Skip to main content

Advertisement

Log in

Parametric study and calibration of hysteretic spring and linear cohesion contact models for cohesive soils using definitive screening design

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

The discrete element modelling (DEM) is the popular modelling technique devoted to the modelling of discontinuous and granular materials. Calibration of DEM model parameters remains to be one of the key challenges in DEM material modelling. The proposed research focuses on a novel DOE approach known as definitive screening design (DSD) for the parameterization and screening of the most influential DEM parameters of the hysteretic spring and linear cohesion contact models using cone penetration tests. Furthermore, the most influential DEM parameters were optimized using another design of experiments (DOE) approach known as central composite design (CCD). The results of DSD showed that effect of yield strength of the particles on cone index (CI) appears to be influenced by the energy density. Other parameters such as static friction factors (soil–soil and soil–steel), energy density, and stiffness factor also showed positive effect on the cone index (CI). The parameters yield strength, coefficient of static friction (soil–soil), coefficient of static friction (soil–steel), energy density and stiffness factor were selected for the optimization through central composite design, and all remaining parameters were screened out owing to their inability to influence CI. The optimized values of the yield strength, coefficient of static friction (soil–soil), coefficient of static friction (soil–steel), energy density and stiffness factor are \(1\times {10}^{6}\) MPa, 0.68, 0.35, 20 kPa and 0.7, respectively. The developed model when exposed to the validation provided reasonable agreement between observed and simulated draft value with relative error varying between 1.7 and 7.21%. The developed model is also capable of predicting soil furrow and ridge profiles with relative error varying between 4.15 and 21.19 and 0.47 and 6.38%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Aikins KA, Ucgul M, Barr JB, Jensen TA, Antille DL, Desbiolles JMA (2021) Determination of discrete element model parameters for a cohesive soil and validation through narrow point opener performance analysis. Soil Tillage Res 213(July):105123. https://doi.org/10.1016/j.still.2021.105123

    Article  Google Scholar 

  2. Akgüngör AP, Yıldız O (2007) Sensitivity analysis of an accident prediction model by the fractional factorial method. Accid Anal Prev 39(1):63–68. https://doi.org/10.1016/j.aap.2006.06.013

    Article  Google Scholar 

  3. Asaf Z, Rubinstein D, Shmulevich I (2007) Determination of discrete element model parameters required for soil tillage. Soil Tillage Res 92(1–2):227–242. https://doi.org/10.1016/j.still.2006.03.006

    Article  Google Scholar 

  4. Bahrami M, Naderi-boldaji M, Ghanbarian D, Ucgul M (2020) DEM simulation of plate sinkage in soil: calibration and experimental validation. Soil Tillage Res 203(March):104700. https://doi.org/10.1016/j.still.2020.104700

    Article  Google Scholar 

  5. Chang SH, Teng TT, Ismail N (2011) Screening of factors influencing Cu(II) extraction by soybean oil-based organic solvents using fractional factorial design. J Environ Manage 92(10):2580–2585. https://doi.org/10.1016/j.jenvman.2011.05.025

    Article  Google Scholar 

  6. Cundall PA, Strack ODL (1979) Discussion: a discrete numerical model for granular assemblies. Géotechnique 30(3):331–336. https://doi.org/10.1680/geot.1980.30.3.331

    Article  Google Scholar 

  7. De Simone M, Souza LMS, Roehl D (2019) Estimating DEM microparameters for uniaxial compression simulation with genetic programming. Int J Rock Mech Min Sci 118(July2018):33–41. https://doi.org/10.1016/j.ijrmms.2019.03.024

    Article  Google Scholar 

  8. DEM Solutions Ltd (2014) Theory Reference Guide, Version 2.6. https://www.edemsimulation.com/content/uploads/2016/08/EDEM2.6_theory_reference_guide.pdf

  9. Erler A, de Mas N, Ramsey P, Henderson G (2013) Efficient biological process characterization by definitive-screening designs: the formaldehyde treatment of a therapeutic protein as a case study. Biotech Lett 35(3):323–329. https://doi.org/10.1007/s10529-012-1089-y

    Article  Google Scholar 

  10. Errore A, Jones B, Li W, Nachtsheim CJ (2017) Using definitive screening designs to identify active first-and second-order factor effects. J Qual Technol 49(3):244–264. https://doi.org/10.1080/00224065.2017.11917993

    Article  Google Scholar 

  11. Favre H, Chaves Neto A (2021) An application of definitive screening designs (DSDs) to a food product optimization and adaptations to jones & nachtsheim methodology for fitting DSD models. Food Qual Prefer 88(October 2020):104106. https://doi.org/10.1016/j.foodqual.2020.104106

