Skip to main content
Log in

Insights into the compressive and tensile strengths of viscocohesive–frictional particle agglomerates

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Viscocohesive–frictional particle agglomerates such as cohesive powder mixtures, clusters of cemented granular materials, and iron-ores are commonly found in civil engineering and industries. The compressive and tensile properties of these agglomerates commonly reveal complex behavior, but our understanding of their mechanical strengths is still limited. In this paper, we numerically explore the diametrical compression test of viscocohesive–frictional particle agglomerates by means of the discrete element method, where the system composes of primary spherical particles and systematically varying different values of the cohesive and viscous stress between grains. We impose different compressive downward velocities which apply on the top platen, whereas the bottom platen is immobilized, leading to different compressive and tensile responses of such agglomerates. Based on the previous definition of the dimensionless impact parameter of agglomerates impacting on a rigid plane (Vo in Phys. Rev. E 103:042902), which helps to get a unified description of both compressive and tensile strengths of viscocohesive–frictional particle agglomerates under diametrical compression test by the same quadratic increasing function form. This unified controlling can be well explained due to the unified representation of the densities, intensities, and orientations of the normal forces between grains, leading to robustly providing physical insights into the mechanical strength of agglomerates presented in civil engineering and industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Affes R, Delenne J-Y, Monerie Y, Radjai F, Topin V (2012) Tensile strength and fracture of cemented granular aggregates. Eur Phys J E 35:117

    Article  Google Scholar 

  2. Shen Z, Huang D, Wang G, Zhao Y, Jin F (2022) A mesoscale bond model for discrete element modeling of irregular cemented granular materials. Comput Geotech 152:105051

    Article  Google Scholar 

  3. Tengattini A, Nguyen GD, Viggiani G, Einav I. Micromechanically inspired investigation of cemented granular materials: part II—from experiments to modelling and back. Acta Geotechnica

  4. Nguyen T-K, Desrues J, Vo T-T, Combe G (2022) FEM x DEM multi-scale model for cemented granular materials: inter-and intra-granular cracking induced strain localisation. Int J Numer Anal Meth Geomech 46(5):1001–1025

    Article  Google Scholar 

  5. Iveson SM, Holt S, Biggs S (2000) Contact angle measurements of iron ore powders. Colloids Surf A 166(1):203–214

    Article  Google Scholar 

  6. Iveson S, Holt S, Biggs S (2004) Advancing contact angle of iron ores as a function of their hematite and goethite content: implications for pelletising and sintering. Int J Miner Process 74(1):281–287

    Article  Google Scholar 

  7. Zhu D, Pan J, Lu L, Holmes R (2015) 15—Iron ore pelletization. In: Lu L (ed) Iron Ore. Woodhead Publishing, pp 435–473

    Chapter  Google Scholar 

  8. Wang D, Servin M, Berglund T, Mickelsson K-O, Rönnbäck S (2015) Parametrization and validation of a nonsmooth discrete element method for simulating flows of iron ore green pellets. Powder Technol 283:475–487

    Article  Google Scholar 

  9. Contreras RJ, van Loo F, Douce J, Evrard M, Pirard E (2015) Advanced characterisation to investigate the effect of raw material properties on the kinetics of iron ores granulation. In: ESTAD conference, vol 288, pp 249–254

  10. Wu C-Y, Best SM, Bentham AC, Hancock BC, Bonfield W (2005) A simple predictive model for the tensile strength of binary tablets. Eur J Pharm Sci 25(2):331–336

    Article  Google Scholar 

  11. Rondet E, Delalonde M, Ruiz T, Desfours JP (2009) Identification of granular compactness during the kneading of a humidified cohesive powder. Powder Technol 191(1–2):7–12

    Article  Google Scholar 

  12. Tsoungui O, Vallet D, Charmet J-C (1999) Numerical model of crushing of grains inside two-dimensional granular materials. Powder Technol 105(1):190–198

    Article  Google Scholar 

  13. Vo T-T (2021) Scaling behavior of the tensile strength of viscocohesive granular aggregates. Phys Rev E 103:042902

    Article  MathSciNet  Google Scholar 

  14. Azéma E, Sánchez P, Scheeres DJ (2018) Scaling behavior of cohesive self-gravitating aggregates. Phys Rev E 98:030901

    Article  Google Scholar 

  15. Vo T-T, Mutabaruka P, Nezamabadi S, Delenne J-Y, Izard E, Pellenq R, Radjai F (2018) Mechanical strength of wet particle agglomerates. Mech Res Commun 92:1–7

    Article  Google Scholar 

  16. Tatsuuma M, Kataoka A, Tanaka H (2019) Tensile strength of porous dust aggregates. Astrophys J 874(2):159

    Article  Google Scholar 

  17. Horabik J, Wiacek J, Parafiniuk P, Stasiak M, Banda M, Molenda M (2019) Tensile strength of pressure-agglomerated potato starch determined via diametral compression test: discrete element method simulations and experiments. Biosys Eng 183:95–109

    Article  Google Scholar 

  18. Xiao H, Ivancic RJS, Durian DJ (2020) Strain localization and failure of disordered particle rafts with tunable ductility during tensile deformation. Soft Matter 16:8226–8236

