Skip to main content
Log in

Using a modified MPS gradient model to improve accuracy of SPH method for Poisson equations

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In this study, a more accurate and efficient Laplacian model with the promising feature of kernel gradient-free is formulated. For this purpose, a hybrid approach in the context of the smoothed particle hydrodynamics (SPH) and moving particle semi-implicit (MPS) methods is used. A newly developed gradient model (Shobeyri in Iran J Sci Technol Trans Civil Eng, 2022. https://doi.org/10.1007/s40996-022-01013-6) which is derived by combining two MPS gradient models with the promising performance in free surface flows is applied in this paper (Chen et al. in Int J Numer Meth Fluids 80(6):358–374, 2016; Wang et al. in Int J Numer Meth Fluids 85(2):69–89, 2017). The proposed MPS gradient model is used in the standard Laplacian formulation (Shao and Lo in Adv Water Resour 26(7):787–800, 2003) to derive the improved Laplacian model. A comprehensive accuracy analysis for the solution of four 2-D Poisson equations subjected to both Dirichlet and Neumann boundary conditions on irregular calculation node distributions shows that this model can yield smaller errors compared with several SPH Laplacian models. Despite more complex formulations and additional terms, the proposed Laplacian model requires lower CPU usage times for solving the test problems which indicates noticeable computational efficiency. The introduced model can be effectively applied for simulation of different engineering applications such as fluid and solid mechanics problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ataie-Ashtiani B, Shobeyri G (2008) Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. Int J Numer Meth Fluids 56(2):209–232

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen X, Sun ZG, Liu L, Xi G (2016) Improved MPS method with variable-size particles. Int J Numer Meth Fluids 80(6):358–374

    Article  MathSciNet  Google Scholar 

  3. De Padova D, Mossa M, Sibilla S (2017) SPH modelling of hydraulic jump oscillations at an abrupt drop. Water 9(10):790

    Article  Google Scholar 

  4. Duan G, Chen B (2013) Stability and accuracy analysis for viscous flow simulation by the moving particle semi-implicit method. Fluid Dyn Res 45(3):035501

    Article  MathSciNet  MATH  Google Scholar 

  5. Duan G, Koshizuka S, Yamaji A, Chen B, Li X, Tamai T (2018) An accurate and stable multiphase moving particle semi-implicit method based on a corrective matrix for all particle interaction models. Int J Numer Meth Eng 115(10):1287–1314

    Article  MathSciNet  Google Scholar 

  6. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181(3):375–389

    Article  MATH  Google Scholar 

  7. Gómez-Gesteira M, Dalrymple RA (2004) Using a three-dimensional smoothed particle hydrodynamics method for wave impact on a tall structure. J Waterw Port Coast Ocean Eng 130(2):63–69

    Article  Google Scholar 

  8. Heydari Z, Shobeyri G, Najafabadi SHG (2021) Numerical investigation of solitary wave interaction with a flapper wave energy converter using incompressible SPH method. J Braz Soc Mech Sci Eng 43(3):1–18

    Article  Google Scholar 

  9. Hosseini SM, Feng JJ (2011) Pressure boundary conditions for computing incompressible flows with SPH. J Comput Phys 230(19):7473–7487

    Article  MathSciNet  MATH  Google Scholar 

  10. Hu XY, Adams NA (2007) An incompressible multi-phase SPH method. J Comput Phys 227(1):264–278

    Article  MATH  Google Scholar 

  11. Hu W, Tian Q, Hu H (2016) Dynamic fracture simulation of flexible multibody systems via coupled finite elements of ANCF and particles of SPH. Nonlinear Dyn 84(4):2447–2465

    Article  MathSciNet  Google Scholar 

  12. Huang C, Lei JM, Liu MB, Peng XY (2016) An improved KGF-SPH with a novel discrete scheme of Laplacian operator for viscous incompressible fluid flows. Int J Numer Meth Fluids 81(6):377–396

    Article  MathSciNet  Google Scholar 

  13. Hwang SC, Khayyer A, Gotoh H, Park JC (2014) Development of a fully Lagrangian MPS-based coupled method for simulation of fluid–structure interaction problems. J Fluids Struct 50:497–511

    Article  Google Scholar 

  14. Jandaghian M, Krimi A, Zarrati AR, Shakibaeinia A (2021) Enhanced weakly-compressible MPS method for violent free-surface flows: role of particle regularization techniques. J Comput Phys 434:110202

    Article  MathSciNet  MATH  Google Scholar 

  15. Jiao T, Ye M, Jin M, Yang J (2022) An interactively corrected smoothed particle hydrodynamics (IC-SPH) for simulating solute transport in a non-uniform velocity field. Water Resour Res 58:e2021WR031017

    Article  Google Scholar 

  16. Khayyer A, Gotoh H (2008) Development of CMPS method for accurate water-surface tracking in breaking waves. Coast Eng J 50(2):179–207

