Skip to main content
Log in

Analysis of cone-shaped projectile behavior during penetration into granular particles using the discrete element method

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In this study, the penetration behavior of a cone-shaped projectile into granular particles was analyzed using simulations based on the discrete element method (DEM). The rate-independent friction force and inertial drag force proportional to the squared projectile velocity are the principal force terms that interact between the projectile and the particles. Simulation results show that the friction force and inertial drag force follow the power law with respect to penetration depth and have changing tendencies before and after the complete penetration of the projectile into particles. Based on the results, a mathematical model is proposed to simplify the force terms using the penetration depth, projectile tip angle, and projectile length. The simplified force terms are physically explained using changes in the projectile–particle contact area and the fluidization of particles during dynamic collisions. Experiments were conducted using steel projectiles and ABS plastic beads to verify the accuracy of the mathematical model for real-life cases. The results of this study validate the proposed mathematical model of the rate-independent friction force and inertial drag force regarding the cone-shaped projectile behavior during penetration into granular particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Horabik J, Molenda M (2016) Parameters and contact models for DEM simulations of agricultural granular materials: A review. Biosys Eng 147:206–225. https://doi.org/10.1016/j.biosystemseng.2016.02.017

    Article  Google Scholar 

  2. Lim NH, Kim KJ, Bae HU, Kim S (2020) DEM analysis of track ballast for track ballast-wheel interaction simulation. Appl Sci 10(8):2717. https://doi.org/10.3390/app10082717

    Article  Google Scholar 

  3. Zhou L, Gao J, Cheng P, Hu C (2020) Study on track-soil traction using discrete element method simulation and soil bin test. AIP Adv 10(7):075307. https://doi.org/10.1063/5.0016448

    Article  Google Scholar 

  4. Mudarisov S, Farkhutdinov I, Khamaletdinov R, Khasanov E, Mukhametdinov A (2022) Evaluation of the significance of the contact model particle parameters in the modelling of wet soils by the discrete element method. Soil and Tillage Res 215:105228. https://doi.org/10.1016/j.still.2021.105228

    Article  Google Scholar 

  5. Nordstrom KN, Lim E, Harrington M, Losert W (2014) Granular dynamics during impact. Phys Rev Lett 112(22):228002. https://doi.org/10.1103/PhysRevLett.112.228002

    Article  Google Scholar 

  6. Xu Y, Padding JT, Kuipers JAM (2014) Numerical investigation of the vertical plunging force of a spherical intruder into a prefluidized granular bed. Phys Rev E 90(6):062203. https://doi.org/10.1103/PhysRevE.90.062203

    Article  Google Scholar 

  7. Zaidi AA, Müller C (2017) Vertical drag force acting on intruders of different shapes in granular media. In: EPJ Web of Conferences. Vol.140. EDP Sciences. pp 02011. https://doi.org/10.1051/epjconf/201714002011

  8. Roth LK (2021) Constant speed penetration into granular materials: drag forces from the quasistatic to inertial regime. Granular Matter 23(3):1–17. https://doi.org/10.1007/s10035-021-01106-5

    Article  Google Scholar 

  9. Feng Y, Blumenfeld R, Liu C (2019) Support of modified Archimedes’ law theory in granular media. Soft Matter 15(14):3008–3017. https://doi.org/10.1039/C8SM02480D

    Article  Google Scholar 

  10. Cheng B, Yu Y, Baoyin H (2018) Collision-based understanding of the force law in granular impact dynamics. Phys Rev E 98(1):012901. https://doi.org/10.1103/PhysRevE.98.012901

    Article  Google Scholar 

  11. Hou M, Peng Z, Liu R, Lu K, Chan CK (2005) Dynamics of a projectile penetrating in granular systems. Phys Rev E 72(6):062301. https://doi.org/10.1103/PhysRevE.72.062301

    Article  Google Scholar 

  12. Ogawa K, Takeda S, Kobayashi H (2015) Dynamic simulations of projectile penetration into granular medium. Mech Eng J 2(1):14–00427. https://doi.org/10.1299/mej.14-00427

    Article  Google Scholar 

  13. Zaidi AA (2018) Study of particle inertia effects on drag force of finite sized particles in settling process. Chem Eng Res Des 132:714–728. https://doi.org/10.1016/j.cherd.2018.02.013

    Article  Google Scholar 

  14. Chian SC, Tan BCV, Sarma A (2017) Reprint of: Projectile penetration into sand: Relative density of sand and projectile nose shape and mass. Int J Impact Eng 105:80–88. https://doi.org/10.1016/j.ijimpeng.2017.03.026

    Article  Google Scholar 

  15. Cheng B, Yu Y, Baoyin H (2017) Asteroid surface impact sampling: dependence of the cavity morphology and collected mass on projectile shape. Sci Rep 7(1):1–10. https://doi.org/10.1038/s41598-017-10681-8

    Article  Google Scholar 

  16. Newhall KA, Durian DJ (2003) Projectile-shape dependence of impact craters in loose granular media. Phys Rev E 68(6):060301. https://doi.org/10.1103/PhysRevE.68.060301

    Article  Google Scholar 

  17. Zaidi AA (2020) Granular drag force during immersion in dry quicksand. Powder Technol 364:986–993. https://doi.org/10.1016/j.powtec.2019.10.048

    Article  Google Scholar 

  18. Nouguier-Lehon C, Vincens E, Cambou B (2005) Structural changes in granular materials: the case of irregular polygonal particles. Int J Solids Struct 42(24–25):6356–6375. https://doi.org/10.1016/j.ijsolstr.2005.04.021

