Skip to main content
Log in

Mathematical modelling of modified hybrid nanofluid in a peristaltic diverging tube with MHD and convective boundary conditions

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

Numerous applications of magneto-hydrodynamics are applied in daily life medics and particularly where phenomena of peristaltic are used for delivery of drugs to the affected area in order to cure the disease. The delivery method of zinc, titanium and copper modified hybrid nanoparticles to target area through oesophagus necessitated elaboration in order to achieve best desired results. The significance of the current problem specifies the model of a magneto-hydrodynamic peristaltically driven flow when the cross section of the tube is diverging. The manuscript focuses to consider zinc, titanium and copper modified hybrid nanoparticles with water as carrier fluid. The impact of wall properties, slip and convective boundary conditions is intricate. The Cauchy Euler’s method is accomplished to obtain the exact solution of consequential system of nonlinear ODE’s raised from governing PDE’s and the boundary conditions for computation are evolved by using appropriate transformations. The computational software packages “Mathematica” used as a main tool to show pumping phenomenon against velocity and temperature profile using emerging parameters and bolus formation. The results have supported the improvement in delivery system of above discussed particles especially in the field of photodynamic therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

\({r}^{\breve{\,}}\),\({z}^{\breve{\,}}\) :

Radial and axial direction in wave frame

\({l}^{\breve{\,}}\) :

Radius of inner tube

\({U}^{\breve{\,}},{W}^{\breve{\,}}\) :

Velocity components in radial and axial direction

\({d}^{\breve{\,}}\) :

Wave speed

λ :

Wave length

\(K\) :

Non-uniform parameter

ε :

Amplitude ratio

\(Re\) :

Reynolds’s number

\(L\) :

Velocity slip parameter

\({\mathcalligra{c}}_{\mathcalligra{p}}\) :

Specific heat

\({{\mathcal{K}}^{\breve{\,}}}_{bf}\) :

Thermal conductivity of base fluid

\({{\mathcal{K}}^{\breve{\,}}}_{{\mathcalligra{nf}}}\) :

Thermal conductivity of nanofluid

\({{\mathcal{K}}^{\breve{\,}}}_{h\mathcalligra{nf}}\) :

Thermal conductivity of hybrid nanofluid

\({{\mathcal{K}}^{\breve{\,}}}_{mh\mathcalligra{nf}}\) :

Thermal conductivity of Modified hybrid nanofluid

\({{\rho }^{\breve{\,}}}_{nf}\) :

Density of nanofluid

\({{\left(\rho {c}_{p}\right)}^{\breve{\,}}}_{nf}\) :

Heat capacity of nanofluid

\({{\left(\rho {c}_{p}\right)}^{\breve{\,}}}_{hnf}\) :

Heat capacity of hybrid nanofluid

\({{\left(\rho {c}_{p}\right)}^{\breve{\,}}}_{mhnf}\) :

Heat capacity of Modified hybrid nanofluid

\({{\mu }^{\breve{\,}}}_{nf}\) :

Dynamic Viscosity of nanofluid

\({{\mu }^{\breve{\,}}}_{hnf}\) :

Dynamic viscosity of Hybrid nanofluid

\({{\mu }^{\breve{\,}}}_{mhnf}\) :

Dynamic viscosity of Modified hybrid nanofluid

\({{\beta }^{\breve{\,}}}_{\mathcalligra{nf}}\) :

Thermal expansion of nanofluid

\({{\beta }^{\breve{\,}}}_{h\mathcalligra{nf}}\) :

Thermal expansion of Hybrid nanofluid

\({{\beta }^{\breve{\,}}}_{mh\mathcalligra{nf}}\) :

Thermal expansion of Modified Hybrid nanofluid

\({{\sigma }^{\breve{\,}}}_{nf}\) :

Electrical conductivity of the nanofluid

\({{\sigma }^{\breve{\,}}}_{hnf}\) :

Electrical conductivity of Hybrid nanofluid

\({{\sigma }^{\breve{\,}}}_{mhnf}\) :

Electrical conductivity of Modified hybrid nanofluid

\({{\alpha }^{\breve{\,}}}_{\mathcalligra{nf}}\) :

Thermal diffusivity of nanofluid

\({{\alpha }^{\breve{\,}}}_{h\mathcalligra{nf}}\) :

Thermal diffusivity of hybrid nanofluid

\({{\alpha }^{\breve{\,}}}_{mh\mathcalligra{nf}}\) :

Thermal diffusivity of Modified hybrid nanofluid

\({m}^{\breve{\,}}\) :

Mass per unit area

\({\sigma }^{\breve{\,}}\) :