    Article  Google Scholar 

  12. Felix C, Ubando A, Madrazo C, Sutanto S, Tran-Nguyen PL, Go AW, Ju Y, Culaba A, Chang J, Chen W-H (2019) Investigation of direct biodiesel production from wet microalgae using definitive screening design. Energy Procedia 158:1149–1154. https://doi.org/10.1016/j.egypro.2019.01.296

    Article  Google Scholar 

  13. Fidaleo M, Lavecchia R, Petrucci E, Zuorro A (2016) Application of a novel definitive screening design to decolorization of an azo dye on boron-doped diamond electrodes. Int J Environ Sci Technol 13(3):835–842. https://doi.org/10.1007/s13762-016-0933-3

    Article  Google Scholar 

  14. Gautam TP (2018) Cohesive soils. Springer, Cham, pp 161–162. https://doi.org/10.1007/978-3-319-73568-9_60

    Book  Google Scholar 

  15. Hildebrandt C, Gopireddy SR, Scherließ R, Urbanetz NA (2019) Assessment of material and process attributes’ influence on tablet quality using a QbD and DEM combined approach. Powder Technol 345:390–404. https://doi.org/10.1016/j.powtec.2019.01.015

    Article  Google Scholar 

  16. Ismail MKA, Mohamed Z, Razali M (2018) Contact stiffness parameters of soil particles model for discrete element modeling using static packing pressure test. AIP Conf Proc 2020:1–8. https://doi.org/10.1063/1.5062640

    Article  Google Scholar 

  17. Janda A, Ooi JY (2016) DEM modeling of cone penetration and unconfined compression in cohesive solids. Powder Technol 293:60–68. https://doi.org/10.1016/j.powtec.2015.05.034

    Article  Google Scholar 

  18. Johnson K, Kendall K, Roberts AD (1971) Surface energy and the contact of elastic solids. Proceed Royal Soci London. A Math Phys Sci 324(1558):301–313. https://doi.org/10.1098/rspa.1971.0141

    Article  Google Scholar 

  19. Jones B, Nachtsheim CJ (2017) Effective design-based model selection for definitive screening designs. Technometrics 59(3):319–329. https://doi.org/10.1080/00401706.2016.1234979

    Article  MathSciNet  Google Scholar 

  20. Karkala S, Davis N, Wassgren C, Shi Y, Liu X, Riemann C, Yacobian G, Ramachandran R (2019) Calibration of discrete-element-method parameters for cohesive materials using dynamic-yield-strength and shear-cell experiments. Processes 7(5):278. https://doi.org/10.3390/pr7050278

    Article  Google Scholar 

  21. Khosravi A, Martinez A, DeJong JT (2020) Discrete element model (DEM) simulations of cone penetration test (CPT) measurements and soil classification. Can Geotech J 57(9):1369–1387. https://doi.org/10.1139/cgj-2019-0512

    Article  Google Scholar 

  22. Kim Y, Ayub A, Kim W, Kim Y, Lee S, Lee D, Hwang S, Nam J, Park S, Lim R (2021) DEM simulation for draft force prediction of moldboard plow according to the tillage depth in cohesive soil. Comput Electron Agric 189(March):106368. https://doi.org/10.1016/j.compag.2021.106368

    Article  Google Scholar 

  23. Lambe T, Whitman RV (1991) Soil mechanics. Wiley, Hoboken

    Google Scholar 

  24. Liu J, Chen Y, Kushwaha RL (2010) Effect of tillage speed and straw length on soil and straw movement by a sweep. Soil Tillage Res 109(1):9–17. https://doi.org/10.1016/j.still.2010.03.014

    Article  Google Scholar 

  25. Lommen S, Schott D, Lodewijks G (2014) DEM speedup: stiffness effects on behavior of bulk material. Particuology 12(1):107–112. https://doi.org/10.1016/j.partic.2013.03.006

    Article  Google Scholar 

  26. Mohamed OA, Masood SH, Bhowmik JL (2017) Experimental investigation of creep deformation of part processed by fused deposition modeling using definitive screening design. Addit Manuf 18:164–170. https://doi.org/10.1016/j.addma.2017.10.013

    Article  Google Scholar 

  27. Mudarisov S, Farkhutdinov I, Khamaletdinov R, Khasanov E, Mukhametdinov A (2022) Evaluation of the significance of the contact model particle parameters in the modelling of wet soils by the discrete element method. Soil Tillage Res 215(October 2021):105228. https://doi.org/10.1016/j.still.2021.105228

    Article  Google Scholar 

  28. Nageeb El-Helaly S, Habib BA, Abd El-Rahman MK (2018) Resolution V fractional factorial design for screening of factors affecting weakly basic drugs liposomal systems. Eur J Pharm Sci 119(April):249–258. https://doi.org/10.1016/j.ejps.2018.04.028