    Article  Google Scholar 

  19. Uehara JS, Ambroso MA, Ojha RP, Durian DJ (2003) Low-speed impact craters in loose granular media. Phys Rev Lett 90(19):194301. https://doi.org/10.1103/PhysRevLett.90.194301

    Article  Google Scholar 

  20. Seguin A, Bertho Y, Gondret P (2008) Influence of confinement on granular penetration by impact. Phys Rev E 78(1):010301. https://doi.org/10.1103/PhysRevE.78.010301

    Article  Google Scholar 

  21. Goldman DI, Umbanhowar P (2008) Scaling and dynamics of sphere and disk impact into granular media. Phys Rev E 77(2):021308. https://doi.org/10.1103/PhysRevE.77.021308

    Article  MathSciNet  Google Scholar 

  22. Hou M, Peng Z, Liu R, Lu K, Chan CK (2005) Dynamics of a projectile penetrating in granular systems. Phys Rev E 72(6):062301. https://doi.org/10.1103/PhysRevE.72.062301

    Article  Google Scholar 

  23. Ambroso MA, Kamien RD, Durian DJ (2005) Dynamics of shallow impact cratering. Phys Rev E 72(4):041305. https://doi.org/10.1103/PhysRevE.72.041305

    Article  Google Scholar 

  24. Katsuragi H, Durian DJ (2013) Drag force scaling for penetration into granular media. Phys Rev E 87(5):052208. https://doi.org/10.1103/PhysRevE.87.052208

    Article  Google Scholar 

  25. Katsuragi H, Durian DJ (2007) Unified force law for granular impact cratering. Nat Phys 3(6):420–423. https://doi.org/10.1038/nphys583

    Article  Google Scholar 

  26. Shen W, Zhao T, Crosta GB, Dai F, Dattola G (2022) Influence of inter-particle friction and damping on the dynamics of spherical projectile impacting onto a soil bed. Front Earth Sci 10:835271. https://doi.org/10.3389/feart.2022.835271

    Article  Google Scholar 

  27. Guo J (2018) Exact solution for depth of impact crater into granular bed. J Eng Mech 144(1):06017018. https://doi.org/10.1061

  28. Tiwari M, Mohan TK, Sen S (2014) Drag-force regimes in granular impact. Phys Rev E 90(6):062202. https://doi.org/10.1103/PhysRevE.90.062202

    Article  Google Scholar 

  29. Tsimring LS, Volfson D (2005) Modeling of impact cratering in granular media. Powders and grains 2:1215–1223

    Google Scholar 

  30. Brzinski TA III, Mayor P, Durian DJ (2013) Depth-dependent resistance of granular media to vertical penetration. Phys Rev Lett 111(16):168002. https://doi.org/10.1103/PhysRevLett.111.168002

    Article  Google Scholar 

  31. Hill G, Yeung S, Koehler SA (2005) Scaling vertical drag forces in granular media. EPL (Europhysics Letters) 72(1):137. https://doi.org/10.1209/epl/i2005-10203-3

  32. Clark AH, Behringer RP (2013) Granular impact model as an energy-depth relation. EPL (Europhysics Letters) 101(6):64001. https://doi.org/10.1209/0295-5075/101/64001

    Article  Google Scholar 

  33. Bester CS, Behringer RP (2017) Collisional model of energy dissipation in three-dimensional granular impact. Phys Rev E 95(3):032906. https://doi.org/10.1103/PhysRevE.95.032906

    Article  Google Scholar 

  34. Mishra BK, Rajamani RK (1992) The discrete element method for the simulation of ball mills. Appl Math Model 16(11):598–604. https://doi.org/10.1016/0307-904X(92)90035-2

    Article  Google Scholar 

  35. Wu CY, Cocks AC, Gillia OT, Thompson DA (2003) Experimental and numerical investigations of powder transfer. Powder Technol 138(2–3):216–228. https://doi.org/10.1016/j.powtec.2003.09.011

    Article  Google Scholar 

  36. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65. https://doi.org/10.1680/geot.1979.29.1.47

    Article  Google Scholar 

  37. Ghaboussi J, Barbosa R (1990) Three-dimensional discrete element method for granular materials. Int J Numer Anal Meth Geomech 14(7):451–472. https://doi.org/10.1002/nag.1610140702

    Article  Google Scholar 

  38. Albert R, Pfeifer MA, Barabási AL, Schiffer P (1999) Slow drag in a granular medium. Phys Rev Lett 82(1):205. https://doi.org/10.1103/PhysRevLett.82.205

    Article  Google Scholar 

  39. Van Der Meer D (2017) Impact on granular beds. Annu Rev Fluid Mech 49:463–484. https://doi.org/10.1146/annurev-fluid-010816-060213

    Article  MathSciNet  Google Scholar 

  40. Kang W, Feng Y, Liu C, Blumenfeld R (2018) Archimedes’ law explains penetration of solids into granular media. Nat Commun 9(1):1–9. https://doi.org/10.1038/s41467-018-03344-3

    Article  Google Scholar 

  41. Moghisi M, Squire PT (1981) An experimental investigation of the initial force of impact on a sphere striking a liquid surface. J Fluid Mech 108:133–146. https://doi.org/10.1017/S0022112081002036

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (No.2018R1A5A7025522).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gil Ho Yoon.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.M., Kim, T.H. & Yoon, G.H. Analysis of cone-shaped projectile behavior during penetration into granular particles using the discrete element method. Comp. Part. Mech. 11, 689–703 (2024). https://doi.org/10.1007/s40571-023-00647-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-023-00647-1

Keywords

Navigation