Skip to main content

Advertisement

Log in

Numerical study on failure mechanism and acoustic emission characteristics of granite after thermal treatment

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

To investigate the strength characteristics and failure mechanism of granite after thermal treatment are critical for geothermal energy storage and development. Acoustic emission (AE) is widely used to deduce the process of rock crack generation, development and penetration in laboratory tests, thus revealing the mechanism of rock failure. However, previous investigations have shown that laboratory tests cannot directly observe the interaction of thermal cracks and thermal stress, and more than 90\(\%\) of AE tensile failure sources cannot be captured. This paper investigates the generation mechanism of thermal cracks and thermal stress distribution in thermally treated specimens using the discrete element method. After that, the evolution of AE failure sources is quantitatively analyzed by the moment tensor inversion results. The results showed that: (1) Thermal cracks destroy the internal structure of the specimen, thus weakening its mechanical properties. The number of thermal cracks increases with the temperature, further aggravating the damage to the mechanical properties of specimens; (2) as the temperature increases, the failure mode of the specimen changes from splitting failure to shear failure. Moment tensor inversion revealed that tensile failure dominated the final damage of samples. The shear and compaction failure sources increase with temperature, while tensile failure sources decrease; (3) the b value increased by 215\(\%\) from 25 \(^{\circ }\)C to 1000 \(^{\circ }\)C. As the number of microcracks in a single AE event increases, the AE frequency decays exponentially, and most AE events have 1–5 microcracks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Becattini V, Motmans T, Zappone A et al (2017) Experimental investigation of the thermal and mechanical stability of rocks for high-temperature thermal-energy storage. Appl Energy 203:373–389

    Google Scholar 

  2. Gautam P, Dwivedi R, Kumar A et al (2021) Damage characteristics of Jalore granitic rocks after thermal cycling effect for nuclear waste repository. Rock Mech Rock Eng 54(1):235–254

    Google Scholar 

  3. Mahanta B, Ranjith P, Vishal V et al (2020) Temperature-induced deformational responses and microstructural alteration of sandstone. J Petrol Sci Eng 192(107):239

    Google Scholar 

  4. Orlander T, Andreassen KA, Fabricius IL (2021) Effect of temperature on stiffness of sandstones from the deep north sea basin. Rock Mech Rock Eng 54(1):255–288

    Google Scholar 

  5. Yu P, Pan P, Feng G et al (2020) Physico-mechanical properties of granite after cyclic thermal shock. J Rock Mech Geotech Eng 12(4):693–706

    Google Scholar 

  6. Jiao Y, Zhang X, Zhang H et al (2015) A coupled thermo-mechanical discontinuum model for simulating rock cracking induced by temperature stresses. Comput Geotech 67:142–149

    Google Scholar 

  7. Su C, Qiu J, Wu Q et al (2020) Effects of high temperature on the microstructure and mechanical behavior of hard coal. Int J Mining Sci Technol 30(5):643–650

    Google Scholar 

  8. Li M, Wang D, Shao Z (2020) Experimental study on changes of pore structure and mechanical properties of sandstone after high-temperature treatment using nuclear magnetic resonance. Eng Geol 275(105):739

    Google Scholar 

  9. Sun Q, Lü C, Cao L et al (2016) Thermal properties of sandstone after treatment at high temperature. Int J Rock Mech Mining Sci 85:60–66

    Google Scholar 

  10. Wu Z, Li M, Weng L (2020) Thermal-stress-aperture coupled model for analyzing the thermal failure of fractured rock mass. Int J Geomech 20(10):04020

    Google Scholar 

  11. Sepúlveda J, Arancibia G, Molina E et al (2020) Thermo-mechanical behavior of a granodiorite from the liquiñe fractured geothermal system (39 s) in the southern volcanic zone of the andes. Geothermics 87(101):828

    Google Scholar 

  12. Yang S, Huang Y, Tian W et al (2019) Effect of high temperature on deformation failure behavior of granite specimen containing a single fissure under uniaxial compression. Rock Mech Rock Eng 52(7):2087–2107