Elastic tension in the membrane

\({\mathcal{C}}^{\breve{\,}}\) :

Coefficient of viscous damping force

\(\phi \) :

Nano particle volume fraction

\(m\) :

Different shape models

E1 :

Rigidity parameter

E2 :

Stiffness parameter

E3 :

Viscous damping force parameter

\(M\) :

Hartmann number

\({{G}_{r}}^{\breve{\,}}\) :

Grashof number

References

  1. Michael C, Joseph HS, Kim EB (2017) Pathophysiology, evaluation, and management of chronic watery diarrhea. Gastroenterology 152(3):512–532. https://doi.org/10.1053/j.gastro.2016.10.014

    Article  Google Scholar 

  2. Latham TW (1966) Fluid motion in a peristaltic pump, MS Thesis, MIII Cambridge, Cambridge

  3. Shapiro H, Jaffrin MY, Weinberg SL (1969) Peristaltic pumping with long wavelengths at low Reynolds number. J Fluid Mech 37:799–825. https://doi.org/10.1017/S0022112069000899

    Article  Google Scholar 

  4. Tripathi D (2013) Study of transient peristaltic heat flow through a finite porous channel. Math Comput Model 57(5):1270–1283

    Article  MathSciNet  Google Scholar 

  5. Riaz A, Bhatti MM, Ellahi R, Zeeshan A, Sait SM (2020) Mathematical analysis on an asymmetrical wavy motion of blood under the influence entropy generation with convective boundary conditions. Symmetry. 12(1):102. https://doi.org/10.3390/sym12010102

    Article  Google Scholar 

  6. Ellahi R, Bhatti MM, Vafai K (2014) Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct. Int J Heat Mass Transf 17:706–719. https://doi.org/10.1016/j.ijheatmasstransfer.2013.12.038

    Article  Google Scholar 

  7. Hayat T, Zahir H, Mustafa M, Alsaedi A (2016) Peristaltic flow of Sutterby fluid in a vertical channel with radiative heat transfer and complaint walls: a numerical study. Res Phys 6:805–810

    Google Scholar 

  8. Fusi L, Farina A (2018) Peristaltic axisymmetric flow of a Bingham fluid. Appl Math Comput 320:1–15. https://doi.org/10.1016/j.amc.2017.09.017

    Article  MathSciNet  MATH  Google Scholar 

  9. Abbasi FM, Hayat T, Ahmad B (2015) Peristaltic transport of copper–water nanofluid saturating porous medium. Physica E 67:47–53. https://doi.org/10.1016/j.physe.2014.11.002

    Article  Google Scholar 

  10. Akbar NS, Butt AW (2016) Ferromagnetic effects for peristaltic flow of Cu–water nanofluid for different shapes of nanosize particles. Appl Nanosci 6:379–385

    Article  Google Scholar 

  11. Mekheimer KH, Hasona WM, Abo-Elkhair RE, Zaher AZ (2018) Peristaltic blood flow with gold nanoparticles as a third grade nanofluid in catheter: application of cancer therapy. Phys Letter A 382:85–93. https://doi.org/10.1016/j.physleta.2017.10.042

    Article  MathSciNet  MATH  Google Scholar 

  12. Sadaf H, Nadeem S (2020) Fluid Flow analysis of cilia beating in a curved channel in the presence of magnetic field and heat transfer. Can J Phys 98:191–197. https://doi.org/10.1139/cjp-2018-0715

    Article  Google Scholar 

  13. Bhatti MM, Abbas MA (2016) Simultaneous effects of slip and MHD on peristaltic blood flow of Jeffery fluid model through a porous medium. Alex Eng J 55(2):1017–1023. https://doi.org/10.1016/j.aej.2016.03.002

    Article  Google Scholar 

  14. Mosayebidorcheh S, Hatami M (2018) Analytical investigation of peristaltic nanofluid flow and heat transfer in an asymmetric wavy wall channel (part 1: straight channel). Int J Heat Mass Transf 126:790. https://doi.org/10.1016/j.ijheatmasstransfer.2018.05.080

    Article  Google Scholar 

  15. Hayat T, Khan AA, Bibi F, Farooq S (2019) Activation energy and non-Darcy resistance in magneto peristalsis of Jeffery material. J Phys Chem Solids 129:155–161. https://doi.org/10.1016/j.jpcs.2018.12.044

    Article  Google Scholar 

  16. Farooq S, Khan MI, Waqas M, Alsaedi A (2019) Theoretical investigation of peristalsis transport in flow of hyperbolic tangent fluid with slip effects and chemical reaction. J Mol Liq 285:314–322. https://doi.org/10.1016/j.molliq.2019.04.051