    Article  Google Scholar 

  17. Khayyer A, Gotoh H (2010) A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method. Appl Ocean Res 32(1):124–131

    Article  Google Scholar 

  18. Khayyer A, Gotoh H (2011) Enhancement of stability and accuracy of the moving particle semi-implicit method. J Comput Phys 230(8):3093–3118

    Article  MathSciNet  MATH  Google Scholar 

  19. Khayyer A, Gotoh H, Falahaty H, Shimizu Y, Nishijima Y (2017) Towards development of a reliable fully-Lagrangian MPS-based FSI solver for simulation of 2D Hydroelastic slamming. Ocean Syst Eng 7(3):299–318

    Google Scholar 

  20. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123(3):421–434

    Article  Google Scholar 

  21. Li S, Liu WK (1996) Moving least-square reproducing kernel method Part II: Fourier analysis. Comput Methods Appl Mech Eng 139(1–4):159–193

    Article  MATH  Google Scholar 

  22. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part I—formulation and theory. Int J Numer Meth Eng 45(3):251–288

    Article  MATH  Google Scholar 

  23. Li S, Liu WK (1999) Reproducing kernel hierarchical partition of unity, part II—applications. Int J Numer Meth Eng 45(3):289–317

    Article  Google Scholar 

  24. Liu WK, Jun S, Li S, Adee J, Belytschko T (1995) Reproducing kernel particle methods for structural dynamics. Int J Numer Meth Eng 38(10):1655–1679

    Article  MathSciNet  MATH  Google Scholar 

  25. Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) methodology and convergence. Comput Methods Appl Mech Eng 143(1–2):113–154

    Article  MathSciNet  MATH  Google Scholar 

  26. Ng KC, Hwang YH, Sheu TW (2014) On the accuracy assessment of Laplacian models in MPS. Comput Phys Commun 185(10):2412–2426

    Article  MATH  Google Scholar 

  27. Schwaiger HF (2008) An implicit corrected SPH formulation for thermal diffusion with linear free surface boundary conditions. Int J Numer Meth Eng 75(6):647–671

    Article  MathSciNet  MATH  Google Scholar 

  28. Shao S (2010) Incompressible SPH flow model for wave interactions with porous media. Coast Eng 57(3):304–316

    Article  Google Scholar 

  29. Shao S, Lo EY (2003) Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv Water Resour 26(7):787–800

    Article  Google Scholar 

  30. Shimizu Y, Gotoh H, Khayyer A (2018) An MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle concept. Comput Math Appl 76(5):1108–1129

    Article  MathSciNet  MATH  Google Scholar 

  31. Shobeyri G (2019) Improving accuracy of Laplacian model of incompressible SPH method using higher-order interpolation. Iran J Sci Technol, Trans Civil Eng 43(4):791–805

    Article  Google Scholar 

  32. Shobeyri G (2022) Improved MPS gradient models for elasticity problems. Iran J Sci Technol, Trans Civil Eng. https://doi.org/10.1007/s40996-022-01013-6

    Article  Google Scholar 

  33. Shobeyri G, Afshar MH (2012) Corrected discrete least-squares meshless method for simulating free surface flows. Eng Anal Bound Elem 36(11):1581–1594

    Article  MathSciNet  MATH  Google Scholar 

  34. Shobeyri G, Ardakani RR (2017) Improving accuracy of SPH method using Voronoi Diagram. Iran J Sci Technol, Trans Civil Eng 41(3):345–350

    Article  Google Scholar 

  35. Tamai T, Koshizuka S (2014) Least squares moving particle semi-implicit method. Comput Part Mech 1(3):277–305

    Article  Google Scholar 

  36. Tamai T, Shibata K, Koshizuka S (2013) Development of the higher-order MPS method using the Taylor expansion. Trans JSCES, 20130003.

  37. Timoshenko SP, Goodier JN (1987) Theory of elasticity, 3rd article (ed).

  38. Wang L, Jiang Q, Zhang C (2017) Improvement of moving particle semi-implicit method for simulation of progressive water waves. Int J Numer Meth Fluids 85(2):69–89

    Article  MathSciNet  Google Scholar 

  39. Xu R, Stansby P, Laurence D (2009) Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J Comput Phys 228(18):6703–6725

    Article  MathSciNet  MATH  Google Scholar 

  40. Zheng X, Duan WY, Ma QW (2010) Comparison of improved meshless interpolation schemes for SPH method and accuracy analysis. J Mar Sci Appl 9(3):223–230

    Article  Google Scholar 

  41. Zheng X, Ma Q, Shao S (2018) Study on SPH viscosity term formulations. Appl Sci 8(2):249

    Article  Google Scholar 

  42. Zheng X, Ma Q, Shao S, Khayyer A (2017) Modelling of violent water wave propagation and impact by incompressible SPH with first-order consistent kernel interpolation scheme. Water 9(6):400

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreza Shobeyri.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shobeyri, G. Using a modified MPS gradient model to improve accuracy of SPH method for Poisson equations. Comp. Part. Mech. 10, 1113–1126 (2023). https://doi.org/10.1007/s40571-022-00549-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00549-8

Keywords

Navigation