  71. Yuan GT, Zhang MW, Zhang K, Duan HY, Jia L, Liu BL (2023) Strain rate effect on the fracture evolution of sandstones under quasi-static loading conditions: Insights from acoustic emission characteristics. Eng Fract Mech 290:109465. https://doi.org/10.1016/j.engfracmech.2023.109465

    Article  Google Scholar 

  72. Heinze T, Galvan B, Miller SA (2015) A new method to estimate location and slip of simulated rock failure events. Tectonophysics 651:35–43. https://doi.org/10.1016/j.tecto.2015.03.009

    Article  Google Scholar 

  73. Liu XL, Li XB, Hong L, Yin TB, Rao M (2015) AE characteristics of rock under impact loading. J Cent South Univ 22:3571–3577. https://doi.org/10.1007/s11771-015-2897-8

    Article  Google Scholar 

  74. Guo TY, Zhao Q (2022) AE characteristics during the microcracking processes of granite, marble and sandstone under mode I loading. Rock Mech Rock Eng 55:5467–5489. https://doi.org/10.1007/s00603-022-02937-1

    Article  Google Scholar 

  75. Amini MS, Sarfarazi V, Hoori MM, Jahanmiri S, Wang X (2023) Effects of un-parallel notches on the granite fracture properties and acoustic emission phenomena under biaxial test: PFC computation and experimental verification. Mech Adv Mater Struct. https://doi.org/10.1080/15376494.2023.2207179

    Article  Google Scholar 

  76. Li BQ, Einstein HH (2020) Normalized radiated seismic energy from laboratory fracture experiments on opalinus clayshale and barre granite. J Geophys Res-Sol Earth. https://doi.org/10.1029/2019JB018544

    Article  Google Scholar 

  77. Zhang H, Chen L, Chen SG, Sun JC, Yang JS (2018) The spatiotemporal distribution law of microseismic events and rockburst characteristics of the deeply buried tunnel group. Energies. https://doi.org/10.3390/en11123257

    Article  Google Scholar 

  78. Lu CP, Dou LM, Wang YF, Du JT (2010) Microseismic effect of coal burst failure induced by hard roof. Chin J Geophys 53:450–456. https://doi.org/10.3969/j.issn.0001-5733.2010.02.024

    Article  Google Scholar 

  79. Jiang FX, Ye GX, Wang CW, Zhang DY (2008) Application of high precision microseismic monitoring technology in coal mine water inrush monitoring. Chin J Rock Mech Eng 202:1932–1938. https://doi.org/10.3321/j.issn:1000-6915.2008.09.023

    Article  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Natural Science Foundation of China (No. 52074260); Fundamental Research Funds for the Central Universities of China (No. 2019QNA26).

Author information

Authors and Affiliations

Authors

Contributions

GY did conceptualization, methodology, investigation, data curation, validation, formal analysis, and writing. MZ done conceptualization, methodology, writing, and supervision. KZ was involved in methodology, investigation, and data curation. Zhuangcai Tian supervised and validated the study. HD done methodology and investigation. BL investigated the study.

Corresponding author

Correspondence to Mingwei Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, G., Zhang, M., Zhang, K. et al. Mechanical response and AE characteristics of heterogeneous rock under dynamic compression tests based on moment tensor analysis. Comp. Part. Mech. 11, 815–838 (2024). https://doi.org/10.1007/s40571-023-00655-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-023-00655-1

Keywords

Navigation