    Article  Google Scholar 

  17. Abo-Elkhair RE, Mekheimer KS, Moawed MA (2019) Combine impacts of Electrokinetic variable viscosity and partial slip on peristaltic MHD flow through a micro-channel. Iranian J Sci Tech 43:201–212. https://doi.org/10.1007/S40995-017-0374-Y

    Article  Google Scholar 

  18. Farooq S, Khan MI, Waqas M, Alsaedi A (2020) Transport of hybrid type nanomaterials in peristaltic activity of viscous fluid considering nonlinear radiation, entropy generation and slip effects. Comp Meth Progr Biomed 184:105086. https://doi.org/10.1016/j.cmpb.2019.105086

    Article  Google Scholar 

  19. Saleem S, Mumraiz S, Aamir A et al (2021) Investigation on TiO2–Cu/H2O hybrid nanofluid with slip conditions in MHD peristaltic flow of Jeffrey material. J Therm Anal Calorim 143:1985–1996. https://doi.org/10.1007/s10973-020-09648-1

    Article  Google Scholar 

  20. Dero S, Rohni AM, Saaban A, Khan I et al (2019) Dual solutions and stability analysis of micropolar nanofluid flow with slip effect on stretching/shrinking surfaces. Energies 12(23):4529. https://doi.org/10.3390/en12234529

    Article  Google Scholar 

  21. Ellahi R, Alamri SZ, Basit A, Majeed A (2018) Effects of MHD and slip on heat transfer boundary layer flow over a moving plate based on specific entropy generation. J Taibah Univer Sci 12(4):476–482

    Article  Google Scholar 

  22. Elelamy AF, Elgazery NS, Ellahi R (2020) Blood flow of MHD non-Newtonian nanofluid with heat transfer and slip effects: application of bacterial growth in heart valve. Int J Numer Meth Heat Fluid Flow 30(11):4883–4908

    Article  Google Scholar 

  23. Ellahi R (2013) The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions. Appl Math Model 37(3):1451–1467

    Article  MathSciNet  MATH  Google Scholar 

  24. Dehghan M, Mohammadi V (2015) The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: the Crank-Nicolson scheme and the method of lines (MOL). Comput Math Appl 70(10):2292–2315

    Article  MathSciNet  MATH  Google Scholar 

  25. Hosseinzadeh H, Dehghan M, Mirzaei D (2013) The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers. Appl Math Model 37(4):2337–2351

    Article  MathSciNet  MATH  Google Scholar 

  26. Dehghan M, Salehi R (2013) A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) flow in pipe with arbitrary wall conductivity. Comput Mech 52:1445–1462. https://doi.org/10.1007/s00466-013-0886-z

    Article  MathSciNet  MATH  Google Scholar 

  27. Fudholi A, Zohri M, Rukman NS (2019) Exergy and sustainability index of photovoltaic thermal (PVT) air collector: a theoretical and experimental study. Renew Sustain Energy Rev 100(1):44–51. https://doi.org/10.1016/j.rser.2018.10.019

    Article  Google Scholar 

  28. Sheikholeslami M, Rezaeianjouybari B, Darzi M, Shafee A et al (2019) Application of nano-refrigerant for boiling heat transfer enhancement employing an experimental study. Int J Heat Mass Transf 141:974–980. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.043

    Article  Google Scholar 

  29. Choi SU, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles (No. ANL/MSD/CP-84938; CONF-951135–29). Argonne National Lab., IL

  30. Pak BC, Cho YI (1998) Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exper Heat Transfer 11(2):151–170. https://doi.org/10.1080/08916159808946559

    Article  Google Scholar 

  31. Kefayati GHR (2016) Heat transfer and entropy generation of natural convection on non-Newtonian nanofluids in a porous cavity. Powder Technol 299:127–149. https://doi.org/10.1016/j.powtec.2016.05.032

    Article  Google Scholar 

  32. Mehmood A, Iqbal MS (2016) Heat transfer analysis in natural convection flow of nanofluid past a wavy cone. J Mol Liq 223:1178–1184. https://doi.org/10.1016/j.molliq.2016.09.029

    Article  Google Scholar 

  33. Hashemi H, Namazian Z, Zadeh SMH, Mehryan SAM (2018) MHD natural convection of a micropolar nanofluid flowing inside a radiative porous medium under LTNE condition with an elliptical heat source. J Mol Liq 217:914–925. https://doi.org/10.1016/j.molliq.2018.09.010

    Article  Google Scholar 

  34. Suresh S, Venkitaraj KP, Selvakumar P, Chandrasekar M (2011) Synthesis of Al2O3–Cu/water hybrid nanofluids using two step method and its thermo physical properties. Coll Surf A 388:41–48. https://doi.org/10.1016/J.COLSURFA.2011.08.005

