Skip to main content
Log in

Simulating melt spreading into shallow water using moving particle hydrodynamics with turbulence model

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

In this study, molten metal spreading into water is calculated using moving particle hydrodynamics (MPH) which is one of the particle methods. The spreading and solidification behavior of the molten metal is simulated and compared with the experiment, which is for predicting the fuel debris spreading in the primary containment vessel (PCV) in Fukushima Daiichi Nuclear Power Plant (1F NPPs). The calculation and experiments were carried out with various water levels. To simulate the turbulence effect which enhances the heat transfer between the molten metal and water, large eddy simulation (LES) model was taken in the calculation. The solidification behaviors of the molten metal were expressed by the solid fraction-dependent viscosity model together with solving the energy equation. The solidification behavior depending on the water level was well reproduced by the introduction of the turbulence model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Tokyo Electric Power Company (2017) Unit 3 Primary Containment Vessel Internal Investigation. TEPCO Web. https://www.tepco.co.jp/en/nu/fukushima-np/handouts/2017/images/handouts_171130_03-e.pdf

  2. Tokyo Electric Power Company (2018) Fukushima Daiichi Nuclear Power Station Unit 2 Primary Containment Vessel Internal Investigation Results. TEPCO Web. https://www.tepco.co.jp/en/nu/fukushima-np/handouts/2018/images/handouts_180201_01-e.pdf

  3. Dinh TN, Knovalikhin MJ, Sehgal BR (2000) Core melt spreading on a reactor containment floor. Prog Nucl Energy 36:405–468. https://doi.org/10.1016/S0149-1970(00)00088-3

    Article  Google Scholar 

  4. Veteau JM (1994) Corine Program, OECD/CSNI/NEA. In: Proceedings of the workshop on large molten pool heat transfer, grenoble, pp 531–548

  5. Green GA, Finrock C, Klages J, Schwards CE, Burton SB (1998) Experimental studies on melt spreading, bubbling heat transfer and coolant layer boiling. In: Proceedings of the 16th water reactor safety meeting, NUREG/CP-0097, pp 341–358

  6. Suzuki H, Matsumoto T, Mitadera T, Matsumoto M, Zama T (1993) Fundamental experiment and analysis for melt spreading on concrete floor. In: Proceedings of the 2nd ASME/JSME nuclear engineering conference vol 1, pp 403–407

  7. Eppinger B, Fieg G, Schuetz W, Stegmaier U (2001) KATS experiments to simulate corium spreading in the EPR core catcher concept. In: Proceedings of the 9th international conference on nuclear engineering (ICONE-9), p 32068804

  8. Alsmeyer H, Cron T, Messemer G, Häfner W (2004) ECOKATS-2: a large scale experiment on melt spreading and subsequent cooling by top flooding. In: Proceedings of the ICAPP’04 (international conference advances in nuclear power plants), Communication No. 4134

  9. Steinwarz W, Alemberti A, Häfner W, Alkan Z, Fischer M (2001) Investigations on the phenomenology of ex-vessel core melt behaviour. Nucl Eng Des 209:139–146. https://doi.org/10.1016/S0029-5493(01)00396-X

    Article  Google Scholar 

  10. Tromm W, Foit JJ, Magallon D (1999) Dry and wet spreading experiments with prototypic materials at the FARO facility and the theoretical analysis. In: Proceedings of the OECD workshop on ex-vessel debris coolability, FZKA—6475

  11. Journeau C, Boccacio E, Brayer C, Cognet G, Hanquet JF, Jégou C, Piluso P, Monerris J (2003) Ex-vessel corium spreading: Results from the VULCANO spreading tests. Nucl Eng Des 223:75–102. https://doi.org/10.1016/S0029-5493(02)00397-7

    Article  Google Scholar 

  12. Johnson M, Denoix A, Bouyer V, Goda H, Kamohara H, Takeuchi J, Brissonneau L, Journeau C (2021) High-temperature ex-vessel corium spreading: Part1: experimental investigations on ceramics and sacrificial concrete substrates. J Nucl Sci Technol 59:446–458. https://doi.org/10.1080/00223131.2021.1977199