    Article  Google Scholar 

  19. Frank X, Radjaï F, Nezamabadi S, Delenne J-Y (2020) Tensile strength of granular aggregates: Stress chains across particle phase versus stress concentration by pores. Phys Rev E 102:022906

    Article  Google Scholar 

  20. Vo T-T, Nguyen T-K (2022) The roles of the reversibility and irreversibility of capillary bonds on the impact dynamics of agglomerates. Acta Geotech 18:217–233

    Article  Google Scholar 

  21. Iveson S, Beathe J, Page N (2002) The dynamic strength of partially saturated powder compacts: the effect of liquid properties. Powder Technol 127:149–161

    Article  Google Scholar 

  22. Thornton C, Ciomocos MT, Adams MJ (2004) Numerical simulations of diametrical compression tests on agglomerates. Powder Technol 140:258–267

    Article  Google Scholar 

  23. Fu J, Reynolds GK, Adams MJ, Hounslow MJ, Salman AD (2005) An experimental study of the impact breakage of wet granules. Chem Eng Sci 60(14):4005–4018

    Article  Google Scholar 

  24. Cantor D, Azéma E, Sornay P, Radjai F (2016) Three-dimensional bonded-cell model for grain fragmentation. Comput Part Mech 1–10 (2016)

  25. Wang W, Pan J, Jin F (2019) Mechanical behavior of cemented granular aggregates under uniaxial compression. J Mater Civ Eng 31(5):04019047

    Article  Google Scholar 

  26. Vo T-T, Nezamabadi S, Mutabaruka P, Delenne J-Y, Radjai F (2020) Additive rheology of complex granular flows. Nat Commun 11:1476

    Article  Google Scholar 

  27. Mutabaruka P (2013) Numerical modeling of immersed granular media: initiation and propagation of avalanches in a fluid. Ph.D. thesis, Ph. D. thesis, Université de Montpellier

  28. Cundall PA, Strack ODL (1979) A discrete numerical model for granular assemblies. Géotechnique 29(1):47–65

    Article  Google Scholar 

  29. Herrmann HJ, Luding S (1998) Modeling granular media with the computer. Continuum Mech Thermodyn 10:189–231

    Article  MathSciNet  MATH  Google Scholar 

  30. Thornton C (1999) Quasi-static shear deformation of a soft particle system. Powder Technol 109:179–191

    Article  Google Scholar 

  31. Radjai F, Dubois F (2011) Discrete-element modeling of granular materials. Wiley-Iste

  32. Delenne J-Y, El Youssoufi MS, Cherblanc F, Bénet J-C (2004) Mechanical behaviour and failure of cohesive granular materials. Int J Numer Anal Meth Geomech 28(15):1577–1594

    Article  MATH  Google Scholar 

  33. Richefeu V, Radjai F, Youssoufi MSE (2007) Stress transmission in wet granular materials. Eur Phys J E 21:359–369

    Article  Google Scholar 

  34. Scholtés L, Donzè F-V (2013) A dem model for soft and hard rocks: role of grain interlocking on strength. J Mech Phys Solids 61(2):352–369

    Article  Google Scholar 

  35. Gilabert FA, Roux J-N, Castellanos A (2007) Computer simulation of model cohesive powders: influence of assembling procedure and contact laws on low consolidation states. Phys Rev E 75(1 Pt 1):011303 (2007)

  36. Shen Z, Jiang M, Thornton C (2016) Dem simulation of bonded granular material. Part I: contact model and application to cemented sand. Comput Geotech 75:192–209

    Article  Google Scholar 

  37. Vo T-T, Nguyen T-K. Moving intruder out of noncohesive and cohesive granular assemblies. Comput Part Mech

  38. Pitois O, Moucheront P, Chateau X (2000) Liquid bridge between two moving spheres: an experimental study of viscosity effects. J Colloid Interface Sci 231(1):26–31

    Article  Google Scholar 

  39. Vo T-T (2020) Erosion dynamics of wet particle agglomerates. Comput Part Mech 8:601–612

    Article  Google Scholar 

  40. Lefebvre G, Jop P (2013) Erosion dynamics of a wet granular medium. Phys Rev E Stat Nonlinear Soft Matter Phys 8:032205

    Article  Google Scholar 

  41. Mutabaruka P, Taiebat M, Pellenq RJ-M, Radjai F (2019) Effects of size polydispersity on random close-packed configurations of spherical particles. Phys Rev E 100:042906

    Article  Google Scholar 

  42. GDR-MiDi (2004) On dense granular flows. Eur Phys J E 14:341–365

  43. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441:727–730

    Article  Google Scholar 

  44. Vo T-T, Nguyen CT, Nguyen T-K, Nguyen VM, Vu TL (2021) Impact dynamics and power-law scaling behavior of wet agglomerates. Comput Part Mech 9:537–550

    Article  Google Scholar 

  45. Azéma E, Radjaï F (2014) Internal structure of inertial granular flows. Phys Rev Lett 112:078001

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by Ministry of Education and Training under grant number B2023-XDA-09.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trung-Kien Nguyen.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vo, TT., Nguyen, TK. Insights into the compressive and tensile strengths of viscocohesive–frictional particle agglomerates. Comp. Part. Mech. 10, 1977–1987 (2023). https://doi.org/10.1007/s40571-023-00601-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-023-00601-1

Keywords

Navigation