    Google Scholar 

  13. Rossi E, Kant MA, Madonna C et al (2018) The effects of high heating rate and high temperature on the rock strength: feasibility study of a thermally assisted drilling method. Rock Mech Rock Eng 51(9):2957–2964

    Google Scholar 

  14. Yin T, Shu R, Li X et al (2016) Comparison of mechanical properties in high temperature and thermal treatment granite. Trans Nonferr Metals Soc China 26(7):1926–1937

    Google Scholar 

  15. Jansen D, Carlson S, Young R et al (1993) Ultrasonic imaging and acoustic emission monitoring of thermally induced microcracks in lac du bonnet granite. J Geophys Res Solid Earth 98(B12):22231–22243

    Google Scholar 

  16. Yin T, Wu Y, Li Q et al (2020) Determination of double-k fracture toughness parameters of thermally treated granite using notched semi-circular bending specimen. Eng Fract Mech 226(106):865

    Google Scholar 

  17. Wong LNY, Guo TY (2019) Microcracking behavior of two semi-circular bend specimens in mode i fracture toughness test of granite. Eng Fract Mech 221(106):565

    Google Scholar 

  18. Nasseri M, Schubnel A, Young R (2007) Coupled evolutions of fracture toughness and elastic wave velocities at high crack density in thermally treated westerly granite. Int J Rock Mech Mining Sci 44(4):601–616

    Google Scholar 

  19. Jian-ping Z, He-ping X, Hong-wei Z et al (2010) Sem in situ investigation on thermal cracking behaviour of Pingdingshan sandstone at elevated temperatures. Geophys J Int 181(2):593–603

    Google Scholar 

  20. Wang J, Zuo J, Sun Y et al (2021) The effects of thermal treatments on the fatigue crack growth of Beishan granite: an in situ observation study. Bull Eng Geol Environ 80(2):1541–1555

    Google Scholar 

  21. Zhang Y, Zhao GF, Li Q (2020) Acoustic emission uncovers thermal damage evolution of rock. Int J Mech Mining Sci 132(104):388

    Google Scholar 

  22. Tapponnier P, Brace W (1976) Development of stress-induced microcracks in westerly granite. In: International journal of rock mechanics and mining sciences & geomechanics abstracts. Elsevier, pp 103–112

  23. Rasmussen LL, de Assis AP (2018) Elastically-homogeneous lattice modelling of transversely isotropic rocks. Comput Geotech 104:96–108

    Google Scholar 

  24. Rasmussen LL, de Farias MM, de Assis AP (2018) Extended rigid body spring network method for the simulation of brittle rocks. Comput Geotech 99:31–41

    Google Scholar 

  25. Dekker R, Van der Meer F, Maljaars J et al (2019) A cohesive xfem model for simulating fatigue crack growth under mixed-mode loading and overloading. Int J Numer Methods Eng 118(10):561–577

    MathSciNet  Google Scholar 

  26. Tan P, Jin Y, Pang H (2021) Hydraulic fracture vertical propagation behavior in transversely isotropic layered shale formation with transition zone using xfem-based czm method. Eng Fract Mech 248(107):707

    Google Scholar 

  27. Nagaraja S, Elhaddad M, Ambati M et al (2019) Phase-field modeling of brittle fracture with multi-level hp-fem and the finite cell method. Comput Mech 63(6):1283–1300

    MathSciNet  MATH  Google Scholar 

  28. Goswami S, Anitescu C, Rabczuk T (2019) Adaptive phase field analysis with dual hierarchical meshes for brittle fracture. Eng Fract Mech 218(106):608

    Google Scholar 

  29. Rabczuk T, Belytschko T (2004) Cracking particles: a simplified meshfree method for arbitrary evolving cracks. Int J Numer Methods Eng 61(13):2316–2343