    Article  Google Scholar 

  13. Johnson M, Schiano T, Denoix A, Bouyer V, Journeau C (2021) High-temperature ex-vessel corium spreading: Part2: Scale principles for gravity-viscous spreading with slip at the melt-substrate interface. J Nucl Sci Technol 59:459–471. https://doi.org/10.1080/00223131.2021.1978895

    Article  Google Scholar 

  14. Ogura T, Matsumoto T, Miwa S, Mori M, Hibiki T (2018) Experimental study on molten metal spreading and deposition behaviors. Ann Nucl Energy 118:353–362. https://doi.org/10.1016/j.anucene.2018.04.036

    Article  Google Scholar 

  15. Matsumoto T, Sakurada K, Miwa S, Sakashita H, Mori M (2017) Scaling analysis of the spreading and deposition behaviors of molten-core-simulated metals. Ann Nucl Energy 108:79–88. https://doi.org/10.1016/j.anucene.2017.04.038

    Article  Google Scholar 

  16. Sahboun N, Miwa S, Sawa K, Yamamoto Y, Watanabe Y, Ito T (2020) A molten metal jet impingement on a flat spreading surface. J Nucl Sci Technol 57:1111–1120. https://doi.org/10.1080/00223131.2020.1764406

    Article  Google Scholar 

  17. Yokoyama R, Suzuki S, Okamoto K, Harada M (2020) Scale effect of amount of molten corium and outlet diameters on corium spreading. Prog Nucl Energy 130:103535. https://doi.org/10.1016/j.pnucene.2020.103535

    Article  Google Scholar 

  18. Yamamoto Y, Watanabe Y, Ito T, Nihashi K, Miwa S, Mori M (2021) Dimensionless parameters controlling the spreading behaviors of free-falling molten metal on dry surface. Prog Nucl Energy 140:103882. https://doi.org/10.1016/j.pnucene.2021.103882

    Article  Google Scholar 

  19. Tokyo Electric Power Company (2014) Status of Fukushima Daiichi Nuclear Power Station. IRID web. https://irid.or.jp/debris/S1-1E.pdf

  20. Abe Y, Kizu T, Arai T, Nariai H, Chitose K, Koyama K (2004) Study on thermal-hydraulic behavior during molten material and coolant interaction. Nucl Eng Des 230:277–291. https://doi.org/10.1016/j.nucengdes.2003.11.032

    Article  Google Scholar 

  21. Abe Y, Matsumoto E, Arai T, Nariai H, Chitose K, Koyama K, Itoh K (2006) Fragmentation behavior during molten material and coolant interactions. Nucl Eng Des 236:1668–1681. https://doi.org/10.1016/j.nucengdes.2006.04.008

    Article  Google Scholar 

  22. Dinh TN, Bui VA, Nourgaliev RR, Gree JA, Sehgal BR (1999) Experimental and analytical studies of melt jet-coolant interactions: a synthesis. Nucl Eng Des 189:299–327. https://doi.org/10.1016/S0029-5493(98)00275-1

    Article  Google Scholar 

  23. Li Y, Wang Z, Lin M, Zhou Y, Yang Y (2017) Experimental studies on breakup and fragmentation behavior of molten tin and coolant interaction. Sci Technol Nucl Install 2017:4576328. https://doi.org/10.1155/2017/4576328

    Article  Google Scholar 

  24. Bang KH, Kim JM, Kim DH (2003) Experimental study of melt jet breakup in water. J Nucl Sci Technol 40:807–813. https://doi.org/10.1080/18811248.2003.9715422

    Article  Google Scholar 

  25. Karbojian A, Ma WM, Kudinov P, Dinh TN (2009) A scoping study of debris bed formation in the DEFOR test facility. Nucl Eng Des 239:1653–1659. https://doi.org/10.1016/j.nucengdes.2009.03.002

    Article  Google Scholar 

  26. Greene GA, Finfrock C, Klages J, Schwarz CE, Burson SB (1988) Experimental studies on melt spreading, bubbling heat transfer, and coolant layer boiling, In Proceedings of 16th Water Reactor Safety Meeting NUREG/CP-0097, pp 341–358

  27. Ogura T, Matsumoto T, Miwa S, Hibiki T, Mori M (2018) Experimental study on molten metal spreading and deposition behaviors on wet surface. Prog Nucl Energy 106:72–78. https://doi.org/10.1016/j.pnucene.2018.03.001

