Skip to main content
Log in

A fluid lubrication analysis including negative pressure using a physically consistent particle method

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In recent years, particle methods, which are good for moving boundary problems, have become an effective approach to understand and predict flows in complex geometry, such as lubrication behaviors in rolling bearings. This study adopted a physically consistent particle method, i.e., the moving particle hydrodynamics for incompressible flows (MPH-I) method. For capturing the free surface flows in lubrication, a surface tension model was included. In order to maintain the physical consistency in the MPH-I method, the surface tension model expressed with the two density potentials, which are cohesive pressure potential (CPP) and density gradient potential (DGP), was adopted. The MPH-I method with the two-potential-based surface tension model enabled to handle negative pressure and nearly incompressible flow with very large bulk modulus. In fact, the MPH-I method could successfully reproduce fundamental pressure generation effects in the fluid film lubrication, i.e., the wedge film and squeeze film effects. Furthermore, the computed lubrication pressure agreed well with the experimental results and the classic prediction with Reynolds equation. This implies that the present numerical method was validated under the fluid film lubrication problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024. https://doi.org/10.1086/112164

    Article  Google Scholar 

  2. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389. https://doi.org/10.1093/mnras/181.3.375

    Article  MATH  Google Scholar 

  3. Koshizuka S, Oka Y (1996) Moving particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123(3):421–434. https://doi.org/10.13182/NSE96-A24205

    Article  Google Scholar 

  4. Koshizuka S (2011) Current achievements and future perspectives on particle simulation technologies for fluid dynamics and heat transfer. J Nucl Sci Technol 48(2):155–168. https://doi.org/10.1080/18811248.2011.9711690

    Article  Google Scholar 

  5. Gotoh H, Khayyer A (2016) Current achievements and future perspectives for projection-based particle methods with applications in ocean engineering. J Ocean Eng Mar Energy 2:251–278. https://doi.org/10.1007/s40722-016-0049-3

    Article  Google Scholar 

  6. Violeau D, Rogers BD (2016) Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J Hydraul Res 54(1):1–26. https://doi.org/10.1080/00221686.2015.1119209

    Article  Google Scholar 

  7. Koshizuka S, Shibata K, Kondo M, Matsunaga T (2018) Moving particle semi-implicit method: a meshfree particle method for fluid dynamics. Academic Press

    Google Scholar 

  8. Ye T, Pan D, Huang C, Liu M (2019) Smoothed particle hydrodynamics (SPH) for complex fluid flows: recent developments in methodology and applications. Phys Fluid 31:011301. https://doi.org/10.1063/1.5068697

    Article  Google Scholar 

  9. Li G, Gao J, Wen P, Zhao Q, Wang J, Yan J, Yamaji A (2020) A review on MPS method developments and applications in nuclear engineering. Comput Methods Appl Mech Eng 367:113166. https://doi.org/10.1016/j.cma.2020.113166

    Article  MathSciNet  MATH  Google Scholar 

  10. Ji Z, Stanic M, Hartono EA, Chernoray V (2018) Numerical simulations of oil flow inside a gearbox by smoothed particle hydrodynamics (SPH) method. Tribol Int 127:47–58. https://doi.org/10.1016/j.triboint.2018.05.034

    Article  Google Scholar 

  11. Muto K, Sakai I, Ozaki N (2010) Calculation of stirring resistance of fluid using particle method. Trans Soc Autom Eng Jpn 41(1):147–151. https://doi.org/10.11351/jsaeronbun.41.147

    Article  Google Scholar 

  12. Yuhashi N, Matsuda I, Koshizuka S (2016) Calculation and validation of stirring resistance in cam-shaft rotation using the moving particle semi-implicit method. J Fluid Sci Technol 11(3):JFST0018. https://doi.org/10.1299/jfst.2016jfst0018

    Article  Google Scholar 

  13. Yuhashi N, Koshizuka S (2020) Calculation of oil churning in crankcase of reciprocating pump (calculation of free surface flow by moving particle semi-implicit method). Trans JSME 86(881):1900343. https://doi.org/10.1299/transjsme.19-00343

    Article  Google Scholar 

  14. Kyle JP, Terrell EJ (2013) Application of smoothed particle hydrodynamics to full-film lubrication. ASME J Tribol 135(4):041705. https://doi.org/10.1115/1.4024708

    Article  Google Scholar 

  15. Tanaka K, Fujino T, Fillot N, Vergne P, Iwamoto K (2019) Numerical simulation of hydrodynamic lubrication by SPH method. Abstract Book of 46th Leeds-Lyon Symposium on Tribology 21