    Article  Google Scholar 

  35. Asghar Z, Ali N, Sajid M, Bég OA (2019) Magnetic micro swimmers propelling through bio rheological liquid bounded within an active channel. J Magn Magn Mater 486:165283

    Article  Google Scholar 

  36. Ali N, Asghar Z, Sajid M, Anwar Bég O (2019) Biological interactions between Carreau fluid and micro swimmers in a complex wavy canal with MHD effects. J Braz Soc Mech Sci Eng 41(10):1–13

    Article  Google Scholar 

  37. Asghar Z, Ali N, Waqas M, Javed MA (2020) An implicit finite difference analysis of magnetic swimmers propelling through non-Newtonian liquid in a complex wavy channel. Comput Math Appl 79(8):2189–2202

    Article  MathSciNet  MATH  Google Scholar 

  38. Asghar Z, Ali N, Javid K, Waqas M, Dogonchi AS, Khan WA (2020) Bio-inspired propulsion of micro-swimmers within a passive cervix filled with couple stress mucus. Comput Meth Progr Biomed 189:105313

    Article  Google Scholar 

  39. Asghar Z, Shah RA, Ali N (2022) A computational approach to model gliding motion of an organism on a sticky slime layer over a solid substrate. Biomech Model Mechanobiol 21(5):1441–1455

    Article  Google Scholar 

  40. Shah RA, Asghar Z, Ali N (2022) Mathematical modeling related to bacterial gliding mechanism at low reynolds number with Ellis Slime. Eur Phys J Plus 137(5):1–12

    Article  Google Scholar 

  41. Hayat T, Nadeem S (2017) Heat transfer enhancement with Ag–CuO/water hybrid nanofluid. Res Phys 7:2317–2324. https://doi.org/10.1016/j.rinp.2017.06.034

    Article  Google Scholar 

  42. Safaei MR, Hajizadeh A, Afrand M et al (2018) Evaluating the effect of temperature and concentration on the thermal conductivity of ZnO-TiO2/EG hybrid nanofluid using artificial neural network and curve fitting on experimental data. Physica A: Stat Mech Appl 519(34):209–216. https://doi.org/10.1016/j.physa.2018.12.010

    Article  Google Scholar 

  43. Sulochana C, Ashwinkumar GP (2018) Impact of Brownian moment and thermophoresis on magnetohydrodynamic flow of magnetic nanofluid past an elongated sheet in the presence of thermal diffusion. Multidiscip Model Mater Struct. https://doi.org/10.1108/MMMS-12-2017-0168

    Article  Google Scholar 

  44. Nadeem S, Nadeem A (2019) Effects of MHD on modified nanofluid model with variable viscosity in a porous medium. Nanofl Flow Por Media. https://doi.org/10.5772/intechopen.84266

    Article  Google Scholar 

  45. Ellahi R, Hassan M, Zeeshan A (2015) Shape effects of nanosize particles in Cu—H2O nanofluid on entropy generation. Int J Heat Mass Transfer 81:449–456

    Article  Google Scholar 

  46. Devaki P, Venkateswarlu B, Srinvas S, Sreenadh S (2020) MHD Peristaltic flow of a nanofluid in a constricted artery for different shapes of nanosized particles. De Gruyter. https://doi.org/10.1515/nleng-2017-0064

    Article  Google Scholar 

  47. Iqbal Z, Akbar NS, Azhar E (2017) Performance of hybrid nanofluid (Cu-CuO/water) on MHD rotating transport in oscillating vertical channel inspired by Hall current and thermal radiation. Alexandria Eng. J 57(3):1973–1954

    Google Scholar 

  48. Zill DG, Cullen MR (2001) Differential equations with boundary- value problems. Brooks Cole, Belmont

  49. Eldesoky IM, Nayel MS, Galal AA, Raslan HM (2021) Impact of compliant wall properties on peristaltic transport of a compressible non-newtonian maxwellian fluid through axisymmetric cylindrical tube. J Phys: Conf Series 1970(1):012001

    Google Scholar 

  50. Sankad GC, Nagathan PS (2017) Influence of wall properties on the peristaltic flow of a Jeffrey fluid in a uniform porous channel under heat transfer. Int J Res Ind Eng 6(3):246–261

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naheeda Iftikhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iftikhar, N., Sadaf, H. Mathematical modelling of modified hybrid nanofluid in a peristaltic diverging tube with MHD and convective boundary conditions. Comp. Part. Mech. 10, 1477–1491 (2023). https://doi.org/10.1007/s40571-023-00553-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-023-00553-6

Keywords

Navigation