    Article  Google Scholar 

  28. Konovalenko A, Karbojian A, Kudinov P (2012) Experimental results on pouring and underwater liquid melt spreading and energetic melt-coolant interaction, The 9th International Topical Meeting On Nuclear Thermal-Hydraulics, Operation and Safety (NUTHOS-9), N9P0303

  29. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406. https://doi.org/10.1006/jcph.1994.1034

    Article  MATH  Google Scholar 

  30. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit methods for fragmentation of incompressible fluid. Nucl Sci Eng 123:421–434. https://doi.org/10.13182/NSE96-A24205

    Article  Google Scholar 

  31. Jubaidah GD, Yamaji A, Journeau C, Buffe L, Haquet J-F (2020) Investigation on corium spreading over ceramic and concrete sub- strates in VULCANO VE-U7 experiment with moving particle semi-implicit method. Ann Nucl Energy 141:107266. https://doi.org/10.1016/j.anucene.2019.107266

    Article  Google Scholar 

  32. Duan G, Yamaji A, Koshizuka S (2019) A novel multiphase MPS algorithm for modeling crust formation by highly viscous fluid for simulating corium spreading. Nucl Eng Des 343:218–231. https://doi.org/10.1016/j.nucengdes.2019.01.005

    Article  Google Scholar 

  33. Kawahara T, Oka Y (2012) Ex-vessel molten core solidification behavior by moving particle semi-implicit method. J Nucl Sci Technol 49:1156–1164. https://doi.org/10.1080/00223131.2012.740944

    Article  Google Scholar 

  34. Yamaji A, Li X (2016) Development of MPS method for analyzing melt spreading behavior and MCCI in severe accident. J Phys: Conf Ser 739:012002. https://doi.org/10.1088/1742-6596/739/1/012002

    Article  Google Scholar 

  35. Xiong J, Zhu Y, Zhang T, Cheng X (2019) Lagrangian simulation of three-dimensional macro-scale melting based on enthalpy method. Comput Fluids 190:168–177. https://doi.org/10.1016/j.compfluid.2019.06.019

    Article  MathSciNet  MATH  Google Scholar 

  36. Chai P, Erkan N, Kondo M, Okamoto K, Wei H (2015) Experimental research and numerical simulation of moving molten metal pool. Mech Eng Lett. https://doi.org/10.1299/mel.15-00367

    Article  Google Scholar 

  37. Li G, Wen P, Feng H, Zhang J, Yan J (2020) Study on melt stratification and migration in debris bed using the moving particle semi-implicit method. Nucl Eng Des 360:110459. https://doi.org/10.1016/j.nucengdes.2019.110459

    Article  Google Scholar 

  38. Li G, Oka Y, Furuya M (2014) Experimental and numerical study of stratification and solidification/melting behaviors. Nucl Eng Des 272:109–117. https://doi.org/10.1016/j.nucengdes.2014.02.023

    Article  Google Scholar 

  39. Chai P, Kondo M, Erkan N, Okamoto K (2017) Numerical simulation of MCCI based on MPS method with different types of concrete. Ann Nucl Energy 103:227–237. https://doi.org/10.1016/j.anucene.2017.01.009

    Article  Google Scholar 

  40. Chen R, Li Y, Guo K, Tian W, Qiu S, Su GH (2017) Numerical investigation on the dissolution kinetics of ZrO2 by molten zircaloy using MPS method. Nucl Eng Des 319:117–125. https://doi.org/10.1016/j.nucengdes.2017.05.002

    Article  Google Scholar 

  41. Li Y, Chen R, Guo K, Tian W, Qiu S, Su GH (2017) Numerical analysis of the dissolution of uranium dioxide by molten zircaloy using MPS method. Prog Nucl Energy 100:1–10. https://doi.org/10.1016/j.pnucene.2017.05.022

    Article  Google Scholar 

  42. Kondo M (2021) A physically consistent particle method for incompressible fluid flow calculation. Comput Part Mech 8:69–86. https://doi.org/10.1007/s40571-020-00313-w

    Article  Google Scholar 

  43. Kondo M, Fujiwara T, Masaie I, Matsumoto J (2021) A physically consistent particle method for high-viscous free-surface flow calculation. Comput Part Mech. https://doi.org/10.1007/s40571-021-00408-y