  16. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354. https://doi.org/10.1016/0021-9991(92)90240-Y

    Article  MathSciNet  MATH  Google Scholar 

  17. Khayyer A, Gotoh H, Shimizu Y (2017) Comparative study on accuracy and conservation properties of two particle regularization schemes and proposal of an optimized particle shifting scheme in ISPH context. J Comput Phys 332:236–256. https://doi.org/10.1016/j.jcp.2016.12.005

    Article  MathSciNet  MATH  Google Scholar 

  18. Paggi M, Amicarelli A, Lenarda P (2021) SPH modelling of hydrodynamic lubrication: laminar fluid flow-structure interaction with no-slip conditions for slider bearings. Comput Part Mech 8:665–679. https://doi.org/10.1007/s40571-020-00362-1

    Article  Google Scholar 

  19. Negishi H, Fujihara H, Takahashi H, Shibata K, Maniwa K, Obara S (2020) Numerical analysis of fluid lubrication in line contact by using the MPS method. Trans JSME 86(890):2000241. https://doi.org/10.1299/transjsme.20-00241

    Article  Google Scholar 

  20. Yamada D, Imatani T, Shibata K, Maniwa K, Obara S, Negishi H (2022) Application of improved multiresolution technique for the MPS method to fluid lubrication. Comput Part Mech 9:421–441. https://doi.org/10.1007/s40571-021-00420-2

    Article  Google Scholar 

  21. Shibata K, Koshizuka S, Matsunaga T, Masaie I (2017) The overlapping particle technique for multi-resolution simulation of particle methods. Comput Methods Appl Mech Eng 325:434–462. https://doi.org/10.1016/j.cma.2017.06.030

    Article  MathSciNet  MATH  Google Scholar 

  22. Dowson D, Taylor CM (1979) Cavitation in bearings. Annu Rev Fluid Mech 11:35–65. https://doi.org/10.1146/annurev.fl.11.010179.000343

    Article  Google Scholar 

  23. Swegle JW, Hicks DL, Attaway SW (1995) Smoothed particle hydrodynamics stability analysis. J Comput Phys 116(1):123–134. https://doi.org/10.1006/jcph.1995.1010

    Article  MathSciNet  MATH  Google Scholar 

  24. Monaghan JJ (2000) SPH without a tensile instability. J Comput Phys 159(2):290–311. https://doi.org/10.1006/jcph.2000.6439

    Article  MATH  Google Scholar 

  25. Dyka CT, Randles PW, Ingel RP (1997) Stress points for tension instability in SPH. Int J Numer Meth Eng 40(13):2325–2341. https://doi.org/10.1002/(SICI)1097-0207(19970715)40:13%3c2325::AID-NME161%3e3.0.CO;2-8

    Article  MATH  Google Scholar 

  26. Belytschko T, Xiao S (2002) Stability analysis of particle methods with corrected derivatives. Comput Math Appl 43:329–350. https://doi.org/10.1016/S0898-1221(01)00290-5

    Article  MathSciNet  MATH  Google Scholar 

  27. Hicks DL, Liebrock LM (2004) Conservative smoothing with B-splines stabilizes SPH material dynamics in both tension and compression. Appl Math Comput 150(1):213–234. https://doi.org/10.1016/S0096-3003(03)00222-4

    Article  MathSciNet  MATH  Google Scholar 

  28. Dilts GA (1999) Moving-least-squares-particle hydrodynamics: consistency and stability. Int J Numer Methods Eng 44(8):1115–1155. https://doi.org/10.1002/(SICI)1097-0207(19990320)44:8%3c1115::AID-NME547%3e3.0.CO;2-L

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu R, Stansby P, Laurence D (2009) Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J Comput Phys 228(18):6703–6725. https://doi.org/10.1016/j.jcp.2009.05.032

    Article  MathSciNet  MATH  Google Scholar 

  30. Koshizuka S, Nobe A, Oka Y (1998) Numerical analysis of breaking waves using the moving particle semi-implicit method. Int J Numer Methods Fluids 26(7):751–769. https://doi.org/10.1002/(SICI)1097-0363(19980415)26:7%3c751::AID-FLD671%3e3.0.CO;2-C

    Article  MATH  Google Scholar 

  31. Khayyer A, Gotoh H (2008) Development of CMPS method for accurate water-surface tracking in breaking waves. Coast Eng J 50(2):179–207. https://doi.org/10.1142/S0578563408001788

    Article  Google Scholar 

  32. Khayyer A, Gotoh H (2011) Enhancement of stability and accuracy of the moving particle semi-implicit method. J Comput Phys 230(8):3093–3118. https://doi.org/10.1016/j.jcp.2011.01.009