    MATH  Google Scholar 

  30. Ren H, Zhuang X, Cai Y et al (2016) Dual-horizon peridynamics. Int J Numer Methods Eng 108(12):1451–1476

    MathSciNet  Google Scholar 

  31. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    MathSciNet  MATH  Google Scholar 

  32. Zhao Z (2016) Thermal influence on mechanical properties of granite: a microcracking perspective. Rock Mech Rock Eng 49(3):747–762

    Google Scholar 

  33. Yang S, Tian W, Huang Y (2018) Failure mechanical behavior of pre-holed granite specimens after elevated temperature treatment by particle flow code. Geothermics 72:124–137

    Google Scholar 

  34. Tian W, Yang S, Huang Y et al (2020) Mechanical behavior of granite with different grain sizes after high-temperature treatment by particle flow simulation. Rock Mech Rock Eng 53(4):1791–1807

    Google Scholar 

  35. Yin TB, Zhuang DD, Li MJ et al (2022) Numerical simulation study on the thermal stress evolution and thermal cracking law of granite under heat conduction. Comput Geotech 148(104):813

    Google Scholar 

  36. Zhao X, Xu H, Zhao Z et al (2019) Thermal conductivity of thermally damaged Beishan granite under uniaxial compression. Int J Rock Mech Mining Sci 115:121–136

    Google Scholar 

  37. Zhao Z, Xu H, Wang J et al (2020) Auxetic behavior of Beishan granite after thermal treatment: a microcracking perspective. Eng Fract Mech 231(107):017

    Google Scholar 

  38. Hazzard J, Young R (2000) Simulating acoustic emissions in bonded-particle models of rock. Int J Rock Mech Mining Sci 37(5):867–872

    Google Scholar 

  39. Chong Z, Li X, Hou P et al (2017) Moment tensor analysis of transversely isotropic shale based on the discrete element method. Int J Mining Sci Technol 27(3):507–515

    Google Scholar 

  40. Zhang Q, Zhang XP, Yang SQ (2021) A numerical study of acoustic emission characteristics of sandstone specimen containing a hole-like flaw under uniaxial compression. Eng Fract Mech 242(107):430

    Google Scholar 

  41. Zhang Q, Zhang X, Ji P (2019) Numerical study of interaction between a hydraulic fracture and a weak plane using the bonded-particle model based on moment tensors. Comput Geotech 105:79–93

    Google Scholar 

  42. Wong LNY, Xiong Q (2018) A method for multiscale interpretation of fracture processes in Carrara marble specimen containing a single flaw under uniaxial compression. J Geophys Res Solid Earth 123(8):6459–6490

    Google Scholar 

  43. Liu Q, Liu Q, Pan Y et al (2018) Microcracking mechanism analysis of rock failure in diametral compression tests. J Mater Civil Eng 30(6):04018

  44. Wanne T, Young R (2008) Bonded-particle modeling of thermally fractured granite. Int J Rock Mech Mining Sci 45(5):789–799

    Google Scholar 

  45. Hazzard JF, Young RP (2002) Moment tensors and micromechanical models. Tectonophysics 356(1–3):181–197

    Google Scholar 

  46. Heinze T, Galvan B, Miller SA (2015) A new method to estimate location and slip of simulated rock failure events. Tectonophysics 651:35–43

    Google Scholar 

  47. Zhao Y, Zhao G, Zhou J et al (2021) Failure mechanism analysis of rock in particle discrete element method simulation based on moment tensors. Comput Geotech 136(104):215

    Google Scholar 

  48. Feignier B, Young RP (1992) Moment tensor inversion of induced microseisnmic events: Evidence of non-shear failures in the- 4< m<- 2 moment magnitude range. Geophys Res Lett 19(14):1503–1506

    Google Scholar 

  49. Cundall PA (1971) A computer model for simulating progressive, large-scale movement in blocky rock system. In: Proceedings of the international symposium on rock mechanics, 1971