    Article  Google Scholar 

  44. Kondo M, Matsuumoto J (2020) Physically consistent simple particle method and pressure evaluation using virial theorem. In: Proceedings of the 25th computational engineering conference F-03-01 (in Japanese)

  45. Kondo M, Matsumoto J (2021) Weakly compressible particle method with physical consistency for spatially discretized system. Trans JSCES. https://doi.org/10.11421/jsces.2021.20210006(inJapanese)

    Article  Google Scholar 

  46. Kondo M, Ueda S, Okamoto K (2017) Melting simulation using a particle method with angular momentum conservation. In: Proceedings of the 25th international conference on nuclear engineering (ICONE25), July 2–6, Shanghai, China. https://doi.org/10.1115/ICONE25-67588

  47. Yokoyama R, Kondo M, Suzuki S, Okamoto K (2021) Analysis of molten metal spreading and solidification behaviors utilizing moving particle full-implicit method. Front Energy 15:959–973. https://doi.org/10.1007/s11708-021-0753-0

    Article  Google Scholar 

  48. Yokoyama R, Kondo M, Suzuki S, Harada M, Okamoto K (2021) Investigation of the Outflow and spreading-solidification behaviour of stratified molten metal. J Nucl Eng 2:168–189. https://doi.org/10.3390/jne2020017

    Article  Google Scholar 

  49. Yokoyama R, Suzuki S, Kondo M, Okamoto K (2021) Experimental study on spreading and solidification behavior of molten metal impinged into water. In: Proceedings of the atomic energy society of Japan 2021 Fall meeting 2J17 (in Japanese)

  50. Gotoh H, Shibahara T, Sakai T (2001) Sub-particle-scale turbulence model for the MPS method Lagrangian flow model for hydraulic engineering. Comput Fluid Dyn J 9:339–347

    Google Scholar 

  51. Smagorinsky J (1963) General circulation experiments with the primitive equations: I The basic experiment. Mon Weather Rev 91:99–164. https://doi.org/10.1175/1520-0493(1963)091%3c0099:GCEWTP%3e2.3.CO;2

    Article  Google Scholar 

  52. Gotoh H, Shao S, Memita T (2003) SPH-LES model for wave dissipation using a curtain wall. Proc hydraul Eng 47:397–402. https://doi.org/10.2208/prohe.47.397

    Article  Google Scholar 

  53. Gotoh H, Shao S, Memita T (2004) SPH-LES Model for Numerical Investigation of Wave Interaction with Partially Immersed Breakwater. Coast Eng J 46:39–63. https://doi.org/10.1142/S0578563404000872

    Article  Google Scholar 

  54. Shao S, Gotoh H (2005) Turbulence particle models for tracking free surfaces. J Hydraulic Res 43:276–289. https://doi.org/10.1080/00221680509500122

    Article  Google Scholar 

  55. Shao S, Ji C (2006) SPH computation of plunging waves using a 2-D sub-particle scale (SPS) turbulence model. Int J Numer Methods Fluids 51:913–936. https://doi.org/10.1002/fld.1165

    Article  MATH  Google Scholar 

  56. Shao S, Ji C, Graham DI, Reeve DE, James PW, Chadwick AJ (2006) Simulation of wave overtopping by an incompressible SPH model. Coast Eng 53:723–735. https://doi.org/10.1016/j.coastaleng.2006.02.005

    Article  Google Scholar 

  57. Gotoh H, Sakai T (2006) Key issues in the particle method for computation of wave breaking. Coast Eng 53:171–179. https://doi.org/10.1016/j.coastaleng.2005.10.007

    Article  Google Scholar 

  58. Arai J, Koshizuka S, Murozono K (2013) Large eddy simulation and a simple wall model for turbulent flow calculation by a particle method. Int J Numer Methods Fluids 71:772–787. https://doi.org/10.1002/fld.3685

    Article  MathSciNet  MATH  Google Scholar 

  59. Yang C, Zhang H (2018) Numerical simulation of the interactions between fluid and structure in application of the MPS method assisted with the large eddy simulation method. Ocean Eng 155:55–64. https://doi.org/10.1016/j.oceaneng.2018.01.088