    Article  MathSciNet  MATH  Google Scholar 

  33. Tsuruta N, Khayyer A, Gotoh H (2013) A short note on dynamic stabilization of moving-particle semi-implicit method. Comput Fluids 82:158–164. https://doi.org/10.1016/j.compfluid.2013.05.001

    Article  MathSciNet  MATH  Google Scholar 

  34. Lee BH, Park JC, Kim MH, Hwang SC (2011) Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Comput Methods Appl Mech Eng 200:1113–1125. https://doi.org/10.1016/j.cma.2010.12.001

    Article  MATH  Google Scholar 

  35. Matsunaga T, Koshizuka S (2022) Stabilized LSMPS method for complex free-surface flow simulation. Comput Methods Appl Mech Eng 389:114416. https://doi.org/10.1016/j.cma.2021.114416

    Article  MathSciNet  MATH  Google Scholar 

  36. Kondo M (2021) A physically consistent particle method for incompressible fluid flow calculation. Comput Part Mech 8:69–86. https://doi.org/10.1007/s40571-020-00313-w

    Article  Google Scholar 

  37. Kondo M, Fujiwara T, Masaie I, Matsumoto J (2022) A physically consistent particle method for high-viscous free-surface flow calculation. Comput Part Mech 9:265–276. https://doi.org/10.1007/s40571-021-00408-y

    Article  Google Scholar 

  38. Kondo M, Matsumoto J (2021) Weakly compressible particle method with physical consistency for spatially discretized system. Trans JSCES 2021:20210006. https://doi.org/10.11421/jsces.2021.20210006

    Article  Google Scholar 

  39. Kondo M, Matsumoto J (2021) Pressure substituting implicit solver to speed-up moving particle hydrodynamics method for high-viscous incompressible flows. Trans JSCES 2021:20210016. https://doi.org/10.11421/jsces.2021.20210016

    Article  Google Scholar 

  40. Kondo M, Matsumoto J (2021) Surface tension and wettability calculation using density gradient potential in a physically consistent particle method. Comput Methods Appl Mech Eng 385:114072. https://doi.org/10.1016/j.cma.2021.114072

    Article  MathSciNet  MATH  Google Scholar 

  41. Floberg L (1965) On hydrodynamic lubrication with special reference to sub-cavity pressures and number of streamers in cavitation regions. Acta Poly Scand Mech Eng Ser 19:3–35

    Google Scholar 

  42. Bruyere V, Fillot N, Morales-Espejel GE, Vergne P (2012) A two-phase flow approach for the outlet of lubricated line contacts. ASME J Tribol 134(4):041503

    Article  Google Scholar 

  43. Hamrock BJ, Schmid SR, Jacobson BO (2004) Fundamentals of fluid film lubrication, 2nd edn. CRC Press

    Book  Google Scholar 

  44. Hori Y (2016) Hydrodynamic lubrication. Springer

    Google Scholar 

  45. Kuroda S, Hori Y (1978) An experimental study on cavitation and tensile stress in a squeeze film. Lubrication 23:436–442 (in Japanese)

    Google Scholar 

  46. Goldstein H, Safko JL, Poole CP (2013) Classical mechanics. Pearson New International Edition

    MATH  Google Scholar 

  47. Monaghan JJ (1992) Smoothed particle hydrodynamics. Ann Rev Astron Astrophys 30:543–574. https://doi.org/10.1146/annurev.aa.30.090192.002551

    Article  Google Scholar 

  48. Hu XY, Adams NA (2006) Angular-momentum conservative smoothed particle dynamics for incompressible viscous flows. Phys Fluids 18:101702. https://doi.org/10.1063/1.2359741

    Article  Google Scholar 

  49. Nishida A (2010) Experience in developing an open source scalable software infrastructure in Japan. Computer science and its applications-ICCSA 2010, Lecture Notes in Computer Science, Springer, pp. 448–462

  50. https://www.ssisc.org/lis/index.en.html

  51. Gray CG, Gubbins KE (1984) Theory of molecular fluids: fundamentals. Oxford University Press

    Book  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant No. 21K03847. All the simulations in this study were performed on the JAXA Supercomputer System Generation 3 (JSS3). The authors would like to express their sincere appreciation for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideyo Negishi.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Negishi, H., Kondo, M., Amakawa, H. et al. A fluid lubrication analysis including negative pressure using a physically consistent particle method. Comp. Part. Mech. 10, 1717–1731 (2023). https://doi.org/10.1007/s40571-023-00584-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-023-00584-z

Keywords

Navigation