    Article  Google Scholar 

  29. Potyondy DO, Cundall PA (2004) A bonded-particle model for rock. Int J Rock Mech Min Sci 41(8SPEC.ISS.):1329–1364. https://doi.org/10.1016/j.ijrmms.2004.09.011

    Article  Google Scholar 

  30. Roessler T, Katterfeld A (2019) DEM parameter calibration of cohesive bulk materials using a simple angle of repose test. Particuology 45:105–115. https://doi.org/10.1016/j.partic.2018.08.005

    Article  Google Scholar 

  31. Shmulevich I, Asaf Z, Rubinstein D (2007) Interaction between soil and a wide cutting blade using the discrete element method. Soil Tillage Res 97(1):37–50. https://doi.org/10.1016/j.still.2007.08.009

    Article  Google Scholar 

  32. Stakman WP, Bishay BG (1976) Moisture retention and plasticity of highly calcareous soils in Egypt. Netherl J Agricult Sci 24(1):43–57. https://doi.org/10.18174/njas.v24i1.17164

    Article  Google Scholar 

  33. Suard S, Hostikka S, Baccou J (2013) Sensitivity analysis of fire models using a fractional factorial design. Fire Saf J 62(PART B):115–124. https://doi.org/10.1016/j.firesaf.2013.01.031

    Article  Google Scholar 

  34. Ucgul M, Fielke JM, Saunders C (2014) Three-dimensional discrete element modelling of tillage: determination of a suitable contact model and parameters for a cohesionless soil. Biosys Eng 121:105–117. https://doi.org/10.1016/j.biosystemseng.2014.02.005

    Article  Google Scholar 

  35. Ucgul M, Fielke JM, Saunders C (2015) Three-dimensional discrete element modelling (DEM) of tillage: accounting for soil cohesion and adhesion. Biosys Eng 129:298–306. https://doi.org/10.1016/j.biosystemseng.2014.11.006

    Article  Google Scholar 

  36. Ucgul M, Saunders C (2020) Simulation of tillage forces and furrow profile during soil-mouldboard plough interaction using discrete element modelling. Biosys Eng 190(1):58–70. https://doi.org/10.1016/j.biosystemseng.2019.11.022

    Article  Google Scholar 

  37. Wagner JF (2013) Mechanical properties of clays and clay minerals. In: Developments in Clay Science. (2nd ed., Vol. 5). Elsevier, Armsterdam. https://doi.org/10.1016/B978-0-08-098258-8.00011-0

  38. Walton OR, Braun RL (1986) Inelastic frictional disks viscosity, granular-temperature and stress calculations for shearing assemblies of inelastic, frictional disks. J Rheol. https://doi.org/10.1122/1.549893

    Article  Google Scholar 

  39. Wang X, Zhang Q, Fu Z, Wei W, He J, Huang Y (2021) An efficient method for determining DEM parameters of a loose cohesive soil modelled using hysteretic spring and linear cohesion contact models. Info Process Agricult. https://doi.org/10.1016/j.inpa.2021.04.006

    Article  Google Scholar 

  40. Wu T, Huang W, Chen X, Ma X, Han Z, Pan T (2017) Calibration of discrete element model parameters for cohesive soil considering the cohesion between particles. J South China Agricult Univers 38(3):93–98

    Google Scholar 

  41. Xia R, Li B, Wang X, Li T, Yang Z (2019) Measurement and calibration of the discrete element parameters of wet bulk coal. Measurement 142:84–95. https://doi.org/10.1016/j.measurement.2019.04.069

    Article  Google Scholar 

  42. Yimsiri S, Soga K (2000) Micromechanics-based stress–strain behaviour of soils at small strains. Géotechnique 50(5):559–571. https://doi.org/10.1680/geot.2000.50.5.559

    Article  Google Scholar 

  43. Zhao S, Evans TM, Zhou X (2018) Effects of curvature-related DEM contact model on the macro- and micro-mechanical behaviours of granular soils. Geotechnique 68(12):1085–1098. https://doi.org/10.1680/jgeot.17.P.158

    Article  Google Scholar 

  44. Zhu J, Zou M, Liu Y, Gao K, Su B, Qi Y (2022) Measurement and calibration of DEM parameters of lunar soil simulant. Acta Astronautica 191(October 2021):169–177. https://doi.org/10.1016/j.actaastro.2021.11.009

    Article  Google Scholar 

  45. Mak J, Chen Y, Sadek MA (2012) Soil & Tillage Research Determining parameters of a discrete element model for soil – tool interaction. Soil Tillage Res 118:117–122. https://doi.org/10.1016/j.still.2011.10.019

    Article  Google Scholar 

  46. Coetzee CJ (2017) Calibration of the discrete element method. Powder Technol 310:10–142. https://doi.org/10.1016/j.powtec.2017.01.015

  47. Bhalode P, Ierapetritou M (2020) Discrete element modeling for continuous powder feeding operation: Calibration and system analysis. Int J of Pharm 585:119427