    Article  Google Scholar 

  60. Duan G, Chen B (2015) Large eddy simulation by particle method coupled with sub-particle-scale model and application to mixing layer flow. Appl Math Model 39:3135–3149. https://doi.org/10.1016/j.apm.2014.10.058

    Article  MathSciNet  MATH  Google Scholar 

  61. Li G, Liu M, Duan G, Chong D, Yan J (2016) Numerical investigation of erosion and heat transfer characteristics of molten jet impinging onto solid plate with MPS–LES method. Int J Heat Mass Transf 99:44–52. https://doi.org/10.1016/j.ijheatmasstransfer.2016.03.090

    Article  Google Scholar 

  62. Duan G, Yamaji A, Koshizuka S (2018) A Novel Approach for Crust Behaviors in Corium Spreading Based on Multiphase MPS method, The 12th International topical meeting on nuclear thermal-hydraulics, operation and safety (NUTHOS-12), No: 530

  63. John H, Lienhard V (2006) Heat transfer by impingement of circular free-surface liquid jets, 18th National & 7th ISHMT-ASME Heat and Mass Transfer Conference, January 4–6. IIT Guwahati, India

    Google Scholar 

  64. Ranz WE, Marshall WR (1952) Evaporation from drops. Chem Eng Prog 48:141–146

    Google Scholar 

  65. Spencer DB, Mehrabian R, Flemings MC (1972) Rheological behavior of Sn-15 Pct Pb in the crystallization range. Metall Mater Trans B 3:1925–1932. https://doi.org/10.1007/BF02642580

    Article  Google Scholar 

  66. Joly PA, Mehrabian R (1976) The rheology of a partially solid alloy. J Mater Sci 11:1393–1418. https://doi.org/10.1007/BF00540873

    Article  Google Scholar 

  67. Ramacciotti M, Journeau C, Sudreau F, Cognet G (2001) Viscosity models for corium melts. Nucl Eng Des 204(1–3):377–389. https://doi.org/10.1016/S0029-5493(00)00328-9

    Article  Google Scholar 

  68. Hirai M (1992) Estimation of viscosities of liquid alloys. ISIJ 3:399–406. https://doi.org/10.2355/tetsutohagane1955.78.3_399 (in Japanese)

    Article  Google Scholar 

  69. Kondo M, (2017) Development of surface tension model with many-body potential force. Particles2017, Hannover, pp 461–470

  70. Tsujii A, Shimaoka M, Toyokawa H (2008), Production of u-alloy 47 fiber by the in-rotating-liquid-spinning process and its shape of fiber, research reports, Nara National College of Technology (In Japanese) https://www.nara-k.ac.jp/nnct-library/publication/pdf/h20kiyo2.pdf Accessed 19 January 2022

  71. Zmeskal O, Marackova L, Lapcikova T, Mencik P, Prikryl R (2020) Thermal properties of samples prepared from polylactic acid by 3D printing. AIP Conf Proc 2305:020022. https://doi.org/10.1063/5.0033857

    Article  Google Scholar 

  72. Pavlos KP, Stamatoula P, Maria KK, Michalis GV, Vassilis NS (2019) Differential scanning calorimetry based evaluation of 3D printed PLA for phase change materials encapsulation or as container material of heat storage tanks, In: Proceeding of 2nd international conference on sustainable energy and resource use in food chains vol 161, pp 429–437 https://doi.org/10.1016/j.egypro.2019.02.088

  73. Marec PE, Quantin J-C, Ferry L, Benezet J-C, Guilbert S, Bergeret A (2014) Modeling of PLA melt rheology and batch mixing energy balance. Eur Plom J 60:273–285. https://doi.org/10.1016/j.eurpolymj.2014.09.012

    Article  Google Scholar 

Download references

Acknowledgements

This study is partially supported by Mitsubishi Heavy Industry (MHI). The authors would like to appreciate the committee member of MHI for giving us meaningful discussion and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryo Yokoyama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yokoyama, R., Kondo, M., Suzuki, S. et al. Simulating melt spreading into shallow water using moving particle hydrodynamics with turbulence model. Comp. Part. Mech. 10, 677–690 (2023). https://doi.org/10.1007/s40571-022-00520-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-022-00520-7

Keywords

Navigation