  50. Cundall PA, Strack OD (1979) A discrete numerical model for granular assemblies. Geotechnique 29(1):47–65

    Google Scholar 

  51. Na Cho, Martin C, Sego D (2007) A clumped particle model for rock. Int J Rock Mech Mining Sci 44(7):997–1010

    Google Scholar 

  52. Group IC (2014) Pfc (particle flow code in 2 and 3 dimensions), version 5.0 (user’s manual)

  53. Li Q, Zhai Y, Huang Z et al (2022) Research on crack cracking mechanism and damage evaluation method of granite under laser action. Opt Commun 506(127):556

    Google Scholar 

  54. Liu S, Xu J (2015) An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Eng Geol 185:63–70

    Google Scholar 

  55. Potyondy DO, Cundall P (2004) A bonded-particle model for rock. Int J Rock Mech Mining Sci 41(8):1329–1364

    Google Scholar 

  56. Ahrens TJ (1995) Mineral physics & crystallography: a handbook of physical constants, vol 2. American Geophysical Union, Washington

    Google Scholar 

  57. Chopard B, Droz M (2005) Cellular automata modeling of physical systems

  58. Shi C, Yang W, Yang J et al (2019) Calibration of micro-scaled mechanical parameters of granite based on a bonded-particle model with 2d particle flow code. Granul Matter 21(2):1–13

    Google Scholar 

  59. Tian W, Yang S, Huang Y (2018) Macro and micro mechanics behavior of granite after heat treatment by cluster model in particle flow code. Acta Mech Sin 34(1):175–186

    Google Scholar 

  60. Zhu HY, Dang YK, Wang GR et al (2021) Near-wellbore fracture initiation and propagation induced by drilling fluid invasion during solid fluidization mining of submarine nature gas hydrate sediments. Pet Sci 18(6):1739–1752

    Google Scholar 

  61. Chen, S., Xia, Z., Feng, F., & Yin, D. (2021). Numerical study on strength and failure characteristics of rock samples with different hole defects. Bulletin of Engineering Geology and the Environment, 80, 1523-1540

  62. Duan K, Kwok C, Ma X (2017) Dem simulations of sandstone under true triaxial compressive tests. Acta Geotech 12(3):495–510

    Google Scholar 

  63. Yang SQ, Ranjith P, Jing HW et al (2017) An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics 65:180–197

  64. Huang YH, Yang SQ, Tian WL et al (2017) Physical and mechanical behavior of granite containing pre-existing holes after high temperature treatment. Arch Civil Mech Eng 17(4):912–925

    Google Scholar 

  65. Kong B, Wang E, Li Z et al (2016) Fracture mechanical behavior of sandstone subjected to high-temperature treatment and its acoustic emission characteristics under uniaxial compression conditions. Rock Mech Rock Eng 49(12):4911–4918

    Google Scholar 

  66. Tian H, Mei G, Jiang GS et al (2017) High-temperature influence on mechanical properties of diorite. Rock Mech Rock Eng 50(6):1661–1666

    Google Scholar 

  67. Gao G, Meguid MA, Chouinard LE (2020) On the role of pre-existing discontinuities on the micromechanical behavior of confined rock samples: a numerical study. Acta Geotech 15(12):3483–3510

    Google Scholar 

  68. Grosse CU, Ohtsu M (2008) Acoustic emission testing. Springer, London

    Google Scholar 

  69. Falls SD (1995) Ultrasonic imaging and acoustic emission studies of microcrack development in lac du bonnet granite. PhD thesis, Queen’s University

  70. Hazzard, James F (1998) Numerical modelling of acoustic emissions and dynamic rock behaviour. PhD thesis, University of Keele

Download references

Acknowledgements

This work was funded by the China Construction Seventh Engineering Division.Corp.Ltd (No. 20210669). The authors also sincerely thank the editors and the reviewers for their efforts in improving this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Yang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, Y., Yang, Z., Liu, X. et al. Numerical study on failure mechanism and acoustic emission characteristics of granite after thermal treatment. Comp. Part. Mech. 10, 1245–1266 (2023). https://doi.org/10.1007/s40571-023-00556-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-023-00556-3

Keywords

Navigation