  48. Zhou H, Hu Z, Chen J, Lv X, Xie N (2018) Calibration of DEM models for irregular particles based on experimental design method and bulk experiments. Powder Technol 332:210–223. https://doi.org/10.1016/j.powtec.2018.03.064

    Article  Google Scholar 

  49. Chehreghani S, Noaparast M, Rezai B, Shafaei SZ (2017) Bonded-particle model calibration using response surface methodology. Part 32:141–152. https://doi.org/10.1016/j.partic.2016.07.012

  50. Hanley KJ, O’Sullivan C, Oliveira JC, Cronin K, Byrne EP (2011) Application of Taguchi methods to DEM calibration of bonded agglomerates. Powder Technol 210(3):230–240. https://doi.org/10.1016/j.powtec.2011.03.023

  51. Yoon J (2007) Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation. Int J of Rock Mech and Mining Sci 44(6):871–889. https://doi.org/10.1016/j.ijrmms.2007.01.004

  52. Favre H, Chaves NA (2021) An application of definitive screening designs (DSDs) to a food product optimization and adaptations to jones & nachtsheim methodology for fitting DSD models. Food Qual and Prefer 88:104-106. https://doi.org/10.1016/j.foodqual.2020.104106

  53. Santos CP, Rato TJ, Reis MS (2019) Design of Experiments: A comparison study from the non-expert user’s perspective. J of Chemom 33(1):e3087. https://doi.org/10.1002/cem.3087

  54. Jones B, Nachtsheim CJ (2011) A Class of Three-Level Designs for Definitive Screening in the Presence of Second-Order Effects. J of Qual Technol 43(1):1–15. https://doi.org/10.1080/00224065.2011.11917841

  55. Kotrocz K, Mouazen AM, Kerényi G (2016) Numerical simulation of soil–cone penetrometer interaction using discrete element method. Comput and Electron in Agric 125:63–73. https://doi.org/10.1016/j.compag.2016.04.023

  56. Sakamoto H, Nakashima H, Shimizu H, Miyasaka J, Ohdoi K (2010) 2D DEM Analysis of Cone Penetration Resistance on Mesoscopic Soil Model. IFAC Proc Vol 43(26):67–72. https://doi.org/10.3182/20101206-3-JP-3009.00011

  57. Cundall PA (1971) A computer model for simulating progressive, large-scale movement in blocky rock system. In Proc of the Int Symp on Rock Mech

  58. Saunders C, Ucgul M, Godwin RJ (2021) Discrete element method (DEM) simulation to improve performance of a mouldboard skimmer. Soil and Tillage Res 205:104764. https://doi.org/10.1016/j.still.2020.104764

    Article  Google Scholar 

  59. EDEM (2021) Theory reference guide, version 2021

  60. Tekeste MZ, Balvanz LR, Hatfield JL, Ghorbani S (2019) Discrete element modeling of cultivator sweep-to-soil interaction: Worn and hardened edges effects on soil-tool forces and soil flow. J of Terramechanics, 82:1–11. https://doi.org/10.1016/j.jterra.2018.11.001

    Article  Google Scholar 

  61. Sadek MA, Chen Y (2015) Feasibility of using PFC3D to simulate soil flow resulting from a simple soil-engaging tool. Trans of the ASABE, 58(4):987–996. https://doi.org/10.13031/trans.58.10900

    Article  Google Scholar 

  62. Sadek, MA, Chen Y (2014) Microproperties calibration of discrete element models for soil-tool interaction. American Society of Agricultural and Biological Engineers Annu Int Meeting 2014, ASABE 2014, 6:3965–3978. https://doi.org/10.13031/aim.20141909788

    Article  Google Scholar 

  63. Hlosta J, Jezersk L, Jiˇrí Rozbroj, Žurovec D, Neˇ J (2020) DEM Investigation of the influence of particulate properties and operating conditions on the mixing the DEM parameters and calibration process. Proc 8(2):1–26. https://doi.org/10.3390/pr8020222

    Article  Google Scholar 

Download references

Acknowledgements

The first author wishes to acknowledge the Chhatrapati Shahu Maharaj National Research Fellowship (CMNRF-2020/2021-22/109) received from Chhatrapati Shahu Maharaj Research, Training and Human Development Institute (SARTHI), Govt. of Maharashtra, for carrying out the PhD research work at ICAR-CIAE, the outreach program of PG school IARI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rohit Dilip Nalawade.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nalawade, R.D., Singh, K.P., Roul, A.K. et al. Parametric study and calibration of hysteretic spring and linear cohesion contact models for cohesive soils using definitive screening design. Comp. Part. Mech. 10, 707–728 (2023). https://doi.org/10.1007/s40571-022-00523-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00523-4

Keywords

Navigation